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Abstract

Alterations in the bidirectional interactions between the gut and the nervous system play an

important role in IBS pathophysiology and symptom generation. A body of largely preclinical

evidence suggests that the gut microbiota can modulate these interactions. Characterizations of

alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective

symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and

antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It

remains to be determined if the observed abnormalities are a consequence of altered top down

signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation

of the microbiota, and if they play a role in the development of altered brain gut interactions early

in life. Different mechanisms may play role in subsets of patients. Characterization of gut

microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating

gut metabolites with specific abnormalities in the gut brain axis are required to answer these

questions.

INTRODUCTION

Alterations in bidirectional brain gut interactions have been considered a likely

pathophysiological construct underlying IBS and related functional GI disorders for some

time.1,2 However, considerable controversy remains regarding the involved molecular

mechanisms and the precise targets within the brain gut axis that are responsible for such

alterations. Similarly, it remains unclear which of the reported changes are primary and

which are secondary in the development of symptoms. The gut microbiota and their

metabolic products have recently been proposed as one such plausible mechanism, given

their demonstrated ability primarily in preclinical studies to influence intestinal
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permeability 3 and immune function,4 activity in the enteric nervous system (reviewed in5),

the HPA axis,6 pain modulation systems7 and the brain (reviewed in 8, 9). Alterations of the

normal gut microbiota (“dysbiosis”) have been implicated in putative IBS pathophysiology

in terms of enhanced gut permeability,10–12 mucosal immune activation,10–14 visceral

hypersensitivity14, 15 and altered intestinal motility.16 However, there is conflicting evidence

regarding alterations in the organization and metabolic products of the gut microbiome in

patients with chronic abdominal pain and in adult and pediatric IBS,12 and on the beneficial

effects of gut microbial manipulations with prebiotics, probiotics, and antibiotics in some

IBS patients. Furthermore, it remains unclear if the observed IBS related alterations in the

gut microbiome are related to altered intestinal function/physiology and/or changes in brain

signaling. For example, there are multiple mechanisms by which the brain (via the

hypothalamic pituitary [HPA] axis, the autonomic nervous system (ANS), and ANS

modulation of the enteric nervous system) can influence the context and the intestinal

environment in which the microbiota live, by influencing regional gut motility patterns,

epithelial permeability, luminal secretions, mucosal immune function and possibly

intraluminal release of neurotransmitters from enteroendocrine and other cells in the gut

(reviewed in 1, 2). There are also a limited number of intriguing original preclinical study

reports to support an influence of the gut microbiota on brain development and behaviors

and on the adult brain,6, 17–19 including characterization of neuroactive metabolites which

may underlie this influence.8 A recent study has demonstrated for the first time in healthy

human subjects that perturbation of the normal gut microbiota with a probiotic can influence

brain function. 20 The knowledge of the healthy human microbiome is rapidly advancing

and these reference data sets will enable scientists to distinguish physiological from

pathological changes associated with the intestinal microbiome.21

In this article, we will review the published literature which supports a role for altered gut

microbiota in symptoms and pathophysiology of IBS, the most prevalent and best studied

functional GI disorder. We will first focus on findings in human patients by critically

reviewing reported evidence in support of alterations in gut microbiota (dysbiosis) and

related metabolites in IBS patients. We will review the evidence supporting a possible

causative role of the reported dysbiosis in IBS symptoms, based on symptomatic responses

to modulation of the gut microbiome by diet, by pre- and probiotics, and by antibiotics. We

will then review the possible consequences of dysbiosis on the gut brain axis and resulting

IBS symptoms, and the possible causes of the dysbiosis. It needs to be emphasized that

given the unique nature of bidirectional brain gut interactions, it remains impossible at this

point to determine from published cross sectional studies the causality between observed

alterations in gut microbiota, intestinal function, the brain and IBS symptoms. However,

with the rapidly evolving technologies to characterize the gut microbiome and its metabolic

products, as well as brain signatures which may be related to the dysbiosis, important

breakthroughs in the characterization of the role of the gut microbiota in modulating gut

brain interactions and in the pathophysiology of functional gastrointestinal disorders

