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Abstract

Homologous recombination is required for accurate chromosome segregation during the first

meiotic division and constitutes a key repair and tolerance pathway for complex DNA damage

including DNA double-stranded breaks, interstrand crosslinks, and DNA gaps. In addition,

recombination and replication are inextricably linked, as recombination recovers stalled and

broken replication forks enabling the evolution of larger genomes/replicons. Defects in

recombination lead to genomic instability and elevated cancer predisposition, demonstrating a

clear cellular need for active recombination. However, recombination can also lead to genome

rearrangements. Unrestrained recombination causes undesired endpoints (translocation, deletion,

inversion) and the accumulation of toxic recombination intermediates. Evidently, homologous

recombination must be carefully regulated to match specific cellular needs. Here we review the

mechanistic stages and proteins in recombination that are subject to regulation and suggest that

recombination achieves flexibility and robustness by proceeding through meta-stable, reversible

intermediates.
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BRIEF ANNOTATIONS

1. Ref. 52 and 53 show that sumoylated PCNA recruits the Srs2 anti-recombinase.

2. Ref. 54 and 55 determine that the anti-recombinase Srs2 dissociates Rad51 from ssDNA.

3. Ref. 70 and 71 demonstrate the importance of CDK activity for regulating DSB resection and commitment to HR.

4. Ref. 72 and 73 identify Sae2/CtIP as the key CDK target to control DSB end resection.

5. Ref. 91 identifies that CDK-mediated phosphorylation of BRCA2 inhibits its interaction with RAD51 through its C-
terminal site.

6. Ref. 98 demonstrates that DDR-mediated phosphorylation of Rad55 positively regulates HR.

7. Ref. 27 and 95 show that Rad52 sumoylation controls protein stability and intranuclear localization.

8. Ref. 138 studied the effect of mismatches on HR, showing that even a single mismatch has an effect.
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INTRODUCTION

Homologous recombination (HR) is a key pathway to maintain genomic integrity between

generations (meiosis) and during ontogenic development in a single organism (DNA repair).

A typical diploid human cell needs to maintain about 6×109 base pairs in the correct

sequence and chromosomal organization, a formidable task that is usually performed with

no errors from one somatic cell generation to the next (42). On one hand, recombination is

required for the repair or tolerance of DNA damage and the recovery of stalled or broken

replication forks (91). On the other hand, recombination also leads to gross chromosomal

rearrangements and potentially lethal intermediates (85). How does the cell achieve the

balance between too little and too much recombination? There must be regulation and the

answer will be complex depending on the organism, cell type, cell cycle stage, chromosomal

region, as well as the type and level of genotoxic stress.

HR in meiosis is subject to specific regulation that targets recombination events to

homologs, establishing crossover outcomes to assist in meiotic chromosome segregation

(44, 73). Meiosis-specific aspects of recombination are covered in other contributions to this

issue of Annual Reviews in Genetics (RELATED RESOURCES: Lichten & Sourijan,

Hassold, Borts & deMassy). We only include examples of meiotic regulation of HR proteins

that may be applicable also to somatic cells. In addition, a dedicated chapter on the RecQ

helicases will provide a much more comprehensive discussion of this important class of

proteins than can be achieved here (RELATED RESOURCE: Rothstein, Bernstein &

Gangloff).

Here, we will review how recombinational DNA repair is regulated in somatic (vegetative)

cells by focusing on the mechanistic phases of recombination (Figure 1) and the proteins

that execute them (Table 1), identifying key regulatory transitions and mechanisms. We will

elaborate that HR is modulated by multiple levels of positive and, primarily, negative

regulation. Mechanisms that are seemingly anti-recombinogenic appear to be integral to the

HR pathway. We suggest that HR gains flexibility and robustness by proceeding through

reversible, meta-stable intermediates. Due to space limitations we defer the reader to recent

reviews on how modulation of the DNA substrate affects HR (115, 156) including at

specific nuclear territories such as telomeres (RELATED RESOURCE: Cooper &

Greenwood) and the nucleolus (94). While transcriptional regulation is at the heart of the

DNA damage (SOS) response in bacteria (34), there is little evidence of biologically

significant transcriptional induction of HR genes by DNA damage in eukaryotes (29, 32,

82).

MECHANISM OF HOMOLOGOUS RECOMBINATION

Significant strides have been made in identifying the proteins that catalyze HR in eukaryotes

and defining their mechanisms of action (67, 87, 126, 159). HR can be conceptually divided

into three stages (pre-synapsis, synapsis, post-synapsis), and we briefly discuss the principal

proteins involved (Figure 1). In pre-synapsis, the DNA damage is processed to form an

extended region of ssDNA, which is bound by the ssDNA binding protein RPA. For double-

stranded DNA breaks (DSBs), this step involves a surprising complexity of four nuclease
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(Mre11-Rad50-Xrs2/NBS1 [M-R-X/N], Exo1, Dna2, Sae2/CtIP) and a helicase activity

(Sgs1/BLM) (99). Binding of RPA eliminates secondary structures in ssDNA, which is

needed for competent Rad51 filaments to assemble. However, RPA bound to ssDNA also

forms a kinetic barrier against Rad51 filament assembly, necessitating so-called mediator

proteins to allow timely Rad51 filament formation on RPA-covered ssDNA. Three different

classes of mediators have been described, but their mechanisms of action and the interplay

between them is poorly understood. The Rad51 paralogs constitute a first group and

comprise four members (Rad55-Rad57, Shu1-Psy3) in Saccharomyces cerevisiae and five in

mammals (RAD51B/C/D, XRCC2/3). These proteins share the RecA core with Rad51, but

fail to form extensive filaments on DNA and are unable to perform the range of DNA

pairing reactions catalyzed by Rad51. A second class is typified by the budding yeast Rad52

protein, which performs two independent roles: its mediator function, and a second, later

function in strand annealing of RPA-bound ssDNA. A third class of mediator proteins is

represented by BRCA2, the human breast and ovarian cancer tumor suppressor protein. The

presence of ssDNA binding motifs (OB-folds), a dsDNA binding motif (tower domain), and

a number of Rad51 binding sites, suggested that BRCA2 targets RAD51 filament nucleation

to the dsDNA junction at the resected end (165).

During synapsis, the Rad51 filament performs homology search and DNA strand invasion,

generating the D-loop where the invading strand primes DNA synthesis. Besides a function

in stabilizing the Rad51 filament and enhancing D-loop formation by Rad51, the Rad54

motor protein is required for the transition from DNA strand invasion to DNA synthesis by

dissociating Rad51 from heteroduplex DNA (hDNA) (68).

