
Real-time compressive sensing spectral domain optical
coherence tomography

Daguang Xu*, Yong Huang, and Jin U. Kang
Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, USA

Abstract

We developed and demonstrated real-time compressive sensing (CS) spectral domain optical

coherence tomography (SD OCT) B-mode imaging at excess of 70 fps. The system was

implemented using a conventional desktop computer architecture having three graphics processing

units (GPUs). This result shows speed gain of 459 and 112 times compared to best CS

implementations based on the MATLAB and C++ respectively and that real-time CS-SDOCT

imaging can finally be realized.

Compressive sensing (CS) [1, 2] has become increasingly important in the field of medical

imaging over the past decade. If data is sparse in some domain that is incoherent to the

measurement domain, CS enables reliable and complete recovery of the signal from

measurements less than that from the Nyquist rate requirement. Applications of CS in the

optical coherence tomography (OCT) imaging have been studied by many groups [3-5] and

have shown that OCT images can be reconstructed from highly under-sampled k-space data.

The less k-space data requirement by CS can facilitate minimal data acquisition, increase

imaging speed and decrease storage and transfer bandwidth needs. However, regardless of

which CS reconstruction algorithm is used, the reconstruction of CS OCT image takes

significantly more time compared to the reconstruction of regular OCT image. This has been

the major hindrance to apply this imaging technique to clinical applications that typically

require either real-time or immediate image reconstruction. In this paper, we propose a

practical method for achieving real-time CS SD-OCT imaging.

To achieve our goal of real-time CS SD-OCT imaging, we adopted massive parallel

processing approach. Parallel computation with graphics processing units (GPU) has long

been recognized as an effective way to accelerate computationally intensive task. CS

reconstruction requires numerous matrix-vector multiplications which can be solved more

efficiently by GPU than by CPU. GPU has been adapted to accelerate the CS reconstruction

of various signals [6-8]. Compared to the CPU implementation, several orders of magnitude

enhancement in speed has been commonly reported for the GPU based CS reconstruction.

© 2013 Optical Society of America
*Corresponding author: dxu5@jhu.edu.

NIH Public Access
Author Manuscript
Opt Lett. Author manuscript; available in PMC 2014 July 29.

Published in final edited form as:
Opt Lett. 2014 January 1; 39(1): 76–79.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

In this paper, we implemented real-time CS reconstruction of the spectral domain OCT (SD

OCT) images on a triple-GPUs architecture. The CS reconstruction algorithm SpaRSA [9] is

programmed through the NVIDIA's Compute Unified Device Architecture (CUDA)

technology [10]. High quality SD OCT images can be reconstructed at>70 frame/s, with the

frame size 2048 (axial)×1000 (lateral) and stopping iteration number 10. Compared to C++

and MATLAB implementations based on CPU, CS reconstruction using the triple-GPUs

architecture achieved speed enhancements of 112 and 459 times respectively.

In CS OCT imaging, the A-scan image, x is obtained with high accuracy from under-

sampled linear-in-wavenumber spectral data, yu by solving the following unconstrained

nonlinear convex optimization problem:

(1)

where W is the sparsifying operator which transforms x to a sparse representation. Fu is the

under-sampled Fourier transform matrix. τ is the regularization parameter that controls the

sparsity of reconstructed A-scan. The notation ‖c‖1 is the l1 norm, which is defined as ‖c‖1 =

Σi|ci| · ‖•‖2 is the l2 norm. In this paper, W is chosen to be the identity matrix because OCT

signals are usually sparse enough in the spatial domain [3, 4].

The selected CS reconstruction algorithm is SpaRSA [9] which can be implemented

efficiently with GPU. SpaRSA tries to solve Eq.(1) through an iterative procedure. In each

iteration, SpaRSA obtains the new iterate xk+1 from the current iterate xk by solving the

following sub problem:

(2)

for some αk > 0. . is the adjoint matrix of Fu. Eq.(2) can

be viewed as the quadratic separable approximation of Eq.(1) (up to a constant) [9]. Eq. (2)

can be solved separately in the component of z :

(3)

for i ∈ [0,1, …N − 1]. N is the length of x. soft(x, a) ≙ max{|x| − a,0}× x / max{|x| − a, 0} is

the complex soft-threshold function.

Inspired by Barzilai and Borwein [11], αk is chosen as the approximation of the Hessian

Fu in [9]:

(4)

where sk = xk − xk−1.

Xu et al. Page 2

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

The computation procedure of the reconstruction of an A-scan on a GPU is shown in Fig. 1.

β is the desired stopping iteration number. k is the current iteration number. I is the sampling

mask corresponding to yu. The procedure in Fig. 1 is different from [9] in that it uses a

different stopping criterion. The reconstruction stops when the desired iteration number is

achieved to avoid data divergence, which will be discussed later.