(FGIDs) can be expected.
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Clinical evidence for alterations in the gut microbiome in IBS patients

There has been a rapid evolution of analytical techniques to characterize different aspects of

the gut microbiome.22–24 While cultured species represents merely 20–30% of identified gut

phylotypes (dominated by Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria in

the human colon), these techniques remain crucial for investigating microbial diversity and

for the selection of key functional groups.12 Culture independent approaches include 16S

rRNA gene based analyses (identifying which microbes are present in the GI tract),

metagenomic approaches (addressing which microbial genes are present), and

metatranscriptomics, metaproteonomics, and metabolomic techniques (addressing the

functional consequences of the microbiome). Currently published studies in IBS subjects

have used a variety of these techniques12 and Table 1).

Composition and organization of gut microbiota in IBS

Seven studies have evaluated shifts in microbial small bowel community composition in the

upper bowel (summarized in 12, 25) of a total of 314 subjects meeting IBS diagnostic criteria

based on culture results, with two additional studies reporting results from molecular studies

(Table 1).26, 27 A larger number of studies (n=22 in a total of 827 subjects) have reported

significant microbial shifts in fecal microbial community composition between healthy

controls and IBS patients, based on disease subtypes (IBS-D; IBS-C; IBS-M), age (pediatric

versus adult), and compartment (mucosa versus stool).12 Despite a lack of consensus on the

wide range of gut microbial differences between IBS subjects and healthy controls and the

specific microbial changes that may be correlated to disease outcome, some general trends

are starting to emerge as depicted in Table 1. In contrast to culture based studies of small

bowel microbiota where no consistent differences are evident between IBS and controls,

recent molecular based methods of mucosal brushings or luminal aspirates suggest

decreased diversity in small bowel microbiota with increased abundance of gram negative

organisms in IBS.26, 27 Based on analysis of fecal samples, regardless of analytical

methodology used, a number of studies reported decreased relative abundance of the genera

Bifidobacterium and Lactobacillus, and increased Firmicutes:Bacteroidetes ratios at the

phylum level. If these IBS related microbial patterns can be confirmed in future studies, one

may speculate about some of the many possible causes for such changes - stress and diet. As

discussed below, a temporary reduction in lactobacilli has been reported in animal models of

early life stress, which may be related to stress induced changes in intestinal transit.28–30 On

the other hand, Firmicutes is the dominant phylum in adult microbiota consuming a western

diet (high in animal fat and protein), while Bacteroidetes was the dominant phylyum in a

pediatric population consuming a plant fiber based, agrarian diet.31 The dominant genera

within Bacteroidetes may differ since Prevotella was more abundant in an African

population consuming a plant-based diet, whereas Bacteroides was more abundant in a

North American population consuming a different plan-based diet.32 Long-term food

preferences appear to shape enterotypes, which are primarily defined by bacterial genera as

the key principal components. Diet induced shifts have also been reported at the genus level:

Within the phylum Bacteroidetes, individuals on a Western diet have a Bacteroides-enriched

enterotype as opposed to those living on an agrarian diet which have a Prevotella-enriched

enterotype. When viewed together with the reported shifts in gut microbial composition in
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pediatric and adult IBS patients at the phylum level, one could speculate that the findings of

an enhanced Firmicutes: Bacteroidetes ratio may in part be due to factors related to the

typical Western diet.33 However, even though the reported prevalence rates are higher in

some countries consuming Western diets, in particular the US, UK and Italy, few reliable

data are available to support the concept that IBS prevalence differs significantly between

individuals living in countries or cultural settings (urban vs rural) consuming a typical

Western diet and those living on an agrarian type diet.34 The question if dietary habits are

associated with IBS patterns of dysbiosis, should be addressed in future studies.