Finally in post-synapsis, the three sub-pathways of HR are distinguished (Figure 1), each

with specific enzymatic requirements that have been only partially defined (67, 87, 126,

159). In the absence of a second end, the D-loop may become a full-fledged replication fork

in a process termed break-induced replication (BIR). While this process restores the integrity

of the chromosome, it can lead to loss-of-heterozygosity of all genetic information distal to

the DSB. In the presence of a second end, the predominant pathway for DSB repair in

somatic cells appears to be synthesis-dependent strand annealing (SDSA), where the

extended D-loop is reversed, leading to annealing of the newly synthesized strand with the

resected strand of the second end (Figure 1) (120). This pathway inherently avoids

crossovers, which reduces the potential for genomic rearrangements. While generation of

crossovers by double Holliday junction (dHJ) formation is the purpose of meiotic

recombination, recombinational DNA repair in somatic cells is rarely associated with

crossovers. Only recently have dHJs been identified as an intermediate in recombinational

DNA repair in vegetative (somatic) cells (25). dHJ formation involves capture of the second

end, a process that is actively blocked by Rad51 protein in vitro, suggesting an inherent

mechanistic bias towards SDSA (164). The dHJ intermediate could be resolved by

endonucleases in a manner described for the bacterial RuvC protein into crossover or non-

crossover products (159), but the exact mechanisms and identity of proteins involved remain

under debate (see Figure 1). Alternatively, dHJs can be dissolved by a complex mechanism

involving a RecQ-like DNA motor protein (Sgs1/BLM), topoisomerase 3, and cofactors.

The two junctions are migrated towards each other, leading to a hemi-catenane that is
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eliminated by Topo3. Genetically, the end point of dissolution is always a non-crossover,

avoiding the potential for rearrangements associated with crossovers.

REGULATORY CONTROL POINTS AND IRREVERSIBLE COMMITMENTS

Paradigmatic studies of cell cycle control showed that regulatory molecular processes are

either reversible (e.g. cyclin-dependent kinase (CDK) phosphorylation-dephosphorylation)

or irreversible (e.g. cyclin proteolysis, cohesin cleavage) (106). It is attractive to apply these

concepts to the regulation of HR. An increasing number of reversible post-translational

modifications on HR proteins, such as phosphorylation, ubiquitylation, and sumoylation, are

being identified (14, 16) (Table 1). The existence of phospho-, ubiquitin-, and SUMO-

specific protein interaction motifs makes it likely that many post-translational modifications

lead to novel protein interactions (131). First examples of irreversible proteolytic control of

HR proteins (Rad52, Rhp54; Table 1) have been elaborated (125, 152). Several key HR

intermediates, such as the Rad51-ssDNA filament, the D-loop, and the dHJ, constitute

reversible intermediates and hence likely regulatory control points. Exonucleolytic

degradation of DNA and endonucleolytic processing of DNA junction intermediates could

be viewed as irreversible commitments (Figure 1). Below, we provide a detailed discussion

of regulatory targets and processes, as well as their mechanistic consequences for HR.

DSB REPAIR: COMPETITION BETWEEN HR, SSA AND NHEJ

HR, single-strand annealing (SSA) and non-homologous end joining (NHEJ) are the

principal pathways for DSB repair and the balance between them depends on the species,

cell type, cell cycle stage, and type of DNA damage. NHEJ is a specialized ligation reaction

with varying accuracy that depends on the end structure (Figure 1) (135). SSA is a

homology-directed DNA repair pathway between repeated sequences that involves

reannealing of RPA-covered ssDNA by the Rad52 protein (Figure 1) (87). SSA does not

involve DNA strand invasion and is therefore independent of Rad51. This process leads to

deletion of the interstitial DNA and one of the repeated homologous sequences.

How is the balance between NHEJ, SSA, and HR regulated? While SSA and NHEJ can

occur intrachromosomally (Figure 1), HR is a template-dependent process and studies in S.

cerevisiae have demonstrated that the sister chromatid is the preferred template over a

homolog, when given the choice (80). Sister chromatid cohesion likely provides the

mechanistic underpinning for this preference (108). This could suggest that HR is entirely

restricted to the S- and G2 phases of the cell cycle, but HR has also been demonstrated to

occur in the G1 phase of budding yeast, using the homolog as a template (48). HR in G1 can

only occur in diploid cells, and most organisms, including budding yeast, are naturally

diplontic. The fission yeast Schizosaccharomyces pombe, on the other hand, is a true

haplont, rationalizing why in this organism HR is down-regulated in the G1 phase by

targeting Rhp54 (fission yeast Rad54) for ubiquitin-mediated degradation (152).

In budding yeast, the mating-type locus provides an example of complex regulation of HR in

response to ploidy (155). Haploid yeast cells are either of the a or alpha mating type,

whereas diploid cells are a/alpha and contain the Mata1-Matα2 co-repressor that turns off

haploid-specific genes and induces diploid-specific genes. Early radiobiological studies
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established that a/alpha diploid cells are more radiation-resistant than haploid cells or a/a or

alpha/alpha diploid cells (105). One mechanism to explain this observation is the

transcriptional repression of Nej1, a co-factor for the principal NHEJ ligase, DNA ligase 4,

by the Mata1-Matα2 repressor. This shifts the balance from NHEJ to HR in diploid cells (5,

51, 89). Targeting Nej1 results in a bi-fold regulation, as Nej1 is required for NHEJ and

recruits the Srs2 anti-recombinase (see below) to resected ends to favor NHEJ or SSA over

HR (26).

DSB resection is a key commitment step for homology-directed repair as both SSA and HR

depend on ssDNA. As discussed in detail below, DSB resection is highly regulated and low

in the G1 phase, favoring NHEJ over HR and SSA (52). At least in budding and fission

yeast, the NHEJ DNA end-binding factors Ku70-Ku80 inhibit DSB resection (88, 148).

Interestingly, M-R-X/N complex, BRCA1, DNA PKcs, and ATM function in both NHEJ

and HR (135). The M-R-X/N complex and BRCA1 are connected to resection, providing a

possible regulatory target. Using elegant substrate design, it was shown that SSA and HR

compete for the repair of DSBs in budding yeast and mammals (77, 140). Since SSA

requires sufficient resection to expose direct repeats as single stranded DNA (Figure 1), the

balance is expected to be highly locus- and assay-dependent.

How is the balance between the sub-pathways of HR (BIR, SDSA, dHJ) regulated in DSB
repair?

BIR, SDSA, and the dHJ sub-pathways of HR (Figure 1) lead to repair of a DSB but are

associated with different genetic consequences. BIR can lead to loss-of-heterozygosity distal

to the break site, introducing the threat to expose recessive mutations with detrimental

consequences. dHJ formation has the potential to create genomic rearrangements, if HR

occurs in non-allelic sites. By this logic, SDSA is expected to be the favored sub-pathway,

and the experimental evidence suggests that this is the case (120).

Experiments in budding yeast demonstrated that the SDSA pathway outcompetes BIR in

mitotic DSB repair, because BIR is a much slower process (95). Using an ingenious

experimental setup, Haber and colleagues demonstrated that BIR is suppressed at the DNA

synthesis step for over 5 hrs after DSB formation (78, 142). This suppression required Sgs1,

but surprisingly not its helicase activity (78). Mec1 kinase, the master regulator of the DNA

damage response (DDR) in budding yeast (Figure 3) is not required to suppress BIR. Close

proximity of the second end suppresses BIR (78), but it is unclear how this is communicated

to the D-loop to prevent replication fork assembly. Maybe this involves the end-tethering

function of the M-R-X/N complex (39)? Unlike meiotic HR, dHJs are formed only at low

levels during mitotic DSB repair (25), consistent with the low association of mitotic DSB

repair with a crossover outcome (75).