Each iteration includes the computationally extensive tasks such as one matrix-vector

multiplication each by and Fu for uk. N operations to solve Eq.(3), and two l2 -norm

computation for αk. (Fusk can be obtained from the intermediate values: Fusk = Fuxk −

Fuxk−1). All of these can be solved efficiently through GPU.

Since the reconstructions of CS OCT A-scans are independent of each other, to maximize

the computational power of a single GPU, our approach reconstructs the A-scans in one B-

scan (1000 lines) together instead of sequentially.

Every computation step in Fig.1 is applied to all A-scan data simultaneously. E.g. for each

iteration, instead of computing the αk for one A-scan, our program computes the αk for 1000

A-scans simultaneously. Thus this approach maintains a vector of α whose length is the

number of A-scans. This is different from the case in which one CUDA thread reconstructs

one A-scan, which limits the thread number and does too many computations on one CUDA

core. The under-sampled raw A-scan spectral data are obtained using a common sampling

mask.

The matrix-vector multiplications of Fu and and its efficiency is critical to the speed of

the reconstruction. Although the matrix-matrix multiplication operator in the CUBLAS

library [12] achieves significant acceleration, it is still too slow for achieving real-time

imaging. Inspired by [7], our program takes advantage of the CUFFT library [13]. For every

A-scan, Fuxk is computed in two steps: (1) tk = FFT (xk); (2) under sample tk with I.

 is computed in a similar way: (1) rk = Fuxk − yu; (2) zero-padding rk

according to I, denote the result as tk ; (3) compute the IFFT(tk) . tk has the same length as x

in both cases. This method can be easily adapted to the multiplication of Fu and to the

data of multiple A-scans since CUFFT provides the FFT operator for batch execution of

multiple one-dimensional transform. Experimental results show that our implementation of

the matrix-matrix multiplication is more than 10 times faster than the CUBLAS version

(mainly due to the speed advantage of FFT). For different sampling size (size of yu), the

FFT/IFFT operator is applied to the same size data; thus the sampling rate has little effect on

the reconstruction speed. The proper sampling rate should be chosen to balance the image

quality and input data size. Another benefit of our implementation of the matrix-matrix

multiplication is that instead of the whole sensing matrix, only the one-dimensional

sampling mask (I) is stored in the GPU which is more compact.

l2 -norm operator in the CUBLAS library cannot compute the l2 -norm of multiple A-scan

vectors simultaneously. We wrote a kernel which applies the tree-based reduction in shared

memory, as advocated in reference [14]. Our implementation computes the l2 -norms in Eq.

Xu et al. Page 3

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

(4) of all the A-scans simultaneously and is more than 100 times faster than computing the l2
-norm of the A-scans sequentially using the CUBLAS l2 -norm operator.

The one-dimensional complex soft-threshold function as well as the vector additions/

subtractions can be easily implemented in parallel for multiple A-scan reconstructions on the

GPU.

The stopping criterion in our program is different from that in [9]. The reconstruction of a B-

scan stops when the desired iteration number (β) is achieved. In this way, the reconstruction

time for any B-scan is determined solely by β and is independent of the input data as well as

other parameters. When reconstructing a sequence of B-scans, fixed β will smooth the

reconstruction rate. Besides, when reconstructing multiple A-scans simultaneously,

inconsistent iteration numbers among A-scans are difficult to control and create a significant

number of divergence branches which slows the GPU programs a lot.

Although the reconstructions of the A-scans in a B-scan stop together at β iteration, some A-

scans may converge in less than β iteration while some requires more. The former case does

not influence the reconstruction result or the reconstruction time. The latter case will

degrade the image quality and can either be solved by increasing β or attenuated by using a

sequence of decreasing τ for every iteration [7, 9]. Choosing β is a trade-off between the

reconstruction speed and image quality. According to our experience, setting β to 10-20 is

usually enough for a high-quality reconstruction; however, how to optimize β is still under

study.

The regulation parameter determines the sparsity of the result as well as the image quality.

The performance of SpaRSA generally degrades for smaller τ [7, 9], while larger τ will lead

to better noise reduction and more loss of low-contrast features. As is stated above, better

choice of τ will accelerate the reconstruction process by making the reconstruction converge

in less iteration. How to optimize τ is still an open field in the CS reconstruction of real

signals.