Unfortunately little work to date has examined the mucosa-associated microbiota in health

or in IBS. In healthy individuals and patients with IBS, the mucosa-associated microbiota

determined from duodenal brushings or rectal biopsies differs from that found in feces.26, 35

These mucosal-fecal microbiota differences have been described as being greater than the

fecal microbial differences between patients with IBS and controls.36, 37 Differences

between microbiota associated with mucosa and those found in feces are likely critical to

understanding the relationship between dysbiosis and IBS because of the closer

communication between signaling systems between mucosa associated microbiota and the

epithelium.2

Widely conflicting reports of microbial dysbiosis exist in IBS and a number of significant

variables likely contribute to theses discrepancies that limit our understanding of the

collective literature. Many clinical studies have used markedly different experimental

approaches to define microbial communities. In many cases there are poorly defined clinical

cohorts, presence of psychological comorbidities, inadequate numbers, and/or lack of repeat

studies in the same patient study population. Generally, there is a lack of temporal stool

sampling that coincides with clinical symptoms, and most studies have not considered

dietary variations or drug use (e.g. antibiotics, proton pump inhibitors) that may directly

influence microbial community composition, or indirectly through alteration of gut motility,

immune activity, or other functions such as mucosal permeability. Furthermore, there is

currently no way to decide if the observed alterations in microbial communities in IBS are a

primary abnormality responsible for IBS related symptoms or if the observed changes are

secondary to IBS related alterations in various gut functions (regional motility, secretion), or

if both of these mechanisms contribute to the persistence of altered bidirectional brain gut

interactions.

Larger and more homogeneous sample sizes, control for differences in physiologic

parameters (e.g., diet, transit, gut permeability, immune status), and stratification of patients

based on greater phenotypic discrimination (e.g., postinfectious, symptom duration, age,

sex) will be necessary to observe reproducible differences between microbial communities

from IBS subjects and healthy control subjects. This is supported by a recent study

demonstrating that two IBS microbial clusters, not related to IBS-D or IBS-C cohorts, show

significant compositional differences to healthy controls, with a third IBS cluster sharing an

identical enterotype with controls.38
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Gut microbiota related metabolites in IBS

Recent studies suggest that significant changes in microbiota related metabolites can occur

without detectable changes in the organizational structure of the gut microbiota39, and that

host genotype (FUT2 gene status) can affect the metabolic response of the gut microbiota to

the diet.40 Despite the central role of the gut microbiota in producing the short chain fatty

acids (SCFAs) butyrate, propionate, and acetate, there is disagreement regarding whether

their fecal concentrations differ between IBS and controls and whether changes in

concentration are related to IBS symptoms.41–45 In addition to reported IBS related

alterations in SCFAs, alterations in other metabolites including choline, taurine and

branched chain fatty acids,42 lysophosphatidylcholine,46 2(3H)-furanone, and volatile

organic metabolites (VOM)47 Esters of SCFAs and cyclohexanecarboxylic acid and its

derivatives were significantly associated with IBS-D, and key VOMs were able to predict a

diagnosis of IBS.46, 47 Inconsistencies among reported studies on microbial metabolites in

IBS likely relate, in part, to such variables as methodology, patient selection and control for

diet and concurrent medications.

Evidence to support a causative role of dysbiosis in IBS symptoms

Even before the recent explosion in knowledge about the gut microbiome and its implication

as a factor in IBS pathophysiology, various dietary modifications have been suggested to

treat IBS symptoms including the traditional (inconsistent) teaching to avoid fiber rich diets

while other recommendations have include the intake of various fiber supplements. Such

decade old treatment recommendations, poorly substantiated by controlled trials, can now be

reevaluated in the context of how such interventions may affect alterations in gut microbiota

in IBS. Of the many dietary recommendations given to IBS patients over the years, the one

that has received most recent attention is the low fermentable substrate diet (low FODMAPs

concept). This diet recommends reduced consumption of foods containing oligosaccharides,

disaccharides, monosaccharides and polyols that are poorly absorbed in the small intestine

and are fermented by gut bacteria in the large intestine. A recently published randomized

controlled trialin IBS patients comparing a FODMAP diet to a regular diet reported a

reduction of IBS symptoms in the FODMAP diet group.48 Whether a similar mechanism

also explains the reported response in IBS to a gluten free diet remains to be determined.49

Prebiotics

There are only four randomized trials (one single blind) of prebiotics in IBS and no

systematic reviews or metaanalyses.50 Given the adverse effects of a high carbohydrate diet,

including one containing fermentable oligosaccharides, disaccharides, monosaccharides, and

polyols (FODMAPs) in some patients with IBS, it is not surprising that high intake of

prebiotics worsened or did not improve symptoms in three studies.51, 52

Probiotics

Based on several meta-analyses probiotics appear to provide some benefit in IBS (Table