DNA GAP REPAIR: COMPETITION BETWEEN HR, TLS, AND FORK

REGRESSION

Replication fork stalling leads to gaps resulting from down stream reinitiation by DNA

polymerases on the leading and lagging strands (16, 65, 93). Stalled forks and gaps can be
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recovered by different pathways, including translesion synthesis (TLS), template switching

by fork regression, or HR (16) (Figure 2). While the accuracy of TLS is lesion- and

polymerase-dependent (123), template-switching by fork regression and HR are inherently

highly accurate. TLS is favored by mono-ubiquitination of PCNA on K164 by the Rad6-

Rad18 E2-E3 complex (Figure 2), which enhances the intrinsic affinity of Y-family TLS

polymerases (Pol eta, iota, kappa) for PCNA through their ubiquitin binding motifs (123).

Subsequent poly-ubiquitylation of PCNA by Ubc13-Mms2 (E2) and Rad5 (E3) controls fork

regression by a mechanism that is not understood (123). Alternatively, K164 (and K127) can

be sumoylated by Ubc9, which leads to recruitment of the Srs2 anti-recombinase through its

SUMO binding motif (119, 121). As discussed in more detail below, Srs2 dissociates Rad51

from ssDNA, antagonizing Rad51-ssDNA filament formation (86, 157). It is unclear

whether PCNA ubiquitylation and sumoylation can co-exist in a hetero-trimeric PCNA ring,

and the relationship between HR and these ubiquitylation and sumoylation pathways (Figure

2) is still poorly understood (17, 18).

How is the balance between TLS, fork regression, and HR regulated? Genetic evidence in

yeast favors the model that TLS and fork regression are primary pathways. At least initially,

HR is actively repressed, but the sensitivity of HR mutants to fork stalling agents suggests

that this inhibition is temporary. Mutations in RAD6 or RAD18 disable TLS and fork

regression, leading to severe DNA damage sensitivity. An additional mutation in SRS2

(suppressor of rad six) suppresses the sensitivity to a very significant degree by relieving the

inhibition of HR (2, 129). These data suggest that Rad6-Rad18 binding to RPA-covered

ssDNA (37) is kinetically favored over Rad51 filament formation. Possibly, PCNA

sumoylation marks a later phase, where Srs2 actively removes Rad51 filaments. What

regulates PCNA ubiquitylation or sumoylation and whether DDR signaling is involved

remains to be determined (Figure 2).

SIGNALING BY THE CELL CYCLE MACHINERY AND THE DNA DAMAGE

RESPONSE

Two signaling systems intersect in the control of HR: the cell cycle control machinery and

the DDR (Figure 3) (16). In S. cerevisiae, the Cdc28 CDK drives directional progress

through the cell cycle, dependent on the expression of stage-specific cyclins that modulate

CDK activity and impart substrate specificity (96, 161). As discussed below, CDK

phosphorylates HR proteins to positively and negatively regulate HR. The availability of

sister chromatids largely determines whether HR is a primary pathway, explaining why HR

is favored in the S and G2 but not in the G0, G1 or during M phases (Figure 3a). Stalled

replication forks and DNA damage trigger the DDR signaling cascade that activates DNA

repair and pauses cell cycle momentum (Figure 3b) (16). The key intermediate is RPA-

bound ssDNA, which serves as a platform for DDR signaling, recruitment of ubiquitylation

and, likely, sumoylation factors, as well as for Rad51 filament formation. DDR signaling is

required for efficient DNA damage-induced HR (13, 104). In addition, the DDR affords

time for HR to be completed by leading to a transient cell cycle arrest, which in most

organisms, but not S. cerevisiae, is achieved by down-regulating CDK activity (113).
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DSB RESECTION AND ITS REGULATION

Resection of DNA DSB ends seems deceptively straightforward in principle, but in S.

cerevisiae resection involves four nucleases (Mre11, Sae2, Exo1, Dna2), dependent on the

specific chemical structure encountered at the DSB (hairpins, modified bases, covalent

protein-DNA adducts) (99). A current view proposes that the Mre11 subunit of the M-R-

X/N complex, recruited or supported by the endonuclease Sae2/CtIP, catalyzes initial end

processing that results in the removal of about 50–100 nucleotides (99). Sae2/CtIP is

thought to clip DNA ends in preparation for the more processive nucleases that catalyze the

extended resection responsible for 3′-ssDNA tail generation (90). The 3′→5′ polarity of the

Mre11 nuclease appears unsuited to conduct the 5′→3′ resection (153), but it could act as an

endonuclease in this context. Extended resection is achieved by the 5′→3′ exonuclease

activity of Exo1 or the helicase activity of Sgs1 in cooperation with the endonuclease

activity of Dna2 (98, 170). How these options for extended DNA resection (Exo1 alone or

Sgs1 with Dna2 or Exo1) or the extent of resection are regulated is unknown. In meiosis, the

resulting 3′-tail of ssDNA is about 500 nt in length, whereas it has been argued that

resection is more extensive in mitotic cells (170). Compounding the complexity associated

with the collaboration of multiple nucleases to achieve end resection is the question of their

regulation by post-translation modification.

Activation of DSB resection by CDK-mediated Sae2/CtIP phosphorylation

Repair of an endonuclease-mediated DSB by HR is repressed in haploid budding yeast cells

in the G1 phase of the cell cycle because of limited DSB resection (7, 76). End resection is

primarily regulated by CDK-dependent phosphorylation of the Sae2/CtIP nuclease (71, 72,

76) (Figure 3, Table 1), which determines whether a DSB is channeled into NHEJ or HR.

The pivotal phosphorylation occurs at serine 267, located in one of three Sae2 CDK

consensus sites (71). An endonuclease-mediated DSB at the MAT locus is poorly resected in

an S. cerevisiae sae2-Δ mutant; a sae2 mutant in which serine 267 has been substituted with

alanine (sae2-S267A) phenocopies the sae2-Δ strain for unresected DSB ends. In contrast, a

Sae2 phosphomimic mutant in which serine 267 has been replaced with aspartic acid (sae2-

S267E) is hypermorphic for DSB resection, sidestepping a requirement for CDK activity to

sanction DSB resection.

These observations are mirrored by results from human cells, where CtIP, the human

homolog of Sae2, is also required for DSB resection. Phosphorylation on threonine 847 is

required for ssDNA generation and RPA phosphorylation in response to the topoisomerase I

inhibitor camptothecin, laser-induced DNA damage, or ionizing radiation (IR) (72, 127). A

transfected phosphomimic CtIP-T847E resects DSBs even after CDK inhibition, whereas

the non-phosphorylatable CtIP-T847A mutant impairs resection (72). CDK phosphorylation

of Sae2/CtIP therefore appears to be conserved in eukaryotes as a key switch in determining

whether DSB ends are sanctioned for resection and HR. In addition to the conserved

mechanism described for S. cerevisiae Sae2, human CtIP function also appears to be

regulated by an additional CDK phosphorylation at serine 327, a modification that enhances

CtIP interaction with the BRCT domain of BRCA1 and is critical for HR (167, 169). The

function of BRCA1 in HR remains enigmatic. It is interesting to observe that BRCA1 is
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sumoylated by PIAS1/4 to enhance its ubiquitin ligase activity (Table 1, (55, 102)) and that

CtIP appears to be one of its native ubiquitylation targets (168), implying a potential

regulatory role of BRCA1 in resection.