To achieve larger acceleration, we implemented CS reconstruction using three GPUs. The

signal processing flow chart of the triple-GPUs architecture is illustrated in Fig. 2. Four

major threads exist: three for GPU control and one for display. Each GPU is controlled by

one thread which reads the under-sampled data of the next B-scan, subtracts the DC term,

performs CS re-construction, then copy the result to the host computer. The fourth thread

displays the B-scan reconstruction results in the order of the frame number. GPUs with

similar computational power are desired to make the display smooth.

K-space data from an SD OCT system is used to evaluate the program. The system uses a

spectrometer having a 12-bit CMOS line scan camera (EM4, e2v, USA) with 2048 pixels at

70kHz line rate. The light source is a superluminescent laser diode (SLED) with output

power of 10mW and effective bandwidth of 105nm centered at 845nm. The experimental

axial resolution of the system is 4.0 μm in air while the transversal resolution is

approximately 12 μm. All animal studies were conducted in accordance with the Johns

Hopkins University Animal Care and Use Committee Guidelines.

Xu et al. Page 4

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

A workstation with Intel Core i7 CPU (3.6GHz), 16GB RAM, Windows7 64-bit operation

system is used as the host computer which contains three GPUs: GPU-1 (NVIDIA GeForce

GTX 670) with 1344 stream processors, 1GHz processor clock and 2GB global memory;

GPU-2 (NVIDIA Tesla C2075) with 2496 stream processors, 1.15GHz processor clock and

5GB global memory; GPU-3 which is the same as GPU-2.

For comparison, our program is also implemented on the single-GPU architecture (GPU-1)

and dual-GPUs architecture (GPU-2 and GPU-3). The implementation on the single GPU

architecture is similar to that on the triple-GPUs architecture except only one thread for

GPU control exists. The dual-GPUs case has two threads for GPU control. C++ and

MATLAB (version R2013a) implementations on CPU are also compared. They reconstruct

the A-scans sequentially. The speed of our programs is evaluated with the benchmark line

rate test. The same under-sampled data, parameters and algorithm (Fig. 1) are used in the

comparison and the same B-scan results are obtained in all implementations with different

speed. The FFT operator provided by FFTW[15] is used in the C++ implementation while

MATLAB uses its built-in FFT operator. C++ program is not fully optimized (only

compiled with the flag `-O2′) and no parallelization using the CPU-based multi-threading is

applied. GPU programs are optimized with the CUDA Visual Profiler [16].

The under-sampled linear-in-wavenumber data set is obtained by sampling from the original

k-space data set with the pre-generated k-linear sampling mask [4] and stored in the RAM.

This step is not counted in the computation time which is consistent with the desired

practical application in which the under-sampled data will be grabbed from the camera and

stored in the RAM. The starting values are set as x0 = 0 and α0 = 1 for all the A-scans. These

two values do not show obvious influence on the image quality as well as computation time.

We first evaluate all the implementations on the reconstructions of OCT images of an

orange. The sampling rate is 40%. τ = 2.5. The stopping iteration number is 10. The

reconstruction result with 100% samples is provided in Fig. 3(a) as a reference. The CS

reconstruction result is shown in Fig. 3(b). Both cases are averaged on 100 frames. As is

shown by the images, the CS reconstruction result is very close to the reference image. For a

quantitative assessment, the peak signal to noise ratio (PSNR) is computed for both images

with definition PSNR = 10log10(max2(f(x))/var). var is the intensity variance of the selected

background region (the white dash rectangle areas in Figs. 3(a) and 3(b)). f(x) is the B-scan.

The PSNR of Figs. 3(a) and 3(b) are 66.17dB and 75.32dB respectively. The CS

reconstruction achieves 9.15dB better PSNR; it is well known to be good at reducing noise

[3, 5].

The comparison of the line rate versus stopping iteration number for different

implementations is shown in Fig. 3(c). The data were obtained by applying these

implementations to the reconstruction of the orange image. τ = 2.5 and sampling rate is

40%. The speedup of the implementation on the triple-GPUs architecture compared to the

other implementations is illustrated in Fig. 3(d). Speedup is defined as T0/Tt where Tt is the

single B-scan reconstruction time with triple-GPUs and To is that of the other

implementations. The triple-GPUs implementation achieves an average of 459.36, 112.02,

Xu et al. Page 5

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

2.83, and 1.77 times speedup compared to those based on the MATLAB, C++, single-GPU

and dual-GPUs respectively. The data in Figs. 3(c), 3(d) are averaged in 30 runs.

We screen-captured the real-time displayed scenarios from the triple-GPUs implementation,

shown in Media 1. The image frames are rescaled to 512 (axial) ×500 (lateral) pixels to

accommodate the monitor display. The video shows the logarithm of the rescaled B-scan

and no further image processing is applied. The frame rate is 72 fps with stopping iteration

number 10, τ = 2.5 and sampling rate 40%. In this paper, the term “real-time” means that the

reconstruction of CS SD OCT is faster than the camera for data acquisition in the system. By

using a CCD camera with randomly addressable pixels [17, 18], our program can achieve

real-time reconstruction.

