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Abstract

In 2001, Friedman et al. conjectured the existence of a “firewall effect” in which individuals who

are infected with HIV, but remain in a state of low infectiousness, serve to prevent the virus from

spreading. To evaluate this historical conjecture, we develop a new graph-theoretic measure that

quantifies the extent to which Friedman's firewall hypothesis(FH)holds in a risk network. We

compute this new measure across simulated trajectories of a stochastic discrete dynamical system

that models a social network of 25,000 individuals engaging in risk acts over a period of 15 years.

The model's parameters are based on analyses of data collected in prior studies of the real-world

risk networks of people who inject drugs (PWID) in New York City. Analysis of system

trajectories reveals the structural mechanisms by which individuals with mature HIV infections

tend to partition the network into homogeneous clusters (with respect to infection status) and how

uninfected clusters remain relatively stable (with respect to infection status) over long stretches of

time. We confirm the spontaneous emergence of network firewalls in the system and reveal their

structural role in the nonspreading of HIV.

1. Introduction

Social network research among people who inject drugs (PWID) has produced considerable

data on HIV-1 infection profiles and equally detailed data on the broad demographic and

behavioral profiles of injecting communities and their risk behaviors. However, prior
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research has not—and for reasons of cost often cannot—produce long-term, dynamic data

on these same populations. Risk networks—graphs whose vertices are individuals and edges

are social connections bearing disease transmission risk—are now widely recognized as a

critical construct in understanding infection patterns [1, 2], as they represent the natural

environment in which risk behaviors take place and through which infection propagates.

Such a representation shifts our view of risk away from individual behaviors to collective,

social bodies as the carriers and transmitters of infections [3, 4]. Modeling risk networks as

(stochastic) discrete dynamical systems provides an opportunity to understand (through both

analysis and simulation) the long-term behavior of PWID risk networks themselves—well

beyond what can be seen by considering their constituent individuals in isolation.

HIV has been investigated extensively in a number of PWID communities, including New

York City [5], where there was a rapid initial spread of the virus among PWID in the early

1980s, but where HIV prevalence stabilized to between 40 and 50% (i.e., at much lower than

100% or “saturation” levels), despite the fact that risk behaviors could result in infection

remained common [6]. One interesting aspect of HIV's natural history is the fact that its viral

burden has a tendency to transition from an acute, highly infectious phase to a chronic phase

where overall infectiousness is much lower. Real-world PWID risk networks exhibit

interesting characteristics as well, including a high degree of clustering [7]. The challenge

taken up by us in the present work is to make evident how subsaturation stabilization comes

about within the proposed stochastic discrete dynamical system, through the complex

interplay of the natural history of HIV and PWID risk network dynamics.

Outline. In Section 2, we develop a stochastic discrete dynamical system that models HIV

propagation in a PWID risk network, setting its parameters based on data gathered in an

earlier study on Social Factors for HIV Risk in New York City [6]. In Section 3, we design a

(macrolevel) graph-theoretic formalization of Friedman et al.'s firewall hypothesis (FH). In

Section 4, we determine the extent to which FH is manifested in the stochastic discrete

dynamical system, by sampling its trajectories via simulation. Finding the hypothesis

tenable, in Section 5 we proceed to dissect the system trajectories to reveal the structural

mechanisms behind the emergence of the FH phenomenon and its role in the continued

regulation of HIV propagation within PWID risk networks.

2. Mathematical Model

The mathematical model underlying the stochastic discrete dynamical system consists of

three parts: (i) the network model describes what real-world PWID risk networks “look like”

and how to create artificial ones which may serve as plausible and interesting initial states of

the system; this is the subject of Section 2.1; (ii) the dynamism model describes the

evolution of system trajectories by specifying how PWID risk networks restructure

themselves over time in response to the departure and arrival of individuals; this is the

subject of Section 2.2; (iii) the infection model describes the evolution of system trajectories

by formalizing the process by which HIV spreads as a consequence of individual risk acts;

this is the subject of Section 2.3.
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2.1. Network Model

Within a PWID risk network, each node is an individual and each edge represents a

relationship that bears the potential for injection drug couse—referred to hereafter as risk

relationship. The network model specifies the process by which we construct plausible

PWID risk networks that may serve as initial states (i.e., from which trajectories of the

stochastic discrete dynamical system may be fruitfully generated). The network model

consists of four parts: (A) obtain data on real-world PWID risk networks, (B) define a

statistical network model, (C) specify model parameters based on real-world PWID risk

network data, and finally, (D) generate new artificial PWID risk networks using the

parametrized model. In what follows, we describe each of these four parts in greater detail.

In what follows, we adhere to the standard mathematical conventions: given a set d835dc46,

we denote its cardinality by |S|. Given two sets d835S, T, we denote by S × T the set of all

ordered pairs (s, t), where s ∈ S and t ∈ T. A function f with domain D and range R is so

declared by the assertion f : D → R. Given a subset Y ⊆ R, the set f−1(Y) is defined to be the

set of elements x ∈ D for which f(x) ∈ Y.

(A) Obtaining Data on Real-World Risk Networks. We view a risk network as a

combinatorial fabric, weaving together a set of ,n individuals, each of whom has m

properties, and where each individual may host an instance of the pathogen. A human

population V may be surveyed in order to map out its instantaneous state: each constituent

individual ν being interrogated about a fixed set of m attributes X = {x1, . . . , xm}; for

example, x1 could be gender, while x2 might be age, and so on We assume that each variable

xi (for i = 1, . . . , m)is categorical, taking values from a finite set Ui that is known in advance

(e.g., U1 could be {Male,Female}, while U2 might be {21AndUnder, Over21}). Each node

attribute xd835dc56 (i = 1, . . . , m) is viewed as a function xi : V → Ui. To model a risk

network, the survey process must go beyond individual attributes and collect data on the risk

relationships between individuals. In practice, during the survey, each individual ν from V is

asked to provide sufficient information required to identify the individuals N(ν) ⊆ V with

whom ν has a risk relationship. In other words, the survey must capture individual ego

network data that can then be aggregated to define the risk network as a whole. By

collecting data on N(ν) in the survey, we are able to specify d : V → N, where d(ν) = |N(ν)|

is the number of risk relationships ν has. The set of all risk relationships is then expressible

as E = ⋃ν∈V N(ν). Finally, the survey must collect data on disease prevalence by identifying

the set of individuals A ⊆ V who are afflicted by the particular pathogen of interest.