Sae2-S267 is unlikely to be the exclusive target of CDK relevant to end resection. When

CDK is inhibited, the sae2-S267E allele product is not quite sufficient for wild type

resection levels (71). Mre11 and Xrs2 have CDK phosphorylation consensus sites, but no

resection phenotype has been observed when these sites are mutated (76).

An additional level of control on Sae2 was uncovered by mutating Mec1/Tel1 consensus

sites and showing that they were essential during meiotic recombination (147) and required

for full Sae2 function during DNA repair in mitotic cells (12). In sum, two signaling

pathways, the cell cycle control machinery and DDR signaling, converge on Sae2/CtIP to

regulate end resection.

Inhibition of Exo1 activity by the DDR kinase Rad53

ssDNA is a defining intermediate of DSB processing in HR and also occurs at telomeres that

are uncapped during end-replication in S-phase and in mutants (e.g. cdc13-1) that lose the

protective T-loop and associated factors (RELATED RESOURCE: Cooper & Greenwood).

In mutants that cause telomere uncapping, Exo1 is phosphorylated in a manner dependent on

the DDR. Four serines in the Exo1 C-terminus (S372, S567, S587 and S692) are

phosphorylated, presumably by Rad53, because Exo1 phosphorylation is absent in a rad53-

K227A kinase-defective mutant (101). Unlike Sae2/CtIP activation by CDK, Exo1

phosphorylation by Rad53 limits extended resection of ssDNA at uncapped telomeres and

consequently minimizes further activation of the DDR. Mutants in which all four serines are

substituted by alanine result in hyperactivation of the DDR, as does overexpression of Exo1,

suggesting that Rad53-dependent phosphorylation of Exo1 reduces its activity. The

inhibition of Exo1 activity is not limited to pathological situations such as telomere

uncapping, however; Exo1 is also phosphorylated in yku70-Δ mutant cells following

bleomycin treatment (101). Repression of Exo1 activity by DDR signaling to avoid fork

regression at stalled replication forks was also reported in budding yeast (Figure 2) (33).

Another mechanism of negative regulation of EXO1 is observed in human cells challenged

with the replication inhibitor hydroxyurea (HU): phosphorylation by ATR targets EXO1 for

destruction (45). This may reflect a prohibition of resection at ssDNA gaps associated with

stalled replication forks. These results suggest that Exo1 is not required for the generation of

ssDNA to allow DDR signaling, but that fork regression and potentially HR may require

more extensive stretches of ssDNA generated by Exo1.

Regulation of BLM by sumoylation

Biochemical and genetic evidence demonstrate an involvement of the RecQ helicase Sgs1

and human BLM in DSB resection (60, 98, 111, 170). BLM was found to be sumoylated on

several lysine residues, and BLM lacking sumoylation on lysine K317 and K331 (Table 1)

only partly complemented the genetic defects in BLM-deficient cells, suggesting that

SUMO modification of these residues may exert positive regulation (46). Sgs1/BLM likely

have several functions during HR (resection, joint reversal, dHJ dissolution) and in DDR
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signaling (RELATED RESOURCE: Rothstein, Bernstein & Gangloff). The observation that

cells with SUMO-deficient BLM exhibit a defect in RAD51 focus formation after HU

treatment (117) may suggest that sumoylation inhibits an early BLM function, possibly

resection, congruent with the negative regulation of yeast and human Exo1 in response to

replication fork stalling (45, 101).

In summary, post-translational modification of factors involved in DSB resection is

paramount to the regulation of eukaryotic HR. CDK-dependent modification of Sae2/CtIP

demonstrates that pathway choice for DSB repair depends to a large extent on commitment

to resection.

THE RAD51 FILAMENT: A BALANCE BETWEEN FORMATION AND

DISRUPTION

The Rad51-ssDNA filament performs the central function of HR, homology search and

DNA strand exchange (Figure 1). Not surprisingly, this crucial role is reflected in an

elaborate regulation of the balance between Rad51 filament formation and disruption.

CDK- and DDR-mediated phosphorylation of RPA

RPA functions at the nexus of all DNA metabolic processes, because it has the highest

affinity to ssDNA among known proteins. Hence, RPA-covered ssDNA is the

physiologically relevant target for assembly of the Rad51-ssDNA filament, which competes

with other processes such as recruitment of the Rad6-Rad18 ubiquitylation complex, TLS,

fork regression, or ATR signaling (Figure 3). Cell cycle-dependent and DNA damage-

induced phosphorylation of RPA2, the middle subunit of RPA, were discovered about two

decades ago, but the specific function of RPA phosphorylation remains to be determined.

RPA phosphorylation does not appear to affect its DNA binding properties, but likely

modulates protein interactions that may also affect its intranuclear localization (50).

Positive control by DDR-mediated Rad51 phosphorylation

In response to HU, human RAD51 is phosphorylated by CHK1 kinase within a consensus

site at threonine 309 (Figure 2, Table 1) (138). Cells depleted for CHK1 activity by

UCN-01-mediated inhibition or siRNA display a defect in RAD51 focus formation in

response to HU, consistent with positive regulation of HR by CHK1. Targets other than

RAD51 may be involved as well. Expression of the RAD51-T309A phosphorylation-

defective mutant but not wild type protein causes dominant hypersensitivity to HU,

supporting an activating role of threonine 309 phosphorylation (138).

Negative control by CDK phosphorylation of BRCA2

The tumor suppressor protein BRCA2 plays a key role in the formation of the RAD51

filament (126). CDK-cyclin A can phosphorylate BRCA2 on serine 3291 in vitro and this

residue is also phosphorylated in vivo, peaking during M-phase (Figure 2, Table 1) (47).

S3291 of BRCA2 is near the minimum C-terminal RAD51 interaction site (residues 3196–

3226 (132)), and phosphorylation of this residue or a change from serine to alanine ablates

the interaction of the BRCA2 C-terminus with RAD51 (47). These data led to the model that
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CDK-mediated BRCA2 phosphorylation precludes HR during M-phase, where it could

interfere with chromosome segregation (47). Furthermore, BRCA2 and the RAD51 paralog,

RAD51C, are also involved in nuclear transport of RAD51 after DNA damage (38, 59).

Rad52 sumoylation affects protein stability and intranuclear localization

Rad52 is the lynchpin of HR in budding yeast, essential both for HR and SSA (67, 87, 126,

159). Sumoylation of a significant fraction of Rad52 protein is induced in meiosis or after

DNA damage, dependent on the M-R-X complex (125). A triple mutant at lysine residues

10, 11 and 220 ablated Rad52 sumoylation, leading to faster proteasome-dependent protein

turnover (125) (Table 1). While SUMO-deficient Rad52 protein is largely proficient for HR,

the mutant displayed a 2.5-fold reduction in direct repeat recombination (125). Live cell

imaging revealed that sumoylation controls intra-nuclear localization of Rad52 protein

(150). In wild type cells, Rad52 protein is excluded from the nucleolus, the nuclear

compartment containing the rDNA repeats. The Rad52 SUMO-deficient mutant overcomes

the nucleolar exclusion and forms foci within the nucleolus, resulting in slightly elevated

rDNA recombination (150), opposite to the effect on nuclear repeat recombination (125).

