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ABSTRACT When an unusually high frequency of an allele
is encountered in a population, "founder effect" is often invoked
as an explanation. As usually used, the term implies the dis-
proportionate increase through chance (rather than selection)
of an allele contributed to the population by a particular an-
cestor. While genetic theory leaves no doubt this is a possible
explanation, Problems arise when we try to determine how
likely this explanation is for any specific finding in any specific,
finite population, i.e., just how rare is this rare event? In this
communication we consider the question in the context of
Amerindian tribal populations, deriving specific probabilities
under defined conditions. Our interest in the question has been
whetted by the finding to date of some eight possible examples
of a founder effect in studies of twelve different tribes.

two-parameter-geometric form, and show that the relationship
between the t-generation parameters Rt, Gt, Mt, and Wt and
their single-generation equivalents r1, ct, mi, and w1 are given
by

Mt = II mi,
1

1 =1+ ± -I--, nd
-Rt j=1 (1 - rj)MIa
Wt = Mt = 1

(1 - Rt) (1 -Gt)

[5]

Branching process model for rare variants
A number of genetic variants whose distributions are restricted
to single tribes have been found in Amerindian populations (1).
Some of these have attained allele frequencies greater than 0.01,
i.e., polymorphic frequencies, and thereby raise the question
of what demographic and genetic forces can account for this
finding. Although most models for allelic variability in popu-
lations consider allele frequencies in a population of constant
size, for rare variant alleles a branching process model for the
number of replicate copies seems more appropriate. Such
models have been considered by, amongst others, Fisher (2) and
Karlin and MacGregor (3). Here we consider an extension of
the model used by Thompson (4, 5) in estimating the age and
rate of increase of a rare variant allele.
We shall assume that at generation j the number of replicate

copies, k, produced independently by any given variant gene
in the current generation has probability distribution

pW(k)f1k 0[1
(I -r,)(1C,)cjk-l k 1, 2,...

This is the two-parameter geometric distribution parameterized
as in Keiding and Nielsen (6). The parameter r1 is the proba-
bility of immediate extinction of any given gene, and cj is the
geometric parameter. The mean number of replicates 1ro-
duced, mi, is given by

m; = (1 -rj)/(1-cA [21
the mean conditional on a non-zero number of replicates, wt,
is

Wj = 1/(1 -C), [3]

and the variance vj is given by

v1 + mr2 = m; (1 + c)= mj(2wj-1). [4]
(1 c1)

Under single-generation distributions of the form [1], Keiding
and Nielsen (6) note that the cumulative distribution for the
number of replicate copies after t generations is also of the

In the special case m1 = m and c; = c for all j, the formulae 5
reduce to those of Thompson (4):

Mt= Mt Rt = ((m - 1)(1 -()/c) + (int-1)) [6]

We shall be interested in the possibility of variants becoming
replicated in large numbers. At t generations the probability
of k replicates is

Pt(k) = (1 - Rt)(1 - Gt)Gtk-l k = 1, 2,...

and the probability of more than k replicates is thus

Qt(k) = E: Pt(i) = (1 - Rt)Gk (1-R) (1-W1).

[7]
In a series of studies, our associates and ourselves have doc-

umented eight instances in which the members of a tribe of
South American indians, or of several closely related tribes,
possess apparently unique alleles in frequencies greater than
0.01, i.e., "private" genetic polymorphisms (1). The variant
allees- responsible for these polymorphisms must necessarily
be old, and over long periods of time a tribe will not have en-
joyed a constant rate of growth. An important aspect of the
problem is thus of the effect of fluctuations in the parameter
m1 on the survival probability of a variant allele. The offspring
distribution has two independent parameters, most conve-
niently taken as mj and c1; the parameter cy defines the off-
spring distribution conditional on a non-zero number of repli-
cates. We have therefore considered the effect of varying the
growth rate m1 over a population's history, subject to a constant
value of c1. The probability of immediate extinction r1 and the
second moment (v1 + min2) therefore change linearly with
changes in mj (Eqs. 2 and 4).