2).53 However, these metaanalyses highlight the problems interpreting results from probiotic

studies in IBS. These include inadequate sample size, poor study design (e.g., crossover with

inadequate washout between study periods), inclusion of different IBS subtypes, and the use
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of multiple strains and doses across studies. Ortiz-Lucas et al.54 evaluated 10 studies

adequate for meta-analysis with a focus on the specific organisms potentially effective. A

significant benefit on pain relief was found for B. breve, B. longum, and L. acidophilus

(Table 2).54 No effects on stool frequency or consistency were found.54 Horvath et al.

reviewed three studies of L. rhamnosus in children with IBS and reported a significant

benefit for pain improvement (Table 2).55

Antibiotics

As demonstrated in both preclinical and clinical studies, the gut microbial composition can

be altered by treatment with antibiotics. The best data to evaluate the effect of an antibiotic

on IBS symptoms comes from studies with the non-absorbable antibiotic rifaximin. In a

recent systematic review and metaanalysis on the use of rifaximin in IBS,56 with the primary

outcome improvement in global IBS symptoms, five studies (n=1803) reported an overall

small improvement after treatment (OR = 1.57; 95% CI 1.22 to 2.01) with a NNT of 10.2.56

Using that NNT, rifaximin would be less effective than peppermint oil, psychotherapy,

tricyclic antidepressants, spasmolytics, selective serotonin reuptake inhibitors, and

probiotics based on a review of metaanalyses of treatments for IBS in adults.57 A double

blind, placebo controlled trial of rifaximin in children with pediatric Rome-defined

abdominal pain functional GI disorders (n=75) found no benefit.58 Evidence has been put

forth suggesting that rifaximin works by treating small intestinal bacterial overgrowth

(SIBO) in IBS.59 Although rifaximin is bacteriocidal against a broad array of enteric

pathogens (gram negative/positive, aerobic/anaerobic), two weeks of treatment did not affect

fecal coliform median log counts,60 and other anti-inflammatory mechanisms of actions

have been demonstrated.61

In summary, given the limited data available from high quality randomized clinical trials to

assess the effectiveness of prebiotics, probiotics and antibiotics in IBS patients, published

data and metaanalyses to date suggest that alterations in gut microbiota may play a relatively

small role in generating GI symptoms. However, the interventional data viewed together

with the likely heterogeneity of mechanisms contributing to IBS symptoms, suggest that

subsets of patients with specific microbiota-related alterations (e.g. deficiencies or excesses

of certain microorganisms or metabolites which play a role in causing distinct brain gut

abnormalities) may significantly benefit from specific interventions aimed at normalizing a

particular dysbiotic state. The identification of such patient subsets with distinct patterns of

dysbiosis will require large scale studies in well phenotyped patients with functional GI

disorders.,

Possible causes of dysbiosis in IBS

Enteric infections

Persistence of IBS-like symptoms (so called postinfectious IBS) which has been reported in

a small (8–15%) percentage of patients following an initial episode of documented bacterial

or viral enteric infections supports a possible role of perturbations of the gut microbiome by

pathogens in the development of altered brain gut interactions associated with IBS like

symptoms. Common bacterial causes of traveler’s diarrhea (E. coli, Salmonella and
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Campylobacter) are particularly strongly associated with postinfectious IBS, and both

biological and psychological risk factors have been identified.62 Biological factors include

duration and severity of diarrhea, microbial toxin production, gut pathology and

inflammation. Psychological factors include a high somatization score in affected patients

(e.g. a high number of somatic symptoms the subject has experienced prior to the infection),

trait anxiety, and the presence of a major psychosocial stressor around the time of the

infection. When these factors are viewed together, it is intriguing to speculate that increased

levels of stress related catecholamines in the stool (as observed in animal models of stress)

result in increased virulence of the respective pathogen (reviewed in Rhee, et. al.,2 thereby

increasing the duration and severity of the infection. Such a prolonged infection with or

without additional antibiotic treatment may shift the gut microbiota to an “IBS-prone

enterotypes.” Other possible mechanisms include persistently increased mast cell numbers

and alterations in neuropeptide homeostasis as a result of infection induced enteroendocrine

cell hyperplasia. Increased serotonin containing cells are a hallmark of IBS-D, and increased

serotonin release from such cells is likely to alter signaling within the enteric nervous

system and gut to brain signaling (reviewed in Hughes et al.14).