Phosphorylation of Rad55 serines 2, 8, and 14 is required for optimal HR

The yeast Rad51 paralogs, Rad55-Rad57, facilitate the formation or stabilization of Rad51

filaments (92, 144). Rad55 is phosphorylated in response to DNA damage on multiple

residues by Mec1 (serine 378), Rad53 (serine 14), and an unidentified kinase (serines 2, 8)

(13, 66, 79). The N-terminal phosphorylation mutant (Rad55-S2,8,14A) displays strong

defects in growth and survival in response to the alkylating agent methyl methansulfonate.

These conditions lead to replication fork stalling, and Rad55 phospho-deficient mutants

exhibit a defect in the recovery of stalled replication forks (66) (Table 1).

Disruption of Rad51-ssDNA filaments by anti-recombinogenic DNA helicases

Srs2 is the prototype for anti-recombination helicases capable of disrupting Rad51-ssDNA

filaments (86, 157) (Figure 2), exerting biologically significant anti-recombination activity

(1, 28, 129). During S-phase, Srs2 is recruited to replication forks by sumoylated PCNA

(Table 1) (119, 121). Similarly, the NHEJ factor Nej1 recruits Srs2 to DSBs to repress HR

and favor NHEJ or SSA, and this interaction is enhanced by DNA damage-induced

phosphorylation of Nej1 by Dun1 kinase (Table 1) (26). Srs2 has no direct ortholog in

mammals, but genetic studies with human FBH1 in budding yeast have led to the proposal

that FBH1 is the mammalian counterpart of yeast Srs2 (31). This is consistent with the

original identification of Fbh1 as a suppressor of a hypomorphic mutant in the fission yeast

RAD52 (rad22) gene (116). Moreover, overexpression of human FBH1 in human cells

impaired recruitment of RAD51 to ssDNA and suppressed HR, whereas FBH1 depletion

caused an increase in sister chromatid exchanges (SCE) (54), consistent with an anti-

recombination role of FBH1.

RECQ5, a RecQ family helicase in mammals, displaces RAD51 from ssDNA and inhibits

D-loop formation in vitro (70) (RELATED RESOURCE: Rothstein, Bernstein & Gangloff).

A defect in RECQ5 causes increased levels of spontaneous RAD51 foci, as well as elevated

frequencies of spontaneous DSBs and HR between direct repeats. These phenotypes and the
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physical interaction of RECQ5 with RAD51 (70) are consistent with an anti-recombinogenic

role. BLM, another RecQ family member, also interacts with RAD51 and is capable of

disrupting RAD51-ssDNA filaments in vitro (19, 23). BLM only disrupts filaments in

conditions containing Mg++, which has been interpreted as targeting the ADP-bound,

inactive form of RAD51 and does not dissociate the ATP-bound RAD51 in the presence of

Ca++ (22, 23). The biological relevance of this observation is uncertain. Unlike the helicases

mentioned above that display a 3′→5′ polarity, FANCJ, a component of the Fanconi Anemia

pathway (100), exhibits a 5′→3′ directionality. Similar to BLM, FANCJ dissociates only the

inactive, ADP-bound form of RAD51 from ssDNA in vitro (137). No specific interaction

between FANCJ and RAD51 has been reported. The biological significance of RAD51

dissociation by FANCJ remains uncertain, as a mutant in dog-1, the FANCJ homolog in C.

elegans, shows no significant increase in Rad51 foci (166).

In summary, the Rad51-ssDNA filament is controlled by a balance between mediator

proteins that promote assembly and anti-recombinogenic DNA helicases that promote

disassembly. Cell cycle-dependent and DNA damage-inducible post-translational

modifications of these factors impinge on both assembly and disassembly of the Rad51

filament.

REGULATION OF HOMOLOGY SEARCH AND DNA STRAND INVASION

Homology search and DNA strand invasion generate D-loops, a key intermediate for all sub-

pathways of HR (Figure 1). These reactions are catalyzed by Rad51, which interacts with

the dsDNA motor protein Rad54 (68). The meiosis-specific kinase Mek1 enforces the

preference for homologs over sister chromatids in meiotic cells. Mek1-mediated Rad54-

T132 phosphorylation reduces Rad54 binding to Rad51, thus decreasing Rad51-dependent

recombination in vivo and in vitro (112) (Table 1). This mechanism is independent of Hed1

(112), a meiosis-specific repressor of the Rad51-Rad54 interaction that binds to Rad51

protein (24, 154). Both meiosis-specific mechanisms are thought to transiently inhibit

Rad51-dependent recombination to bias meiotic HR to homologs mediated by the meiosis-

specific Rad51 paralog Dmc1 (73), but both mechanisms are active in mitotic cells when

Hed1 or the Rad54 phosphomimic mutant are ectopically expressed (24, 112, 154). The

results show that a critical protein interaction (Rad51-Rad54) can be targeted to assert

negative regulation of HR.

REVERSION OF D-LOOPS AND EXTENDED D-LOOPS: PRO- AND ANTI-

RECOMBINOGENIC FUNCTIONS

D-loop reversion before extension by DNA polymerases is a potentially powerful

mechanism of anti-recombination. A number of DNA helicases/translocases including

FANCM/Mph1/Fml1, RTEL1, RECQ1, BLM, and Rad54 are capable of disrupting D-loops

in vitro (Figure 4) (8, 11, 20, 21, 57, 143). However, reversion of an extended D-loop is also

inherent to the SDSA pathway and constitutes in this context a pro-recombination activity

(Figure 1). In some genetic assays such an activity can be scored to suppress crossovers,

constituting another anti-crossover mechanism besides dHJ dissolution (Figure 1).
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Rad54 is essential for HR in budding yeast and is required for in vitro D-loop formation by

the yeast Rad51 protein (68). However, Rad54 can also dissociate D-loops in vitro (21), the

very product it forms in conjunction with Rad51, making it difficult to test the biological

significance of this activity.

Genetic studies on Sgs1 have provided critical insights on the cellular functions and

regulation of mammalian RecQ helicases in HR (RELATED RESOURCE: Rothstein,

Bernstein & Gangloff). However, the multiple functions of Sgs1 in DDR signaling, DSB

resection, dHJ dissolution, and potentially other steps of HR complicate interpretation of the

genetic data. Importantly, Sgs1 suppresses crossovers during mitotic and meiotic

recombination (75, 114). This role of Sgs1 is most readily explained by the ability of the

BLM-TOPO3alpha-RMI complex to dissolve dHJs into non-crossover products (163). dHJ

dissolution by BLM also explains the elevated levels of SCE in BLM-deficient cells. BLM

may also contribute to non-crossover outcome by promoting the SDSA pathway, as

indicated by genetic studies in Drosophila (3). BLM interacts with RAD51 protein and can

dissociate mobile D-loops (8, 19), but not D-loops during an ongoing RAD51-mediated in

vitro reaction (111). This leaves open the question of how BLM may promote SDSA.