Collecting the above elements, we define a risk network to be the (m + 4) tuple  = (xi, V, E,

A, d), where i = 1, . . . , m.

In the context of this work, we drew upon data collected in the Social Factors and HIV Risk

study (SFHR). Conducted between 1990 and 1993, SFHR was a cross-sectional, mixed

methods project that asked 767 out-of-treatment intravenous drug users about their risk

networks and HIV risk behaviors in the prior 30 days. Interested in both individuals’

network composition (namely, the presence of high-risk partners) and sociometric risk

position, the SFHR study produced several major findings relevant to risk populations with

high HIV prevalence and low secondary incidence [8–15]. SFHR documented 662
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connections between study participants (which after symmetrizing and eliminating

duplicates yielded a set of 1032 edges). These edges partitioned the study subjects into 92

connected components, including a large connected component of 230 individuals

containing a 105-member 2-core exhibiting higher HIV prevalence [2].

(B) Defining a Statistical Network Model. In modeling a risk network , the question arises

as to the “appropriate” contents of the model, particularly, which m attributes X = {x1, . . . ,

xm} are significantly influential in the formation of risk relationships? To this end, the

statistical analysis of network data has been advanced considerably by the introduction of

Exponential Random Graph Modeling (ERGM), a statistical technique aimed at determining

the extent to which the likelihood of network linkages appears to be biased towards (or

against) the creation of specified network substructures (above and beyond what is expected

by chance). Such substructures can be as simple as the tendency of “like” nodes to be

connected (at a greater rate than expected by a random distribution of connections), or as

complex as specific structures of connection between sets of individuals [16]. The

theoretical basis for ERGM analysis has been known for some time [17, 18], with estimation

questions settled recently [19]; several detailed expositions of ERGM are available [20–22].

Given a risk network  = (xi, V, E, A, d), where (i = 1, . . . , m), we can from each of the

attributes xi determining a univariate attribute distribution αi : Ui → [0, 1], defined such that

for u ∈ Ui

(1)

The relationships E define m bivariate attribute distributions βi : Ui × Ui → [0, 1], wherein

for each for u1, u2 ∈ Ui

(2)

The set E also implicitly defines a univariate degree distribution  where for

integers a < b we take

(3)

and a bivariate degree distribution  where for every 4-tuple of integers a <

b, a′ < b′ we take

(4)

Finally, we compute pathogen prevalence p ∈ [0, 1] as
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(5)

The statistical network model  derived from risk network  is taken to be the (2m +

3)-tuple:

(6)

In the next section, we present the statistical network model extracted from the SFHR risk

network.

(C) Specifying Model Parameters Based on Real-World Risk Network Data. In the context

of this work, by applying ERGM analysis to the risk network D obtained from the SFHR

survey data, we determined that m = 4 individual attributes exerted significant influence on

the likelihood of edge formation. The names and categorical ranges of each of these

significant attributes X = {x1, . . . , x4} are provided (see Table 1), as well as the univariate

and bivariate distributions of Gender (see Tables 2 and 6), Ethnicity (see Tables 3 and 7),

AgeBinned (see Tables 4 and 8), and DegreeBinned (see Tables 5 and 9). A full exposition

of their derivation by ERGM analysis is available [23]. Finally, as 39% of individuals in the

SFHR risk network were HIV+; in the corresponding statistical network model, we take p =

0.39.

(D) Generating New Artificial Risk Networks Using the Parametrized Model. Given a

statistical network model , procedure MakeNetwork (Listing 1) instantiates a new

network of arbitrary size n using  as a statistical guideline. In the first phase (line 1 of

Listing 1), the MakePopulation procedure is called (Listing 2), which, in turn, creates

d835dc5b individuals, assigning each of their d835dc5a properties independently at random,

using the univariate attribute distributions α1, . . . , αm (lines 4, 5). Then, the degree

distribution X (line 7) is used to assign each individual an ideal degree d(ν). Justification for

individuals having an intrinsic ideal degree comes from prior work on drug scene “roles” [9,

24]. In the second phase (line 2 of Listing 1), the MakePathogens procedure is called

(Listing 3), which in turn distributes the pathogen to each of the individuals in d835dc49

(line 2), in a manner that reflects the specified prevalence level p (lines 3, 4). In the third

phase (line 3 of Listing 1), the MakeRelations procedure is called (Listing 4) to create the

risk relationships between individuals. To do this, it initializes the neighbors of each node Vi

(line 2) to be the empty set (line 3) and then schedules d(νi) executions of the AddEdge

procedure for each node νi (lines 4-5). Because each node νi (i = 1, . . . , |V|) adds each of its

e = 1, . . . , d(νi) edges by calling AddEdge at time 1/(ei + 1), all edges have been added by

time 1/2, allowing MakeRelations to aggregate the set of all edges at time 1 (lines 6–8 of

Listing 4). While one might prefer to spread the AddEdge events needed to construct the

network topology uniformly at random within the time interval (0, 1), in practice, such an

approach has high space complexity since it requires the discrete event simulator's event

queue to hold |E| AddEdge events. In contrast, the deterministic 1/(ei + 1) scheduling

scheme allows the depth of the event queue to be bounded by O(|V|), since each node νi
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needs to only have one AddEdge event pending at any given time (upon which νi can

schedule another AddEdge event if necessary, to generate its next incident edge). The

deterministic scheme thus provides an approximation to the ideal uniform random

distribution of AddEdge events, ensuring that all nodes make concurrent progress towards

fulfilling their ideal degree within the time interval (0, 1) while at the same time avoiding

high space complexity in the software implementation—a necessary consideration for

network simulations at the scales we intend.