Antibiotics

Both clinical and published evidence suggest that in some individuals, previous antibiotic

therapy for non-GI related indications may increase the new onset or symptom flare of

existing IBS symptoms,63, 64 and that antibiotic treatment may increase the development of

long term post infectious IBS symptoms.65 However, in contrast to other health problems

that have seen a dramatic recent increase in developed countries and which have been

associated with increased antibiotic use in childhood,66, 67 no such epidemiologic changes in

IBS prevalence have been reported, arguing against a major causative role of antibiotic use

in IBS pathophysiology.

Top down modulation of the gut microbiota by the CNS

CNS modulation of the gastrointestinal tract via the autonomic nervous system (ANS) and

the hypothalamus–pituitary–adrenal (HPA) axis can influence enteric microbiota both

indirectly, via changes in their environment, and directly, via host–enteric microbiota

signaling.(reviewed in 2) Both branches of the ANS have a prominent role in the modulation

of gut functions, such as regional motility, secretion of acid, bicarbonates and mucus,

epithelial fluid handling, gut permeability and mucosal immune response (Fig. 1AB)

(reviewed elsewhere68). The majority of these functions, except for sympathetically and

cortisol mediated immune modulation are affected via sympathetic and parasympathetic

influences on circuits of the enteric nervous system. Regional and global changes in

gastrointestinal transit can have profound effects on the delivery of important nutrients to the

enteric microbiota (such as prebiotics, including resistant starches and certain dietary fibers)

pH, and on the luminal environment in healthy and diseased states. For example, impaired

intestinal transit caused by compromised, migrating motor complexes (a motor pattern

characteristic of the fasting state of the gastrointestinal tract that is under parasympathetic

control), is associated with bacterial overgrowth in the small intestine.69 A reduced number

of giant, migrating contractions in the colon has been reported in slow transit constipation,70

Mayer et al. Page 7

Gastroenterology. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and may play a role in the subset of IBS-C patients with slow transit, while accelerated

intestinal transit, with an increased number of giant, migrating contractions, is seen in many

diarrheal states, including diarrhea-predominant IBS.71 The ANS mediated modulation of

mucus secretion is likely to have important effects on the size and quality of the intestinal

mucus layer, an important habitat for the biofilm, where the majority of the enteric

microbiota reside.72 The ANS also affects epithelial mechanisms involved in immune

activation of the gut, either directly, through modulation of the response of the gut immune

cells (for example, macrophages and mast cells) to luminal bacteria, through secretion of

antimicrobial peptides73 or indirectly, through alteration of the access of luminal bacteria to

gut immunocytes. For example, several preclinical studies have demonstrated that stressful

stimuli can enhance the permeability of the intestinal epithelium, facilitating translocation of

luminal organisms and triggering an immune response in the intestinal mucosa.74–79

Considerable evidence supports a role of stress and its mediators in modulating the gut

microbiome.28, 80, 81 Both pre and postnatal stressors in animal models have been been

shown to modulate the composition and total biomass of the enteric microbiota.28, 30 In

newborn animals, the reported shedding of lactobacilli may have been related to the stress

induced acceleration of intestinal transit, since normal bacterial levels were restored 1 week

after separation.28 In adult mice, a psychosocial stressor decreased the relative abundance of

the genus Bacteroidetes, while increasing the relative abundance of the genus Clostridia.82 It

remains to be determined if the reported reductions in the abundance of Lactobacilli/

Bifidobacteria and Bacteroidetes reported in several preclinical studies and in several IBS

studies (see Table 1) may both be a consequence of stress induced acceleration of intestinal

transit, or other stress system mediated effects on the gut microbiota.