In practice we estimate the current number of replicates of
a variant allele in the adult generation. The parameters there-
fore relate to the distribution of gene copies in the adult gen-
eration resulting from a single gene in an adult of the previous
generation. The variants are of course carried in diploid indi-
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Table 1. Simulation and expected fates of 280 genes whose
possessors were aged initially 10-19 years

No. of Simulation Expected (c = 0.40)
copies Run 1 Run 2 m = 1 m = 1.05 m = 1.1 m = 1.15

0 247 231 256.0 243.6 228.5 211.3
1-50 28 40 23.7 34.6 44.8 50.5

51-100 4 9 0.3 1.7 5.7 13.4
>100 1 0 0.1 1.0 4.8

viduals, and a basic assumption of a branching process model
is that the allele frequency is sufficiently low for there to be few
homozygotes. In this case the parameters for a geometric dis-
tribution of diploid offspring may be related to those for variant
replicates, and hence family size data may be used to estimate
the required parameters. Thompson (4) estimated c = 0.40 from
data on family size.
The geometric offspring distribution has the convenient

property that the form is unaltered by incorporating a phase
of random survival. If variant alleles survive from birth to ad-
ulthood with probability q, and the distribution of replicates
born to each adult is geometric with parameters m and c, then
the birth-to-birth distribution is geometric with parameters m'
= qm and c' = c and the adult-to-adult distribution has m" =

qm and c" = cq/(l-c + cq). Thus,

CIa Cf
M/' =m" and ,,C'= q*I-C, [8]

New variants arise, of course, in newborn individuals, but must
survive to adulthood in the initial generation if they are to be-
come replicated in large numbers. The ratio of new variants
arising to those reaching adulthood is l:q, and the counts of
variant replicates at birth and in adults in the current generation
must be in the same ratio.

Some results from simulation

In addition to the derivation of founder-effect probabilities on
the basis of the above mathematical model, the question has also
been approached through computer simulation of an Amer-
indian tribe. The details of the simulation have been described
by Li et al. (7). The simulation, modeled after the observed
demographic parameters of an Amerindian tribe studied in
some detail, the Yanomama, allows us to follow the fate of the
population for some 400 years. Each member of the founding
population of 451 persons, distributed among four villages, is
assigned at the outset four pairs of genes uniquely identified
by numbers, each pair consisting of one odd- and one even-

numbered allele. All alleles were assigned the same survival
value.

First we consider the fate over the 16 generations encom-

passed by the simulation of alleles carried by subadults and
young adults. These are defined as individuals aged 10-19
years; there are 70 such individuals in the initial population.
They have survived the relatively high mortality of infancy and
childhood and are now in a period of relatively low mortality
(8). We ask how many of the odd-numbered alleles present in
each of these individuals survive the 16 generations and in what
numbers are the survivors represented? The results are shown
in Table 1. Because the fates of the four odd-numbered alleles
of a single individual are not independent, the 280 entries of
Table 1 cannot be considered as independent trials.

Table 2. Probability of a rare variant exceeding the given
number of replicates at the given generation*

No. of copies
m t >0 >100 >400 >1000

Simulation c = 0.67
0.98 16 0.0242 0.0372 0.0719 0.01613

100 0.0013 0.0339 0.0411 0.0880
400 0.0514 0.0648 0.0720 0.01032

1.0 16 0.0296 0.0215 0.0618 0.01427
100 0.0049 0.0230 0.0369 0.0438
400 0.0012 0.0211 0.0375 0.0336

1.05 16 0.0441 0.0257 0.0413 0.01061
100 0.0246 0.0241 0.0228 0.0204
400 0.0244 0.0244 0.0244 0.0244

1.1 16 0.0615 0.0160 0.0328 0.0787
100 0.0487 0.0487 0.0487 0.0486
400 0.0487 0.0487 0.0487 0.0487

Adult-to-adult c = 0.40
1.0 16 0.0857 0.0411 0.01623 0.0

100 0.0148 0.0233 0.0438 0.0851
400 0.0037 0.0226 0.0384 0.0488

1.05 16 0.1302 0.0328 0.01127 0.02726
100 0.0755 0.0713 0.0600 0.0425
400 0.0750 0.0750 0.0750 0.0750

1.1 16 0.1840 0.0231 0.0715 0.01832
100 0.1500 0.1498 0.1494 0.1484
400 0.1500 0.1500 0.1500 0.1500

* Computed from Eqs. 6 and 7.