Human FANCM protein is a core component in the Fanconi Anemia pathway that is critical

for the repair of interstrand DNA crosslinks (100). FANCM and its homologs form an

evolutionarily deeply rooted family including the archaeal Hef nuclease/helicase, budding

yeast Mph1 and fission yeast Fml1. The eukaryotic enzymes either lost or degenerated their

nuclease domain (160). FANCM-deficient cells display elevated levels of spontaneous SCE,

consistent with the ability of FANCM protein to dissociate mobile D-loops (9, 57, 124). The

FANC pathway is negatively regulated in mitosis by polo-like kinase PLK1 phosphorylation

of FANCM, leading to its ubiquitin-mediated degradation (84). Similar to human FANCM,

Mph1 and Fml1 dissociate D-loops in vitro (122, 143). A defect in the yeast FANCM

orthologs, Mph1 or Fml1, also causes a 3–4-fold increase in crossovers. Epistasis analysis in

both fission and budding yeast suggests that Mph1 and Fml1 act independently of Srs2 or

Sgs1 in suppressing crossovers (10, 122, 143). Both proteins promote Rad51-dependent

recombination at stalled replication forks (118, 130, 143). Using an inducible replication

fork stalling system in fission yeast, Whitby and colleagues showed a requirement for Fml1

in spontaneous and fork stalling-induced HR (143). Moreover, mutants in MPH1 have the

same mutator phenotype as HR mutants (rad51) and this effect is epistatic with an HR

defect, suggesting that Mph1 functions in concert with HR to avoid Rev3-dependent

mutagenesis (130). Mph1 appears to function late in HR, as the synthetic lethality with srs2

is suppressed by mutations in rad51, rad55, rad57, and rad52 (130). However, Mph1 has

also been suggested to promote gross chromosomal rearrangements by inhibiting HR

through stabilizing RPA on ssDNA (10).

RECQ1, another RecQ-like helicase, is required for genome stability in mouse and human

cells, as RECQ1 deficiency leads to aneuploidy, chromosomal instability, and

hypersensitivity to DNA damage (IR, camptothecin) (133, 134). RECQ1-deficient cells

exhibit increased levels of spontaneous DNA damage as suggested by an increase in

spontaneous gamma-H2AX foci and elevated SCE levels. In vitro, RECQ1 disrupts D-loops

with significant preference for D-loops resulting from invasion of the 5′-end (20). Since
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DNA polymerase cannot extend such a D-loop, it constitutes a potential dead-end complex.

This activity provides a potential mechanism for RecQ1 function in reversing a potentially

toxic HR intermediate.

The RAD3-like helicase RTEL1 was isolated in a screen for functional analogs of Srs2 in C.

elegans (11). A defect in RTEL1 causes synthetic lethality when combined with mutations in

BLM, RECQ5, or MUS81, as well as a four-fold increase in meiotic crossovers and DNA

damage sensitivity to interstrand crosslinks and the topoisomerase I inhibitor camptothecin.

Depletion of RTEL1 in human cells causes a 4-fold increase in DSB-mediated

intrachromosomal repeat recombination that is unlikely explained by a defect in crossover

suppression, as well as hypersensitivity to the crosslinking agent mitomycin C but not IR. In

vitro, RTEL1 dissociates D-loops, which could explain the anti-recombination and anti-

crossover phenotype. However, the DNA damage sensitivity profile is more consistent with

a defect in HR. Unlike Srs2, RTEL1 cannot dissociate RAD51 from ssDNA (11, 86, 157).

Interestingly, Ira et al. postulated that Srs2 exerts its anti-crossover effect through a function

in SDSA and suggested that Srs2 dissociates D-loops (75). While this biochemical activity

has not been directly demonstrated yet (86, 157), the stimulation of Srs2 helicase activity by

Rad51 bound to dsDNA suggests the possibility that the Srs2 targets two HR intermediates,

Rad51-ssDNA filaments and (extended?) D-loops (43).

In summary, a number of proteins are capable of dissociating D-loops, which may function

in HR to favor SDSA and suppress crossovers, or be a mechanism of anti-recombination.

The mutant phenotypes suggest potentially complex roles for RTEL1, Srs2, Sgs1/BLM and

the FANCM helicases in HR.

MISMATCH REPAIR EDITS RECOMBINATION FIDELITY

Mismatch repair (MMR) functions to edit replication errors, and mismatch correction in

hDNA achieves gene conversion during HR (see Figure 1). More critical to the regulation of

HR, however, is that MMR proteins help to discriminate homology from homeology (partial

homology) (63). This MMR-mediated screening of recombination fidelity favors HR

between perfectly homologous sequences and actively opposes homeologous recombination,

responding to the degree of homology.

Genetic studies systematically surveyed the effects of homeology on HR using an elegant

intron-based assay (35, 36). Remarkably, even a single mismatch reduced spontaneous

recombination rates by four-fold relative to substrates with 100% identity. Between 99% and

74% identity, recombination rates were reduced 9- to 4600-fold. Most importantly, defects

in MMR suppressed the effects on spontaneous HR rates when homeology was up to 15%

sequence divergence. MMR factors therefore regulate whether HR is sanctioned over given

sequences when the interacting sequences are between 85–100% similar. Three yeast

complexes function in both replication-associated mismatch repair and in negative

regulation of HR: MutSα (Msh2-Msh6), MutSβ (Msh2-Msh3), and MutLα (Mlh1-Pms1)

(35, 36). In addition, the nucleases Rad1-Rad10 and Exo1 and the helicases Sgs1 and Srs2

function in the MMR-mediated barrier to HR between homeologous sequences (110, 158).

MMR not only affects the frequency of HR but also influences the crossover/non-crossover

Heyer et al. Page 13

Annu Rev Genet. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



outcome of HR (Figure 1). At merely 2% sequence divergence, crossover events were

reduced 7-fold, whereas non-crossover events were reduced only 2-fold (158). This

characteristic of the MMR-mediated editing of HR may be particularly useful to suppress

crossovers between slightly divergent repeated DNA sequences, where crossovers would

lead to genome rearrangements.

What is the mechanism of the MMR-mediated barrier to HR between divergent sequences?

Suppression of homeologous recombination by MMR could function during DNA strand

exchange, hDNA extension, or even later, in joint molecule resolution (Figure 1).

Paradigmatic biochemical studies with bacterial RecA, MutS and MutL proteins suggest that

hDNA extension may be the decisive stage (162). Similar biochemical work with eukaryotic

proteins has not been reported, but genetic evidence from S. cerevisiae is consistent with this

scenario. Mitotic and meiotic gene conversion tracts in msh2 msh3 mutants are ~50% longer

than in wild type cells, indicating that hDNA extension may be blocked by Msh2-Msh3

binding to mismatches in vivo (30). S. cerevisiae Sgs1 and Mph1 are candidates for motor

proteins active in hDNA rejection (107, 146). sgs1 mutants allowed an increased rate of

homeologous HR (substrate with 91% sequence identity), synergistic with MMR mutants

(139). This increase in homeologous recombination was also linked to a role for Sgs1 in

suppression of gross chromosomal translocations (107). In addition, Sgs1 as well as Msh2-

Msh6 suppress SSA between homeologous sequences (141).