Intraluminal release of neurotransmitters

In addition to CNS-induced changes in the gut environment in which the microbiota reside,

there is a another, neuroendocrine communication system which allows for bidirectional

signaling with the gut microbes, which has been referred to as microbial endocrinology.83

Several signaling molecules used by the host for neuronal and neuroendocrine signaling

(including but not limited to catecholamines, serotonin, dynorphin, and cytokines) may also

be released into the gut lumen by neurons, immune cells, enterochromaffin cells and

possibly, gut microbes themselves, with the CNS likely having an important role in the

release of these molecules.84–86 Of particular interest for mechanisms with potential

relevance for the pathophysiology of a stress sensitive disorder like IBS is the observation

that different types of stressors can result in increased luminal levels of catecholamines,

including norepinephrine.87, 88 Recent evidence suggests that the gut microbiota derived

beta-glucuronidase may also play an important role in the generation of free, e.g.

unconjugated form of norepinephrine.89 It has long been known that some pathogens can

change their proliferative activity in response to exogenous catecholamines in vitro.90 For

example, norepinephrine can stimulate the growth of several strains of enteric pathogens

(reviewed elsewhere88) and magnifies the virulent properties of Campylobacter jejuni.91
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Bottom up modulation of the gut brain axis by IBS related dysbiosis

There are multiple ways, levels, and signaling mechanisms by which gut microbiota can

influence the activity and responsiveness of the gut brain axis, including the brain. Such

influences may occur early in life and affect the development of the nervous system, the

brain gut axis and the HPA axis, or they may occur in the adult organism and modulate fully

developed circuits (reviewed in 5, 8, 9). However, the fact that more review articles, and

reports in the lay press on this topic have appeared in the last 5 years than original articles

confirming many of the initial observations, suggests caution when extrapolating from

existing data to unsubstantiated speculations.

Role of gut microbiota in brain development

A limited number of preclinical studies have demonstrated that the development of brain

mechanisms related to hyperalgesia,7 HPA axis,6 affective behavior17, 18 and associated

brain biochemistry 17 depends on an intact gut microbiome (Table 3). However, as these

observations were obtained in non-physiological conditions (germ-free status) which may

affect specific maternal rodent behaviors which have been shown to be associated with

epigenetic changes in stress related genes92 required for the normal development of the

central nervous system,93 premature conclusions about similar effects occurring in humans

should be avoided.

Role of gut microbiota derived metabolites and signaling molecules in modulating the gut
brain axis in the adult

A number of candidate signaling molecules have been identified by which the gut

microbiota may communicate with the host, including communications of the microbiota

with the enteric nervous system and the brain. Quorum sensing molecules used by microbes

to communicate with each other (including metabolites and neurotransmitter homologues)

have also been shown to be recognized by the host and may influence enteroendocrine,

immune cells, and nerve endings in the gut (reviewed in 2). Metabolites produced by gut

microbes (including short chain fatty acids (SCFA), many neuroactive substances including

GABA, tryptophan, serotonin and catecholamines (reviewed in 94), and metabolites of bile

acids and neurotransmitters), and cytokines released in response microbe host interactions 82

can signal via specific receptors on local cells within the gut, or signal by neurocrine

(afferent vagal pathways) and endocrine mechanisms to long distance targets beyond the GI

tract, including vagal afferents in the portal vein, and the brain. Thus, regardless of the

sequence of events leading to a dysbiotic state in some IBS patients (see preceding section),

the altered microbial community is likely to exert a modulating effect on bidirectional

communication within the gut brain axis. In the following we will highlight a few

metabolites which may have a direct relevance to IBS pathophysiology.