Then we test the programs on the OCT images of human skin and mouse cornea. The

screen-captured real-time displayed scenarios from the triple-GPUs implementation are

shown in Media 2 and Media 3 respectively. The image frames are processed in the same

way as Media 1. The frame rate is also 72 fps with stopping iteration number 10, τ = 3.5 and

sampling rate 45%. This shows that the speed of our program is independent of the imaging

object which enables the development of a system that incorporates the CS technique.

To illustrate the influence of the iteration number on the image quality, the PSNR is

computed for the reconstructed images of an orange, human skin and mouse cornea with

different iteration numbers. τ and sampling rate are stated above. The background regions of

the human skin and mouse cornea are selected similarly to that of the orange. PNSR vs.

iteration number for these three samples is displayed in Fig. 3(e). As it shows, the PSNR

usually converges between 10 to 20 iterations; thus setting the stopping iteration number to

10-20 (corresponding to 38-72 fps) is usually enough for a high-quality image.

Fig. 3(f) shows the PSNR versus τ for all three samples. The stopping iteration number is 10

and the sampling rate is stated above. Higher τ results in a better denoising effect and more

loss of low intensity features

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Dr. Dedi Tong for his help in mouse experiments. This work was partially supported by NIH/NIE grant
1R01EY021540-01A1.

References

1. Donoho DL. Compressed Sensing. IEEE Trans Inf Theory. 2006; 52(4):1289–1306.

2. Candes EJ, Romberg J, Tao T. Robust un-certainty principles: Exact signal reconstruction from
highly incomplete frequency information. Inf Theory. 2006; 52(2):489–509.

3. Liu X, Kang JU. Compressive SD-OCT: the application of compressed sensing in spectral domain
optical coherence tomography. Opt Express. 2010; 18(21):22010–22019. [PubMed: 20941102]

Xu et al. Page 6

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

4. Zhang N, Huo T, Wang C, Chen T, Zheng J, Xue P. Compressed sensing with linear-in-
wavenumber sampling in spectral-domain optical coherence tomography. Opt Lett. 2012; 37(15):
3075–3077. [PubMed: 22859090]

5. Xu D, Vaswani N, Huang Y, Kang JU. Modified compressive sensing optical coherence
tomography with noise reduction. Opt Lett. 2012; 37(20):4209–4211. [PubMed: 23073413]

6. Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M. Fast l1-SPIRiT Compressed
Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime.
Medical Imaging, IEEE Transactions on. 2012; 31(6):1250–1262.

7. Lee S, Wright SJ. Implementing Algorithms for Signal and Image Reconstruction on Graphical
Processing Units. Technical Report, University of Wisconsin-Madison. 2008

8. Yang D, Peterson GD, Li H. Compressed sensing and cholesky decomposition on FPGAs and
GPUs. Parallel Computing. 2012; 38(8):421–437.

9. Wright SJ, Nowak R, Figueiredo M. Sparse reconstruction by separable approximation. Signal
Processing IEEE Transactions on. 2009:572479–2493.

10. NVIDIA CUDA C Programming Guide Version 5.0. 2012

11. Barzilai J, Borwein JM. Two-point step size gradient methods. IMA Journal of Numerical
Analysis. 1988; 8:141–148.

12. CUDA CUBLAS Library Version 5.0. 2012

13. CUDA CUBLAS Library Version 5.0. 2012

14. Harris M. Optimizing parallel reduction in CUDA. NVIDIA Dev Tech. 2007

15. Frigo M, Johnson SG. The design and implemen-tation of FFTW3. Proc IEEE. 2005; 93:216–231.

16. CUDA CUBLAS Library Version 5.0. 2012

17. Potter SM, Mart A, Pine J. High-speed CCD movie camera with random pixel selection for
neurobiology research. Proc SPIE. 1997; 2869:243253.

18. Monacos SP, Lam RK, Portillo AA, Ortiz GG. Design of an event-driven random-assess-
windowing CCD-based camera. Proc SPIE. 2003; 4975:115.

Xu et al. Page 7

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 1. computation procedure of an A-scan

Xu et al. Page 8

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 2. triple-GPUs architecture

Xu et al. Page 9

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 3.
(a) original OCT image of an orange: (b) CS re construction result; (c) line rate vs iteration

number; (d) speedup vs iteration number; (e) PSNR vs iteration number; (f) PSNR. vs τ. The

scale bars in (a) and (b) represent 100um.

Xu et al. Page 10

Opt Lett. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