Each execution of AddEdge takes place in the context of a specific vertex ν, at a specific

time t (Listing 5). Hereafter, all time-varying sets and functions (e.g., V, N) shall be so

designated by providing the temporal coordinate t as superscript (i.e., as Vt , Nt). Procedure

AddEdge determines the set of new neighbor candidates (line 2), consisting of vertices

which are not already neighbors of ν. If candidates exist (line 3), the procedure computes the

edge deficit for each candidate c (line 5) as the difference between c's ideal degree d(c) and

actual degree |Nt(c)|, rescaling this into [0, 1] by composing with the smooth function e−1/x

that approaches 1 as x → ∞ and 0 as x → 0+ The quantity aδ(c)is thus near 1 whenever |

Nt(c)| < < d(c) and becomes 0 when c's actual degree |Nt(c)| attains its ideal value d(c). The

selection of candidate d835dc50 is also influenced by the actual degrees of ν and c (line 6),

reflecting the bivariate degree distribution  (suitably binned to 2ε-sized buckets). Likewise,

the joint attributes of ν and c influence the candidate selection (line 7), reflecting the

bivariate attribute distributions βi. These three factors are aggregated as c's propensity ω(c)

(line 8), which is then normalized across C to define a probability distribution q (line 9).

Finally, a candidate ω is selected from C (line 10) via the probability distribution d835dc5e

just defined, and the edge (ν, ω) is added (line 12) by augmenting the neighbor set of ν.

To understand the three biases used in defining ω(c), we remark that taking ω(c) = at
X(c)

would have made the probability of (ν, c) being selected proportional to the bivariate degree

distribution  evaluated in the neighborhood of ν and c's actual degrees. Using at
β(c) as a

factor within the definition of ω(c) thus ensures that a pair of vertices (ν, c) that is

exceptional with respect to  will be correspondingly improbable as a candidate for the

addition of an edge. Likewise, taking ω(c) = at
β(c) would have made the probability of (ν, c)

being selected proportional to the product of the m bivariate attribute distributions βi

evaluated at ν and c. Using at
β(c) as a factor within the definition of ω(c) thus has the effect

that a pair of vertices (ν, c) which are exceptional with respect to any βi will be also be

improbable as a candidate pair for the addition of an edge. Finally, the bias aδ(c) favors the

selection of candidates who still have a large residual degree (i.e., deficit from ideal degree).

Over the course of the network building process, this bias has the effect of ensuring that all

nodes in the network have residual degrees of comparable magnitude. By ensuring that all

nodes maintain comparable residual degrees, we minimize the chances that the network

building process will “get stuck” (i.e., reach a state in which the subset of nodes having

positive residual degree already form a clique in the network built so far). While it is true

that these three biases aδ(c), at
X(c), and at

β(c) could have been aggregated to form ω(c) in a

variety of ways, we chose to use their product in order to ensure that a candidate that is very

improbable with respect to any one (or more) of the constituent factors will be rendered

unlikely to be selected. More sophisticated definitions of ω (e.g., where the constituent
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factors aδ(c),at
X(c), and at

β(c) are each exponentiated by different constants to allow for

differences in their relative influence) were considered, but the experimental outcomes we

report on here were found to be robust to a wide range of exponent values, and so the simple

product formulation was deemed adequate for this exposition.

2.2. Network Dynamism Model

Individual agency may drive PWIDs to leave the risk network over time. To model this,

each node ν is assigned a network lifetime L(ν) when it first enters the network, chosen by

sampling from a positive truncated Gaussian [25] of mean μst and standard deviation σst . In

the context of this work, a dearth of hard diachronic data forced us to choose μst and σst

based on the ethnographic reports of researchers in the SFHR study. We took μst = 60, σst =

48 months, reflecting reports that PWIDs in the SFHR network remained participants for a

period ranging between 2 and 8 years.

Whenever the network lifetime L(ν) of node ν expires, it breaks its risk relationships and

removes itself from the network. The proposed network dynamism model assumes a

constant population size |Vt| = |V1| (for t > 1); so the departing individual ν is immediately

replaced with a new individual ν′ . The attributes xi(ν′) are determined by αi and the ideal

degree d(ν′) by X, in much the same manner as when the initial population was sampled (see

lines new 4–6 of Listing 2).

The individual ν′ connects to d(ν′) existing nodes in the network by repeatedly calling a

modified version of AddEdge in which the bias due to degree constraints has been modified

(compare with line 5 of Listing 2) as follows:

(7)

Note that aδ(c) = 1/2 whenever |Nt(c| = d(c), and that

(8)

The parameter WS controls the rate at which aδ(c) approaches the limits asserted above and

so determines how closely individual nodes adhere to their ideal degree over the course of

their network lifetimes. Justification for an individual having an intrinsic ideal degree comes

from prior work on network “roles” and the correlations between role and ego network size

[9, 24]. In the context of this work, we took WS = 2.9, thereby ensuring that when actual

degree was more than 30% above ideal degree aδ(c) ≈ 0 (and analogously, when actual

degree was more than 30% below ideal degree, aδ(c) ≈ 1).

2.3. Infection Model

Each individual ν in the network has an intrinsic tendency to engage in risk acts tR(ν), which

is assumed to be time-invariant and drawn at the outset from the positive reals using a

truncated Gaussian [25] with mean μR and standard deviation σR. In the course of
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simulations, a risk event stream is generated at each individual ν as a Poisson process

wherein the time between successive impulses follows an exponential distribution having

rate |Nt(ν)|/tR(ν). Upon experiencing a risk event at time t, node ν selects a partner W

uniformly at random from among its neighbors Nt(ν) and engages in a mutual risk act with

W.