It is of interest to contrast this "observation" with theoretical
prediction based on Eq. 6 for the case of c = 0.40 and constant
m. The comparison is not entirely appropriate since the theo-
retical formulation assumes a cohort of individuals immediately
prior to reproduction, whereas some members of the simulation
cohort will die before that time. However, as shown in Table
1, the agreement is good at m = 1.1 and 1.05. These values of
m are consistent with recent Yanomama history (8), but it is
impossible to state how long such values have obtained.
A second question is of the fate in the simulation population

of a mutant allele introduced into a newborn infant. There were
177 instances in which among the offspring born to a couple
in the first generation, a single copy of a given gene was trans-
mitted. This was considered equivalent to the introduction of
a mutant into a newborn child. Each of these alleles was then
followed until its extinction or the completion of the 400-year
run. Maximum likelihood estimation of the parameters of the
offspring distribution, on the assumption that these were con-
stant, yielded c = 0.6723 and m = 0.9779.

At the completion of generation 16 there were four surviving
mutants, none represented by more than 50 copies. Prediction
from Eq. 6 with the above c and m was of survival of a pro-
portion 0.0226 of such mutants, none (to 9 decimal places) to
exceed 50 copies in number. The agreement between obser-
vation and prediction is satisfactory, and we have therefore
proceeded to consider the probabilities generated by the
mathematical formulation over much longer periods of time
and therefore for larger numbers of replicate copies (Table
2).
We note that an adult-to-adult c of 0.40 and a birth-to-birth

value of 0.67 implies, from Eq. 8, a birth-to-adult survival, q,
of approximately 1/3. Neel and Weiss (8) give values of 0.34
and 0.36 for female and male survival probabilities, respec-
tively, to the midreproductive period.
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Demographic expansion and founder effect
At certain times in its history, for example, following its entry
into new territQry, an Indian tribe may be expected to enjoy a
period of rapid expansion. This may often be followed by a long
period of relatively constant size. Consider a single gene at the
beginning of the expansion period of t generations, which is to
be characterized by cumulative parameters M, R, and W =
M/(1 -R) in the notation of the first section, and suppose the
second period gives rise to parameters M*, R*, and W*. If g(Z)
is the generating function for numbers of replicates produced
from a single initial gene over the first period, then g(Z) = R
+ (1 - R)Z/(W - (W - 1)Z). The overall generating function
over both periods is g(g*(Z)), in which g*(Z) = R* + (1 -
R*)Z/(W*- (W* - 1)Z) is the generating function over the
second period.

Hence, the overall mean is given by

M** = [g(g*(Z))]z=1 = MM*6Z
and the overall extinction probability is given by

R** =g(g*(O)) =g(R*) = R + (W- (W- ))R*)

If D = 1 - R and D* = 1 - R* are survival probabilities over
the two periods, the net survival is given by

D**=1-R** = D Ii(1-(W-(W- D*)
I(W - (W - 1)(1 - D)

For a period of rapid population expansion followed by a long
period of approximately constant size,

M*t1, D*tO,andD** fDWD* =MD*. [10]

That is, the survival probability is increased precisely to the
extent of the initial population expansion. Although a period
of rapid expansion will thus considerably enhance the survival
probability of any variant arising at its commencement, and
may be the explanation of many of the observed cases of
founder effect, we shall see that such an expansion has little
effect on the total number of variants we expect to see repli-
cated in large numbers (see ref. 9).