In summary, MMR is a key regulator of HR in the distinction between allelic sites and

ectopic sites. This editing function is sufficiently sensitive to discriminate allelic targets on

sister chromatids from allelic targets on homologs. The importance of MMR in focusing HR

to perfect sequence identity (allelic sites on sister chromatids) suggests that MMR defects in

tumors not only increase the rates of point mutations, but also increase rates of inappropriate

HR between homeologous sequences leading to genome rearrangements. Such association

has been noted in at least some MMR-deficient colon cancers (151).

NUCLEOLYTIC PROCESSING OF STALLED REPLICATION FORKS AND

DOUBLE HOLLIDAY JUNCTIONS

A number of DNA joint molecules are intermediates at which regulatory ‘decisions’ can be

made, providing successive opportunities to decide whether HR is initiated, aborted, or

sanctioned for a specific genetic outcome (crossover or non-crossover). The regulation of

HR relevant to two specific joint molecules is elaborated here: replication forks and dHJs.

Stalled replication forks are potentially substrates for HR, but the mechanisms by which HR

promotes fork restart and recovery remain unclear. Fork incision to generate a single-sided

DSB end or a ssDNA gap could initiate HR (Figure 2). The relative significance of fork

incision versus gap repair is uncertain, although Fabre et al. (49) suggested that breaks are

rare in S-phase and that ssDNA gaps are the primary substrates for replication-associated

HR. Nevertheless, Hanada et al. (61, 62) and Froget et al. (53) implicate MUS81-EME1 in

fork incision. DSBs are observed after eighteen hours of chronic HU challenge, dependent

on MUS81-EME1 (61). Interestingly, S. pombe Mus81 dissociates from chromatin in

response to HU treatment, although Mus81 is required for resistance to HU (15, 81). It was
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proposed that fork incision by Mus81-Mms4/EME1 represents a last resort for fork

recovery, and it may be negatively regulated under some circumstances of replication stress

(81).

dHJs are intermediates during mitotic DSB repair by HR (25). Alternative mechanisms for

removing dHJs determine whether the genetic products result in a crossover or non-

crossover (Figure 1). A number of endonucleases have been proposed to cut Holliday

junctions or their precursors in vivo, including Mus81-Mms4/EME1, Yen1/GEN1 and Slx1-

Slx4 (Figure 1; (99)). In addition to endonucleolytic ‘resolution’, dHJs can be ‘dissolved’ by

the concerted activities of a helicase-topoisomerase complex (Figure 1) (163). How

endonucleolytic resolution of dHJs is regulated relative to dissolution is unknown. Caspari et

al. (27) suggested that CDK phosphorylates Top3 in S. pombe, dependent on interaction

with the DDR mediator Crb2. Loss of Top3 function results in hyper-recombination and cell

death after IR, perhaps associated with an inability to optimally resolve dHJs.

In summary, nucleolytic processing of stalled replication forks and dHJs determines whether

HR is initiated after fork stalling and whether the genetic outcome of HR is potentially a

crossover. The processes and proteins involved, and their specific function and regulation,

still needs to be determined.

MODEL: HOMOLOGOUS RECOMBINATION – A PATHWAY WITH

METASTABLE, REVERSIBLE INTERMEDIATES TO ACHIEVE FLEXIBILITY

AND ROBUSTNESS

DNA repair is a formidable task that requires quality control to balance accuracy of the

repair event with the potential for genome rearrangements (83). It has been proposed that

reversibility of HR intermediates provides robustness to the pathway (83, 145). In biology,

the concept of robustness has been largely discussed in the context of mutational robustness,

keeping an organism’s phenotype constant in spite of mutations (41). In the present

discussion, however, the term robustness applies more in the engineering sense, where a

system or algorithm does not break down easily, continues to operate despite single

application failures and recovers quickly from, and holds up under, exceptional

circumstances (4, 128).

What can we learn from the analysis of regulation of HR about the mechanism of HR and

how it achieves robustness? One aspect is protein interactions. The myriad of direct protein-

protein interactions between HR proteins have been previously projected into a single time

point and interpreted as a stable ‘recombinosome’ (64). Further analysis now suggests that

these interactions can be regulated by reversible post-translational modifications, are

transient, and occur sequentially (67, 87, 126, 159), which provides significantly more

plasticity. A second aspect is pathway flexibility. While the HR pathway is typically

portrayed as a linear sequence, Figure 1 reveals bifurcation, where identical intermediates

(D-loop, dHJ) can enter different sub-pathways and fates. Finally, the abundance of motor

proteins that dissociate recombination intermediates suggests that apparent anti-

recombination mechanisms are integral parts of the HR pathway. Four key intermediates in
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HR that are reversible by the action of motor proteins include the Rad51-ssDNA filament,

the initial D-loop, the extended D-loop, and the dHJ (Figure 4). These intermediates also

appear to be meta-stable, because they can be visualized cytologically (Rad51 foci (92)) or

identified physically (73, 74).

There is significant evidence that key HR intermediates are reversible in vivo and that this

feature is important for HR. Reversal of extended D-loops is central to the SDSA model

(Figure 1). There is compelling genetic evidence for multiple, sequential DNA strand

invasion events during HR, implying dissociation of D-loops or extended D-loops (3, 136).

Promiscuous joint formation, at least in meiotic HR, is not rare and needs active reversal by

Sgs1 helicase (114) and suppression by MMR (see above). Another indication that anti-

recombination mechanisms are an integral part of the HR pathway is provided by the

complex phenotypes of mutations in HR motor proteins. Mutations in Sgs1 show increased

spontaneous recombination that appears unrelated to crossover suppression, consistent with

the anti-recombination role of Sgs1, but reduced DNA damage-induced recombination,

suggesting a pro-recombination role (56). Likewise, Srs2 was shown to have anti- and pro-

recombination phenotypes, as was suggested for FBH1 (6, 54, 75, 157). A defect in RTEL1

causes hyper-recombination but also a DNA damage-sensitivity profile that suggests a

defect in HR (11). The FANCM related proteins (human FANCM, fission yeast Fml1,

budding yeast Mph1) can reverse D-loops in vitro and depending on the assay, mutants

display anti- or pro-recombination phenotypes (10, 58, 97, 118, 122, 130, 160).

Furthermore, the phenomenon of recombination-dependent lethality, where the synthetic

lethality of certain double mutant combinations (e.g. srs2 sgs1, mus81 sgs1) can be

suppressed by an HR defect demonstrates the occurrence of potentially toxic HR

intermediates that require resolution by nucleases or motor proteins (49, 56).

In summary and as depicted in Figure 4, we suggest that the HR pathway proceeds through a

series of meta-stable, reversible intermediates that are under active positive and negative

regulation to allow flexibility for the repair outcomes (crossover vs. non-crossover),

accommodation of the unforeseen (e.g. absence of a second end and switch to BIR, Figure

1), and recovery from unwanted intermediates (e.g. independent invasions of both ends of a

DSB into different targets), which are all aspects that define robustness of a well-engineered

system that is essential for maintaining a stable genome. Reversibility entails the destruction

of potentially normal intermediates (83) and the MMR barrier, for example, also affects HR

between perfectly homologous sequences (109). While counterintuitive at first, it appears

that reactions that reverse recombination intermediates are required for the optimal

functioning of HR, as the stochastic nature of the process will favor accurate pathway

progression.
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KEY TERMSACRONYMS

BIR Break-induced replication; a sub-pathway of HR where a single-

ended DSB invades and establishes a full-fledged replication fork

Crossover/Non-
crossover

Describes outcome of HR with respect to the flanking DNA, which

is either in parental (non-crossover) or non-parental (crossover)

configuration

D-loop Displacement loop; primary DNA strand invasion product of the

Rad51-ssDNA filament leading to the different HR sub-pathways

(BIR, SDSA, dHJ)

Homeologous
recombination

Recombination between similar but not identical sequences, as

found in repeated DNA

dHJ Double Holliday junction; HR intermediate leading to crossovers.