In the context of this work, μR and σR were set in accordance with the SFHR data set. Given

that the criterion for a “link” in the SFHR survey was “participation in a mutual risk act in

the last 30 days” [26, page 115], the parameter μR was set to 1.0 months, so that nodes

would draw from a distribution of risk profiles centered at 1 risk event per month per risk

partner. Given that the mean degree of nodes in the SFHR network was 3.4, the actors in our

model would, on average, engage in 3-4 risk events per 30-day period. This aligns well with

the 30-day risk event rate analyses in the study report [26, page 136-7]. SFHR interview

subjects reported an average of 112 monthly injections with a standard deviation of 139 [26,

page 120]. Taking these numbers as our guide, we set the standard deviation for the risk

distribution σR to be equal to the mean βR. This produced a distribution for tR that was near-

uniform between 0 and 2, with a long but rapidly diminishing tail for rates greater than 2

risk events per number of risk partners per month.

During each risk act, the likelihood of viral transmission is 0 if both individuals have the

same infection status. If the individuals are serodiscordant (i.e., precisely one of them is

infected), then the probability of transmission is modeled by an infectiousness curve I+

which maps the age of the infection (amount of time that has elapsed since the positive

individual in the pair first became infected) to the probability of the pathogen's transmission.

In the case of HIV, the infectiousness curve decreases sharply at approximately three

months and remains at very low levels until over eight years later [27–29]. Given that HIV

infectiousness drops sharply approximately 3 months after the time of initial infection, we

model I+ as a two-parameter step function (see Figure 1) whose value is pH for the 3-month

acute phase and CL/H · pH in the subsequent chronic phase (cL/H < < 1).

In the context of this work, pH and cL/H were set in accordance with prior knowledge

concerning HIV. While no precise data was available on per-risk-event infection probability

for HIV, Hagan and colleagues found that HCV risk among PWID showed a 3- to 5-fold

increase in sero-conversion rates and a risk factor of 5.9 for those who shared drug

preparation equipment or syringes [30]. Initially, pH was to be a tuning parameter such that

once all other parameters had been set according to the SFHR data, a series of trials could be

undertaken in simulated networks and dpH set to yield HIV prevalence stabilization levels

that matched those observed historically in the SFHR network (i.e., 40%–50%). This proved

unnecessarily sophisticated, as variations in the per-risk-event infection probability (from as

low as 2% to as high as 10%) showed little effect on HIV prevalence stabilization levels. In

the end, we chose a per-risk-event infection probability pH = 5%. The value of cL/H was

taken to be 1/100, a representative value in the range of published estimates (between 1/20

and 1/1000) for relative HIV infectiousness in the chronic versus acute phase [28, 31].
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3. Measuring Firewalling Effects

At a time t, two types of network obstructions curtail the continued growth of the set of HIV

+ individuals  in a risk network Gt = (Vt, Et):

(i) Type 1. The risk network Gt may not be a connected graph. Since the virus propagates

over risk relationships, the multiplicity of components may act as a network obstruction to

viral propagation.

(ii) Type 2. An HIV– individual whose viral burden is in the chronic low-infectiousness

phase cannot be reinfected through new risk behaviors, and so cannot return to a state of

acute infectiousness. When such an individual separates HIV– nodes from acute HIV+

individuals, it obstructs the transmission of the virus from the latter to the former.

In this section, we formally define a graph-theoretic measure which captures the extent to

which HIV– individuals can attribute their uninfected status to the two types of network

obstructions described above.

Towards this, let  be the graph obtained by deleting from Gt all infected individuals in the

chronic phase along with all their incident edges. The individuals in the chronic phase are

precise:

(9)

and since the virus cannot re-infect individuals in Ot, the graph  may be thought of as the

virus's view of the network Gt. While the graph  need not be connected, it may be

(uniquely) decomposed into maximal connected components:

(10)

We introduce an indexing function  to identify the component in

which each individual ν in VtOt may be found; that is, . We are

interested in the situation where an HIV– individual V lies in a component of  that

contains one of the known acute HIV infections:

(11)

since this implies that ν may potentially acquire the virus through a sequence of one or more

transmissions. Accordingly, we define a Boolean-valued function ϕt : Vt \ At →{0, 1} by

putting

(12)
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Now, ϕt(ν) = 1 if and only if V is in a component of  with no acute infections. Pulling

back from the virus' viewpoint  to the human perspective Gt, we see that ϕt(ν) = 1 if either

(1) ν is in a component of Gt with no acute infections or (2) ν is in a component of Gt

containing acute infections but all paths from ν to acute HIV+ individuals are blocked by

interceding chronic HIV+ individuals. It follows that ϕt(ν) = 1 precisely when an HIV−

individual ν is enjoying one of the two types of network obstructions presented at the outset

of this section. We now introduce the quantitative measure:

(13)

When FW(t) ≈ 1, almost all HIV− individuals are experiencing one of the two types of

network obstructions described above; when FW(t) ≈ 0, the two types of network

obstructions cannot be said to significantly account for the HIV− status of the uninfected

individuals.

3.1. An Example

The top image in Figure 2 shows a 26-node risk network with three connected components

consisting of 2, 3, and 21 individuals. The bottom image shows the corresponding 6-

component risk network obtained once individuals with chronic-phase infections (blue

nodes) and their incident edges have been deleted. In effect, the top figure is a human-

centric rendering of the risk network, while the combinatorial object at the bottom is a

virus-centric rendering of the same risk network. At each instant in time, the virus-centric

rendering of risk network may be decomposed into a collection of connected components.