Short chain fatty acids (SCFA)

Fermentable carbohydrates entering the colon are converted to the three primary SCFAs,

acetate, propionate, and butyrate which have been demonstrated to exert a number of

physiologic effects including reducing food intake, improving glucose tolerance, enhancing

lymphocyte and neutrophil function, and activating pathways important in epithelial cell
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signaling.16, 95–99 Recent data, primarily from animal experiments, suggest that SCFA

mediate many of their effects through G-protein-coupled receptors, specifically GPR43,

GPR109A, and GPR41 (for reviews see Bindels et al. and Ganapathy et al.100, 101 Evidence

suggests that signaling through these receptors as well as transport of SCFA by SLC5A8,

and the resultant physiological effects is affected by dietary intake of fermentable fiber 100

Gut microbiota appear capable of regulating gene expression of SCLC5A8 and

GPR109A.102 GPR43 is found in mast cells and may be one mechanism whereby SCFA can

alter serotonin (5-HT) release.103 Most recently, work suggests that GPR41 and GPR43

serve as sensors for SCFA in enteroendocrine cells, but only GPR41 serves this role in

neuronal cells of the submucosal and myenteric ganglia.104 However, despite the potential

relevance of altered SCFAs in IBS pathophysiology, few studies are available to support

such a role based on therapeutic interventions aimed at this signaling mechanism.105, 106

Bile acids

Primary bile acids are biosynthesized in the liver by the oxidation of cholesterol, conjugated

to either glycine or taurine and secreted into the gut via the bile duct. In the gut, glycine and

taurine residues are removed, and some of the bile acids are converted into secondary bile

acids by the gut microbiota. It is conceivable that microbial dysbiosis observed in some IBS

patients may be associated with a shift in microbes that metabolize and conjugate primary

bile acids, as preliminary studies have suggested.107 Bile acids have been proposed to

constitute a primary cause of disease symptoms in approximately 30% of adult IBS-D

patients42, 107 and recent evidence are consistent with a role of bile acids in pediatric IBS-C

patients as well. 108.

Implications/future directions

Despite the exciting new and rapidly growing insights into the interactions of the gut

microbiota with the gut, the enteric nervous system and the brain, the role of alterations in

these interactions in the elusive pathophysiology of IBS remains to be determined. Current

evidence is most supportive of a top down modulation of the gut microbiota by the brain

through the ANS, and possibly the HPA axis. However, these brain induced microbial

alterations may alter the complex signaling of the microbiota to enteric neurons modulating

gut functions (e.g. motility and secretion), and to the brain, modulating back ground

emotions and visceral perception. Carefully designed translational studies in both human

subjects and preclinical models are required to establish the causality of these events.

Combining multimodal brain imaging techniques with detailed characterization of gut

microbioal signaling systems in healthy adult and pediatric subjects, and well phenotyped

patient populations has promise to answer the question what role the gut microbiome plays

in determining brain structure and function. Regardless of the precise causality underlying a

dysbiotic state in IBS, the gut microbiome has become a promising target for therapeutic

interventions.
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Figure 1. Bidirectional brain gut microbial interactions
A. Key components of brain gut microbial axis. A network of specialized target/

transducer cells in the gut wall functions as an interface between the organism and the gut

lumen. In response to external and bodily demands, the brain modulates individual cells

(ECC – enterochromaffin cells; SMC – smooth muscle cells; ICC – interstitial cells of Cajal)

within this network via the branches of the autonomic nervous system (ANS) (sympathetic

and parasympathetic/vagal efferents) and the hypothalamic pituitary adrenal (HPA) axis.

Such modulation can be transient (e.g. in response to transient perturbations) or longlasting

(in response to chronically altered brain output). The microbiota are in constant bidirectional
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communication with this interface via multiple signaling pathways, and this communication

is modulated in response to perturbations of the microbiota, or the brain. The integrated

output of the brain gut microbial interface is transmitted to the brain via multiple afferent

signaling pathways, including endocrine and neurocrine (vagal, spinal afferents) pathways.

While acute alterations in this interoceptive feedback result in transient functional brain

changes, chronic alterations are associated with neuroplastic brain changes.

B. Functional and symptom-related consequences of brain gut microbial interactions.

Several intestinal processes with possible relevance for IBS symptoms can be modulated

both the brain (via the ANS, including its enteric nervous system [ENS] branch) and by

signals from the microbiota. Microbiota generated molecules can signal to the brain

indicrectly via activation of vagal (and possibly spinal) afferent nerve pathways, by

microbiota stimulated cytokine and neurotransmitter release from immune or

enteroendocrine cells, or such signals may reach the brain via an endocrine route.