Also used here to label the HR sub-pathway that involves this

intermediate

SDSA Synthesis-dependent strand annealing; a sub-pathway of HR where

the second end of the DSB anneals with the extended strand of the

first end

SSA Single-strand annealing; a mode of homology-directed DNA repair

that does not involve Rad51-mediated DNA strand invasion, but

DNA reannealing

TLS Translesion synthesis performed by specialized DNA polymerases

to accommodate template lesion in DNA damage tolerance

CDK Cyclin-dependent kinase

DDR DNA damage response

DSB DNA double-stranded break

hDNA heteroduplex DNA

HR Homologous recombination

HU Hydroxyurea

IR Ionizing radiation

MMR Mismatch repair

M-R-N/X S. cerevisiae Mre11-Rad50-Xrs2 complex or human MRE11-RAD50-NBS1

complex

NHEJ Non-homologous end joining

PCNA Proliferating cell nuclear antigen

RPA Replication protein A
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SCE Sister chromatid exchange
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SUMMARY POINTS

• Recombinational DNA repair is not constitutive but highly modulated by

positive and a preponderance of negative regulatory mechanisms.

• Two signaling systems intersect in the control of HR, the cell cycle control

machinery and the DDR.

• In DSB repair, end resection is a major commitment point to HR, regulated by

CDK-dependent phosphorylation of Sae2/CtIP.

• The Rad51 filament is a major regulatory control point of HR governed by

mechanisms that favor its assembly (mediators and their post-translational

modifications) or disassembly (anti-recombinogenic motor proteins).

• Several mechanisms, including MMR, extended D-loop reversion, and dHJ

dissolution, enforce an anti-crossover bias during DSB repair in somatic

(mitotic) cells.

• Anti-recombination mechanisms mediated by DNA motor proteins appear to be

integral to the HR pathway, providing flexibility and robustness through

reversible, meta-stable intermediates.
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Figure 1. Pathways of DSB repair
Protein names refer to the budding yeast S. cerevisiae (black). Where different in human,

names (brown) are given in brackets. For proteins without yeast homolog brackets for

human proteins are omitted. Broken lines indicate new DNA synthesis and stretches of

hDNA that upon MMR can lead to gene conversion.
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Figure 2. Pathways and regulation at stalled replication forks
PCNA modification regulates the choice of competing pathways for stalled replication fork

recovery. A stalled fork triggers the DDR, which directly activates HR. The relationship

between the DDR and cell cycle control to PCNA sumoylation/ubiquitylation has not been

determined yet.
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Figure 3. Homologous recombination is regulated by cell cycle control and DNA damage
signaling
(a) The cell cycle controls the competition between NHEJ and HR in DSB repair. Cell cycle

stages are color-coded: Red, HR is least active and green, HR is most active. Cdc28 is the

sole CDK responsible for cell cycle progression in S. cerevisiae, and partners with the

indicated cyclins. In mammals, six CDKs drive cell cycle progression and their relative

importance varies in different tissue types. (b) The DDR results in HR activation and

inhibition of cell cycle progression. The relationship between the DDR and the FANC

pathway as well as PCNA sumoylation/ubiquitylation is poorly understood.
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Figure 4. Model: Reversible, meta-stable intermediates in homologous recombination
HR is proposed to involve key intermediates that are reversible and meta-stable including:

(1) the Rad51–ssDNA filament, (2) the initial D-loop, (3) the extended D-loop, and (4) the

double Holliday junction. The dead-end complex of Rad51/Dmc1 with dsDNA, although not

an HR intermediate, can be added to this list of reversible HR protein-DNA complexes (69).
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Table 1

Post-translational modifications and their effects on proteins involved in homologous recombination.

Protein Organism PTM Function and PTM effect Reference

BLM H. sapiens Multiple roles in DNA damage signaling and HR

SUMO BLM-K317/331-SUMO required for full activity and Rad51 focus formation after HU
treatment

(46, 117)

BRCA1 H. sapiens E3 ligase involved in HR and NHEJ

SUMO PIAS1/4-dependent SUMO of BRCA1-K119 enhances BRCA1 UBI ligase activity (103)

BRCA2 H. sapiens RAD51 filament formation

PO4 CDK-mediated PO4 of S3291 inhibits RAD51 interaction of C-terminal RAD51 interaction
site

(47)

CtIP H. sapiens DSB resection

PO4 CDK-consensus site T847 required for CtIP activity (see also Sae2) (72)

PO4 CDK-consensus site S237 required for BRCA1 binding and HR (169)

Exo1 S. cerevisiae 5′-3′ DNA exonuclease

PO4 Rad53-mediated PO4 of S372, 567, 587, 692 inhibits Exo1 activity (101)

hEXO1 5′-3′ DNA exonuclease

PO4 ATR-dep. PO4 leads to degradation (45)

Nej1 S. cerevisiae DNA ligase 4 co-factor

PO4 Dun1-dependent PO4 of Nej1-S297/8 enhances binding to Srs2 anti-recombinase favoring
NHEJ/SSA over HR

(26)

PCNA S. cerevisiae Processivity clamp (119, 121)

SUMO PCNA-K164 (K127)-SUMO recruits Srs2 anti-recombinase

UBI PCNA-K164-UBI prevents SUMO, anti-recombination effect by favoring TLS or fork
regression

RAD51 H. sapiens Homology search and DNA strand invasion

PO4 CHK1-dep. PO4 on T309 may be required for RAD51 focus formation (138)

Rad52 S. cerevisiae Rad51 filament formation, SSA

SUMO Sumoylation of K10,11, 2201 affects protein stability and intranuclear localization (125) (149)

Rad54 S. cerevisiae Cofactor for Rad51

PO4 Mek1-mediated PO4 at T132 inhibits Rad51 interaction during meiosis (112)

Rhp54 S. pombe Co-factor for Rad51

UBI APC/C mediated ubiquitylation of Rhp54-K26 leads to proteolysis in G1 cells (152)

Rad55 S. cerevisiae Rad51 filament assembly/stability

PO4 Rad55-S2,8,14 PO4 required for full Rad55 activity (66)

Sae2 S. cerevisiae DSB resection

PO4 CDK-mediated PO4 at S267 required for Sae2 activity (see also CtIP) (71)

PTM: Post-translational modification

PO4: Phosphorylation

UBI: Ubiquitylation

SUMO: Sumoylation
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1
These residues refer to the revised start codon of RAD52 at methionine 33 (40) as denoted in reference (125), which correspond to residues 43, 44,

210 in reference (149).
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