The fates of individuals in each connected component therein are seemingly intertwined by

sequences of risk relationships, while individuals lying in different components have more

independent destinies with respect to infection outcomes (assuming the instantaneous

network structure). Each connected component can be assigned a risk status, wherein it is

deemed to be at risk (resp., firewalled) if acute infections (red nodes) are present (resp.,

absent) from it. In the virus-centric rendering of the risk network shown at the bottom of

Figure 2, there are 4 components at risk and 2 which are firewalled. In this analysis, the

uninfected individuals within each component in the virus-centric view inherit the risk status

of the component in which they lie. Since the 4 components that are at risk have 4, 2, 3, and

1 uninfected individuals in them respectively, the total number of individuals said to be at

risk is 4 + 2 + 3 + 1 = 10. On the other hand, since the 2 components that are firewalled both

have 3 uninfected individuals in them, the total number of individuals said to be firewalled

is 3 + 3 = 6. From this, we conclude that out of the total 10 + 6 = 16 uninfected individuals,

a 6/16 = 0.375 fraction may attribute their present good fortune to the fact that the virus

cannot reach them because of the network partitioning induced by old infections and/or link

sparsity. In the example, the value of the FW measure is 0.375, which is a relatively low

value within the range 0 to 1 of possible values.

Now consider the human-centric view of a topologically isomorphic risk network shown at

the top of Figure 3, having precisely the same pathogen prevalence, and the same number of

acute and chronic infections as the previous network considered in Figure 2. Since the
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chronic infections are situated identically in the two networks, the virus-centric views are

isomorphic (as graphs). What is different between the two networks, however, is the

placement of acute infections (relative to the constant locations of chronic infections). The

virus-centric view of the network in Figure 3 has 2 at-risk components and 4 firewalled

components. Of the 16 uninfected individuals, the number that is at risk is 1, while the

number that is firewalled is 15. Thus, the value of the FW measure is 15/16 = 0.938, a

relatively high value within the range 0 to 1 of possible values. What these two examples

illustrate is that the FW measure is defined in terms of the local network structure relevant to

the virus propagation dynamics and depends heavily on the relative placement of acute and

chronic infections within the risk network.

4. Simulation Experiments

In this section, we use the SFHR-based statistical network model (with a modified pathogen

prevalence parameter p = 0.001) to sample artificial risk networks of 1000–25,000 nodes

containing 0.1% HIV+ individuals. These artificial networks serve as initial states of a

stochastic discrete dynamical system whose evolution is governed by the dynamism and

infection models of Sections 2.2 and 2.3. We simulated multiple 15-year trajectories of the

system and computed the HIV prevalence rates along these trajectories as functions of time.

Figure 4 shows that HIV prevalence stabilized at approximately 40% in all but the 1000-

node network. Each graph shows the results obtained across 10 simulation trials, with

vertical bars indicating the standard deviations. To give the reader a sense of scale, in a

25,000 node network, each trial entailed that approximately 15.5 million risk events across

which HIV infection could have taken place.

To test the firewall hypothesis, the system was frozen in mid-trajectory at monthly time

intervals so the value of the FW measure could be computed (as defined in (13)). Figure 5

depicts the value of FW(t), plotted as a function of time t for 15-year trajectories

corresponding to the same set of trials shown in Figure 4. We see that the FW measure rises

rapidly from 0 to 0.8 during the first 18 months, rebounding briefly to 0.75 in the next 5

years, and then restabilizing again back at the 0.8 level. Despite the fact that the 1000-node

network showed high variation in the HIV prevalence between different trials, and a much

more gradual rise in overall rates, here too the firewall hypothesis seems to hold true, though

there are greater variations across trials. While the graphs show that 70–80% of HIV−

individuals were firewalled, this does not imply that new, acute (and thus highly infectious)

HIV infections did not occur. Rather, as seen in Figure 6, acute infections continued to

appear in the network at a relatively steady rate even after the initial hot spike, though

clearly they failed to propagate across the network.

5. The Emergence and Maintenance of Firewalls

To facilitate further analysis, we divided the trajectories, referring to the first 18 months as

the emergent period, and the 13+ later years as the steady period. Each of the periods is

treated in turn in the sections that follow.
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5.1. Emergent Period

To understand the behavior of the FW measure along system trajectories, we return to its

definition as the quotient of the number of firewalled individuals by the number of HIV−

individuals. The number of firewalled individuals in a risk network of 25,000 nodes is

depicted over the 18-month emergent period in the left graph in Figure 7. We can see from

the graph that at the outset, approximately 25% of all individuals are firewalled, but that this

number doubles and plateaus over the 18-month duration of the emergent period. A closer

examination reveals that the initial value of the FW measure is attributable to Type 1

network obstructions, while its subsequent rise (to be considered in detail) is due to the

emergence of Type 2 obstructions. The number of HIV− individuals, on the other hand, can

be readily determined from HIV prevalence levels. The right graph of Figure 7 shows that

over 18 months, the number of HIV negative individuals falls from its initial value of 99.5%

of all individuals, plateauing at a mere 57%, just one year into the simulation. To obtain a

clearer understanding of “why” these two ingredient quantities behave as they do, we shall

make use of the two graphs in Figure 8 which present an array of measure (means) derived

from 10 simulation trials of 25,000 node networks.

(a) The Number of HIV− Individuals. Figure 8(a) reveals that the number of acute HIV

infections rises exponentially from close to 0 to around 5,000 over a brief 6-month initial

segment of the emergent period. after that, the number of acute infections begins to decline.

To understand why this occurs, we observe that the average size of at-risk components

decreases sharply from over 3,000 to nearly 1 by month 7 of the emergent period (see Figure

8(b)). As the average at-risk component size becomes smaller, each acute infection can

impact very few HIV− individuals through transmission. When the ability of acute

infections to spread has been mitigated in this way, as it clearly has by month 7, acute

infections cease to be able to increase exponentially, and instead begin to decay in number

as they transition from acute to chronic phase over time. This explanation is confirmed

(Figure 8(a)) by the drop in the number of acute infections beginning at month 7 of the

simulation. Note that the number of acute infections does not drop to 0 because even chronic

infections have a nonzero probability (cL/H·pH > 0) of transmitting HIV and thereby

generating new infections. Thus, we see that the large numbers of chronic infections act as a

reservoir of infectiousness and are responsible for continuing to produce new infections that

fail to propagate fully throughout the network. This decline in the number of acute infections

(beginning in month 7) explains the corresponding leveling off in the number of HIV−

individuals (see the right graph in Figure 7).