Microbiota gut brain signaling may contribute to the generation of abdominal pain and

discomfort, while microbiota mediated modulation of enteric reflexes is likely to play a role

in the pathophysiology of altered bowel habits.
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Table 1

Bacterial classification shifts in human IBS

Classification Method Microbiome Shift Study Subjects

Culture

 Bifidobacteria (genus which is part of the phylum
Actinobacteria); Lactobaccili (which are part of the
phylum Firmicutes); Anaerobes

Balsari et al (1982)109 (IBS = 20; Con = 20)
Si et al (2004)110 (IBS = 25; Con = 25)
Mättö et al (2005)111 (IBS = 26; Con = 25)
Carroll et al (2010)112 (IBS-D = 10; Con = 10)

 Enterobacteria; Aerobes

PCR-DGGE/qPCR
 Anaerobes; Lactobaccilli in IBS-D Mättö et al (2005)111 (IBS = 26; Con = 25)

Malinen et al (2005)113 (IBS = 27; Con = 22)
 Aerobes

FISH
 Bifidobacteria Kerckhoffs et al (2009)114 (IBS = 41; Con = 26)

 Firmicutes (phylum which includes Lactobacilli)

Microarray

 Bacteroidetes (phylum which includes the genus
Bacteroides) ; Bifidobacteria

Rajilic-Stojanoovic (2011) 115 (IBS = 62; Con = 42)
Saulnier et al (2011)116 (Pediatric IBS = 22; Con = 22)

 Firmicutes

16S-yrosequencing

 Bacteroidetes; Bifidobacteria; Actinobacteria Krogius-Kurikka et al (2009)117 (IBS-D = 10; Con = 23)
Rajilic-Stojanoovic (2011)115 (IBS = 62; Con = 42)
Saulnier et al (2011)116 (Pediatric IBS = 22; Con = 22)
Jeffery (2012)38 (IBS = 37; Con = 20)

 Firmicutes; Proteobacteria

The table summarizes general bacterial genus and phyla shifts in stool specimens across a range of different classification methods in adult and
pediatric IBS cohorts. Data from 13 (out of a total 22) published reports where there is a general consensus on microbiota composition changes in
IBS are included. qPCR, quantitative polymerase chain reaction; DGGE, denaturing gradient gel electrophoresis; FISH, fluorescence in situ
hybridization.
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Table 2

Meta-analyses of Probiotics in IBS

Author Outcome n Outcome NNT

Ortiz-Lucas 201354 Abdominal pain 862 SMD = −0.24; 95% CI −0.16 to 0.51*

Enck 201057 Global symptoms Dichotomous - 1838 OR = 2.24; 95% CI 1.51 to 2.75 8

Moayyedi 2010118 Global symptoms
Abdominal pain

Dichotomous - 918
Continuous - 1351
Continuous - 834

RR = 0.71; 95% CI0.57 to 0.88
SMD = −0.34; 95% CI −0.06 to −.07
SMD = −0.51; 95% − 0.91 to −0.09

4

Hoveyda 2009119 Global symptoms
Abdominal pain

Dichotomous - 895
Continuous - 657
Dichotomous – 398

OR = 1.6; 95% CI 1.2 to 2.2
SMD = 0.23; 95% CI 0.07 to 0.38
OR = 2.88; 95% CI 1.84 to 4.5

McFarland 2008120 Global symptoms
Abdominal pain

Dichotomous – 1254
Dichotomous - 1039

RR = 0.77; 95% CI 0.62 to 0.94
RR = 0.78; 95% CI 0.69 to 0.88

7.3
8.9

Horvath 201155 Abdominal pain in children treated
with L. rhamnosus No pain or improved pain - 167 RR = 1.7; 95% CI 1.27 to 2.27 4

*
Average of responses to specific organisms

NNT = number needed to treat, SMD = standardized mean difference, RR = relative risk, OR = odds ratio
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Table 3

Reported effects of gut microbiota on brain and behavior in newborn and adult rodents.

Newborn rodents HPA axis response6, 19

Anxiety-like behavior17, 18

Neuroplastic changes in emotion regulation systems17

Inflammation induced somatic hyperalgesia response7

Adult rodents Nociceptive reflexes121–123

Emotional behavior124, 125

Brain neurochemistry124, 125
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