(b) The Number of Firewalled Nodes. We begin by considering Figure 8(a), noting that three

months after the hot spike in acute HIV infections begins (i.e., as acute infections start to

transition into the chronic phase), the number of components (in the virus-centric view of

the risk network) begins to rise, causing individuals to be removed from the virus-centric

view and splitting the risk network into many components in the process. The increase in

number of components (from 5,700 to 9,000) takes longer than the increase in the number

acute infections because not every transition of an HIV+ individual from acute to chronic

phase induces a partition in the virus-centric risk network. It is natural to ask whether the

3,300 new components that arise are predominantly fire-walled or at-risk? To resolve this,
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we note that the number of at risk components, shown in the lower left graph, declines

dramatically at this time, ending in month 20 at a level of 500. Even if all 500 of these at-

risk components were to be found among the 3300 new components created over the

emergent phase (and thus none were the result of a low probability infection from a

nonacute HIV+ individuals), this would still indicate that a majority of the new components

created between month 10 and month 20 would be classified as firewalled. Since many new

firewalled components of roughly constant size are being created (see Figure 8(b)), we

expect the number of firewalled nodes to grow and taper, mirroring the growth curve of the

number of components.

5.2. Steady Period

As in our consideration of the emergent phase, the graphs discussed here are drawn from 10

trials of 25,000-node PWID networks drawn from the statistical network model extracted

from the SFHR data set. We now consider the dynamics of the FW measure's numerator and

denominator during the steady period, after the hot spike in new infections has subsided.

During the steady period, the number of firewalled individuals (numerator) is seen to decline

from 12,000 to 10,000 over the 13+ years of the simulation (see Figure 9(a)). The number of

HIV− individuals (denominator) is seen to slowly decrease from just under 15,000 to just

under 12,000 over the same time period (see Figure 9(b)). To render transparent the

mechanisms underlying this behavior, we shall make use of the bottom two auxiliary graphs

in Figure 9.

(a) The Number of HIV− Individuals. Figure 9(c) depicts both the number of acute infections

and the average risk component size over time. In our base SFHR model cL/H · pH = 0.05 ×

0.01 = 5 · 10–4, which while being small is still nonzero, providing a slow burn that

continuously produces new infections but is unable to explode into a hot spike because the

average at-risk component size is small (thanks to the previously demonstrated structural

side effects of the emergent phase), going from a mean size of nearly 35 nodes down to a

less than 10 over the 160 months of the steady period. The slow burn proceeds, driving the

mean size of at-risk components lower, which in turn, limits the extent to which new acute

infections can spread. The result is that these two quantities (number of acute infections and

average risk component size) equilibrate over the steady period. Given an understanding of

the trajectory of acute infections, we implicitly arrived at an explanation of the trajectory of

the number of HIV− individuals, since these two quantities are trivially related (Figure

9(b)): if the number of acute infections stabilizes to a constant nonzero number, then HIV

prevalence will increase at a rate proportional to this number.

(b) The Number of Firewalled Nodes. We turn our attention now to the number of firewalled

nodes (Figure 9(a)). Figure 9(d) shows that in the first 5 years of the steady period, the total

number of components (in the virus-centric view of the risk network) declines from 9,000

components to 7,200, or roughly 80% of its starting value. This implies that 1,800

components seemingly vanished, and it is natural to ask, as before, whether these 1,800

components were predominantly of the firewalled or at-risk classification? The graph shows

us that the number of firewalled components experiences a commensurate decline—and

hence the components being destroyed in the first 5 years are in fact almost exclusively fire-
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walled components. How might this happen? The third curve in the graph shows the average

size of firewalled components over time. We see that this number stays fairly steady in the

neighborhood of 1.4, implying that a significant number of the firewalled components are

islets. It is now apparent what is occurring: when firewalled islets become infected by the

slow burn of adjacent old infections, firewalled components disappear from the virus-centric

network.

5.3. Robustness Considerations. Having conducted simulation experiments based on the

SFHR model and used these to demonstrate the occurrence of subsaturation stabilization via

the firewall hypothesis, we acknowledge that the model contains a large number of

parameters. While these parameters were set to consensus estimates derived from the ethno-

graphic data collected as part of the SFHR study, it would be natural to ask whether the

parameter settings had a significant impact on the emergence of subsaturation stabilization

and the firewall phenomena in the above experiments. Significant model parameters

included the following:

(1) from Section 2.1(c), the univariate attribute distributions α1, α3, and α3, the bivariate

attribute distributions β1, β2, and β3, and the univariate (resp., bivariate) degree distributions

χ (resp., ) together reflect statistical properties of the network edges. To evaluate the

impact of these parameters, we repeated the previously described experiments using a

statistical network model derived from Project 90 (P90), another PWID risk network study.

Conducted between 1988 and 1992 in Colorado Springs, P90 was a prospective study of

heterosexual subjects who were defined as being at “high risk” for STI/HIV infection [32,

33]. Eligible subjects reported at least one of the following behaviors in the past 12 months:

exchanging sex for money or drugs, sex (paying or nonpaying) with a prostitute, injection of

illicit drugs, or sex with an injection drug user. Unlike the cross-sectional SFHR, the P90

study followed its subjects for up to 5 years, with no requirement for year-to-year continuity;

new subjects were additionally recruited each year. 595 enrolled individuals produced 1091

interviews, which named 8,164 network contacts overall [32, 34–39]. The P90-based

simulations were designed to overlap in scale with the SFHR-based simulations described

above. We found that the specific topology of the real-world network from which the

statistical network model is derived plays a minor role (a few percentage points) in the

stabilization level dynamics and the FW measures manifested. In particular, analogous

subsaturation stabilization and firewall effects are apparent in simulations based on the

model derived from the P90 study.

(2) From Section 2.2, the parameters μst, σst serve to specify the process by which

individuals depart from and arrive at the network, while ωS regulates node adherence to

ideal degree. To evaluate the impact of μst, σst, we simulated networks based on the SFHR

model in which μst (mean duration of in-network lifetime in months) was artificially set to

half (resp., double) its estimated value, that is, 30 (resp., 120) months. In these simulations,

we found that HIV rates stabilized to subsaturation levels within 5% of those manifested in

the “standard” SFHR experiments. The firewall effect continued to be manifested, though

the value of the FW measure was approximately 10% lower (resp., 10% higher) than what

was seen in “standard” SFHR experiments. To evaluate the impact of ωS, we simulated

networks based on the SFHR model in which ωS was artificially set to half (resp., double) its

Khan et al. Page 14

Discrete Dyn Nat Soc. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



estimated value, that is, 1.5 (resp., 6). In these simulations, we found that HIV stabilization

(resp., the firewall effect) continued to be apparent, with prevalence levels (resp., FW

measure) deviating by less than 5% relative to the values observed in the “standard” SFHR

experiments.

(3) From Section 2.3, the parameters μR, σR serve to specify the random process determining

each individual's risk acts, while pH, cL/H govern the form of the HIV infectiousness curve I

+. To evaluate the impact of μR, σR, we simulated networks based on the SFHR model in

which μR (mean time between risk impulses in months) was artificially set to half (resp.,

double) its estimated value, that is, 0.5 (resp., 2) months. In these simulations, we found that

HIV rates stabilized to subsaturation levels approximately 40% higher (resp., 30% lower)

than those manifested in the “standard” SFHR experiments. The firewall effect continued to

be manifested, though the value of the FW measure was approximately 20% higher (resp.,

30% lower) than in the “standard” SFHR experiments. To evaluate the impact of pH, cL/H

we simulated networks based on the SFHR model in which the parameter pH (transmission

probability during acute period) was artificially set to half (resp., double) its estimated value,

that is, 2.5% (resp., 10%). In these simulations, we found that HIV rates stabilized to

subsaturation levels approximately 50% lower (resp., 30% higher) than those manifested in

the “standard” SFHR experiments. The firewall effect continued to be manifested, though

the value of the FW measure was approximately 40% lower (resp., 20% higher) than in the

“standard” SFHR experiments.

In summary, our conclusions concerning the emergence of subsaturation stabilization and

the firewall phenomena (which were drawn from simulations parameterized by data from

the SFHR study), are in fact robust within a wider range of model parameter settings, though

the extent of the two phenomena (as evaluated by stabilized HIV prevalence levels and FW

measure values) is certainly nominally influenced by the specific choice of model parameter

settings.

6. Conclusions

Having described a stochastic dynamical system modeling a dynamic PWID risk network,

whose simulated trajectories match the historical HIV dynamics known for PWID networks

in New York City during the early 1980s, we determine that nodes with mature HIV+ status

tend to divide the network into clusters of uninfected nodes that remained relatively stable

over time. Thus, the FH holds significantly (for up to 80% of uninfected individuals) and so

captures an important barrier to HIV propagation in PWID risk networks. In considering the

microlevel mechanics underlying the emergence of the FH, we find it helpful to examine the

network during two phases of HIV infection: an initial, emergent phase of rapid spreading

and a later period of stable HIV rates. There is an enduring presence of new infections that

fail to propagate during the stable phase, and this is because of the structural effects created

during the emergent phase when a significant fraction of uninfected nodes coalesce into

small components (in the virus-centric view of the network). These small clusters represent

margins of the network and are often composed of a few (or even single) individuals. Small

components ensure that the ability for new infections to spread across the network via such

individuals is near nil, even when new infections occur and individuals enter into a period of
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high infectiousness, and even as members of the network continue to engage in risk events

that can transmit the virus.

Our research also suggests that overall network size plays a key role in HIV dynamics

among injecting drug user networks. Consistently, networks of size 5,000 through 25,000

behaved within a narrow (and therefore predictable) range of overall characteristics.

Networks of 1000 nodes or fewer, on the other hand, showed high variability in their

network-wide behavior. This latter finding bears serious consideration for those concerned

with interventions aimed at influencing the overall rate of HIV among injecting drug user

networks. If smaller networks show high variability in their dynamics— leading to the idea

that they are more subject to stochastic events than networks of large size—then

understanding where and how particular interventions will succeed or fail becomes very

difficult. What such variability in outcomes indicates is that stochastic factors may outweigh

node level dynamics in determining network-wide outcomes through time in small

networks. Put another way, the outcome of interventions in small-scale networks may not

serve as good indicators of likely outcomes of the same intervention in other small networks,

nor in the same networks at a different time, nor in large networks. In each case, the effects

of random events may render the otherwise most successful interventions moot, or the most

ill-adapted interventions successful—this without a change in the underlying set of network

attributes or dynamics. We recognize that this finding represents a difficult challenge to

policies advocating demonstrated evidence-based interventions (DEBIs) [40]. Regardless of

whether the precise findings regarding scale seen here hold up under further investigation, it

is clear that factors of scale ought to be an important criterion for evaluating what constitutes

“demonstration” in evaluating intervention success or failure.

Simulation of formal dynamical systems is far from demonstration of actual disease

dynamics, of course. But the results of this project can point to ways that network wide

phenomena are shaped by local social processes, and thereby open avenues for future

research that may be hidden by the limits of more standard empirical investigation. We note

that the disease dynamics reflected here may be partly explained by the social circumstances

that produce the SFHR PWID risk network (on which the simulation topologies were

based). Among the most important of these is the central role that shooting galleries played

as venues for drug use at the time of the SFHR study [6, 14, 24, 41]. These and other forms

of enforced propinquity were encouraged by significant changes in drug enforcement

regimes in New York at the time. During the 1991–93 time frame, New York City as a

whole—and Bushwick in particular, where much of the SFHR study was conducted—was

undergoing a change in drug interdiction regimes aimed at closing down “open air” drug

markets and injection locations [42–45]. This strategy involved broad “sweeps” in which

outdoor users were routinely arrested for small amounts of drug possession. As places

serving as outdoor drug use locations were increasingly systematically pursued by law

enforcement, outdoor drug use became increasingly precarious, and indoor, more discreet

drug use locations (shooting galleries) grew in importance as a result [44].

These circumstances may have, at least initially, helped promote the firewall effect

described here. Under such conditions, new users with few network connections are likely to

find themselves in shooting galleries with shooting gallery operators who were both of high
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degree and more likely to be in a state of mature infection, and thus effective fire-walls

against new infections potentially moving through the network. Conversely, as police

interdiction gradually came to target shooting galleries (and shooting gallery operators

became targets of police arrest), the disruption of stable relationships and the removal of

critical central nodes from the network may disrupt this firewall effect, forcing remaining

network members to seek out new sources and injection partners. This would have the effect

of significantly reorganizing the network (in the virus-centered view). Police decisions were

obviously weighted by other concerns, but an important suggestion of the simulation results

presented here is that the public health implications of those decisions are likely difficult to

gauge. Drug interdiction strategies are seldom seen as increasing risk, and it would likely

seem highly counterintuitive that the removal of HIV+ individuals who have been infected

for more than three months and who play a brokerage role in the network may in fact raise

the level of risk for the remaining risk network—but that is what is suggested here. Such

conclusions are obviously highly speculative. But they come as the results of models and

simulations whose scale and scope cannot be matched by more direct empirical research. It

remains before us to translate these suggestions into concrete research strategies capable of

testing and evaluating both these results and their implications for public policy.
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Listing 1.
Procedure MakeNetwork.
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Listing 2.
Procedure MakePopulation.
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Listing 3.
Procedure MakePathogens.
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Listing 4.
Procedure MakeRelations.
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Listing 5.
Procedure AddEdge.
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Figure 1.
A two-parameter representation of HIV infectiousness as a function of infection age.

Khan et al. Page 25

Discrete Dyn Nat Soc. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
(Top) Risk network with 10 HIV+ (4 acute) out of 26 nodes; (bottom) virus-centric view,

FW: 6/16 = 0.375.
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Figure 3.
(Top) Risk network with 10 HIV+ (4 acute) out of 26 nodes; (bottom) virus-centric view,

FW: 15/16 = 0.9375.
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Figure 4.
HIV rates in PWID networks of size 1 k–25 k nodes.
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Figure 5.
Firewall Hypothesis Validity in PWID networks of size 1 k–25 k nodes.
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Figure 6.
Number of acute HIV infections in PWID networks of size 1 k–25 k nodes.
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Figure 7.
The emergent period: (a) firewalled nodes; (b) HIV prevalence, number of HIV−

individuals.

Khan et al. Page 31

Discrete Dyn Nat Soc. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8.
The firewall effect during the emergent period.
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Figure 9.
The firewall effect during the steady period.
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Table 1

Significant Attributes (as determined by ERGM).

Name Possible values (Ui)

x1: Gender {Male, Female}

x2: Ethnicity {White, Hispanic, African-American, Other}

x3: AgeBinned {[15–20), [20–25), [25–30), [30–35), [35–40), [40–45), [45–50), [50–55)}

x4: DegreeBinned {[0–2), [2–4), [4–10), [10–20)}
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Table 2

Gender univariate α1.

Male Female

α 1 541/767 226/767
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Table 3

Ethnicity univariate α2.

White Hispanic African-American Other

α 2 243/767 206/767 311/767 7/767

Discrete Dyn Nat Soc. Author manuscript; available in PMC 2014 July 29.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Khan et al. Page 37

Table 4

AgeBinned univariate α3.

[15–20) [20–25) [25–30) [30–35) [35–40) [40–45) [45–50) [50–55)

α 3 6/767 32/767 158/767 172/767 198/767 159/767 23/767 19/767
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Table 5

DegreeBinned univariate χ.

[0–2) [2–4) [4–10) [10–20)

χ 322/767 221/767 161/767 63/767

Discrete Dyn Nat Soc. Author manuscript; available in PMC 2014 July 29.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Khan et al. Page 39

Table 6

Gender bivariate β1.

β 1 Male Female

Male 556/1032 180/1032

Female 180/1032 116/1032
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Table 7

Ethnicity bivariate β2.

β 2 White Hispanic African-American Other

White 232/1032 27/1032 73/1032 4/1032

Hispanic 27/1032 222/1032 57/1032 7/1032

African-Am. 73/1032 57/1032 238/1032 21032

Other 4/1032 7/1032 2/1032 0/1032
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Table 8

AgeBinned bivariate β3.

β 3 [15–20) [20–25) [25–30) [30–35) [35–40) [40–45) [45–50) [50–55)

[15–20) 2/1032 1/1032 3/1032 0/1032 0/1032 0/1032 0/1032 0/1032

[20–25) 1/1032 2/1032 12/1032 8/1032 8/1032 5/1032 1/1032 0/1032

[25–30) 3/1032 12/1032 54/1032 63/1032 48/1032 21/1032 3/1032 0/1032

[30–35) 0/1032 8/1032 63/1032 76/1032 71/1032 37/1032 7/1032 2/1032

[35–40) 0/1032 8/1032 48/1032 71/1032 88/1032 55/1032 10/1032 8/1032

[40–45) 0/1032 5/1032 21/1032 37/1032 55/1032 56/1032 4/1032 8/1032

[45–50) 0/1032 1/1032 3/1032 7/1032 10/1032 4/1032 2/1032 0/1032

[50–55) 0/1032 0/1032 0/1032 2/1032 8/1032 8/1032 0/1032 2/1032
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Table 9

DegreeBinned bivariate .

χ̄̄ [0–2) [2–4) [4–10) [10–20)

[0–2) 134/1032 74/1032 41/1032 20/1032

[2–4) 74/1032 180/1032 96/1032 49/1032

[4–10) 41/1032 96/1032 60/1032 32/1032

[10–20) 20/1032 49/1032 32/1032 34/1032
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