Rather than, or in addition to, a single period of expansion,
a plausible model for the long-term history of a tribe is of a
gradual expansion punctuated by periodic sharp reverses (ep-
idemics or famine). We shall assume that between reverses the
natural rate of population increase is m (21) and that at every
L generations there is a crash, providing an overall expectation
of constant population size. Thus, if generation j is not a "di-
saster" generation, we have m1 = m, c1 = c, and r1 = r, in which
(1 - r) = m(1 - c), but when it does experience a precipitous
population decline mj = (1/m)L-1, c1 = c, and thus rJ = 1 -
(1-r)/mL.
We consider a variant that arose t generations ago, gi gen-

erations before a population reverse, and assume the state of
the population is now g2 generations since a reverse. Thus, t =
gl + (f -1 )L + g9 for some positive integer f. Then substi-
tuting in Eq. 5 we obtain

Mt = Mg1+g2-L and

1 -Rt = 1 +l f (ml-(I-())
+(m -1)(1-r)m 2 (J- 1)(mLl- 1)

+ Mgl-l - 1 + mLl -ML--g21. [11]

Table 3. Number of generations before the next reverse, gj, at
which a variant must arise in a cycle length L, to have at least the
same survival probability as in a constant (m = 1) population

(c = 0.40)

m L=10 L=20 L=40

1.01 6 11 22
1.02 6 11 22
1.05 6 12 24
1.08 6 12 26
1.10 6 13 27
1.15 6 13 29

If the variant has undergone an exact number of cycles, then
g1 + g9 = L, Mt = 1, and

1 +f(mL-1)(r+m-1)
(I1-Rt) (1 -r)(m -l)m91-

Hence

Wt Mt +11 fc(mL -1)
(1 -Rt) (1 -Rt) (I1-c)(m -l)m91-1

[12]
Recalling that Rt is the probability of extinction of the variant

before age t and Wt is the expected number of replicates con-
ditional on nonextinction, we see that the effect of a variant
arising early in a cycle is to increase survival probability but
decrease expected numbers conditional on survival according
to the factor mg'l- in Eq. 12. The effect of cycles generally is
to decrease survival probability and to increase expected
numbers, except for those variants arising early in the cycle,
since for given L, (mL -1)/(m - 1) is an increasing function
of m. Table 3 shows at what points in the cycle a variant must
arise to have the same survival probability as in a constant (m
= 1) population. We note also that the expected numbers
generated by Eq. 12 are linear in f, the number of cycles
elapsed.

As described in the section Some results from simulation,
Table 2 gives the probabilities of a variant being present in a
population with more than a given number of copies at a given
generation, assuming a constant value of m. The way in which
these values would be modified by a superimposed cyclic pat-
tern has been discussed, but we should consider also the actual
numerical values of these probabilities. Table 2 gives the
probabilities at three epochs. The first (16 generations) corre-
sponds to the simulation. The last (400 generations) is a period
of approximately 10,000 years, which we take to be an upper
bound on the age of a variant arising since the differentiation
of the current South American tribes. One hundred generations
provides a convenient intermediate point. With respect to the
number of copies, more than 0 copies is simply survival, whereas
more than 100 would correspond in most tribes to a well-es-
tablished private polymorphism. A number in excess of 1000
is an attribute of presumably very old polymorphisms, thus far
encountered only twice in Amerindians, and must be an ex-
treme value for any variant restricted to a single tribe.
Two values of c have been considered, one corresponding to

the birth-to-birth distribution (c = 0.67 from simulation) and
one to the adult-to-adult distribution (c = 0.40), the difference
being given by a birth-to-adult survival rate of approximately
'A. Table 2 shows that, as expected, survival of a mutant is
greatly enhanced by its introduction into an adult migrating
into the population, rather than into a newborn, but that it re-
quires a longer period before the number of replicates in adults

Proc. Natl. Acad. Sci. USA 75 (1978)



Proc. Nati. Acad. Sci. USA 75 (1978) 1445

reaches large numbers, both effects resulting from the high
prereproductive mortality.

Theoretically there is a marked difference between the case
of an expanding (m > 1) and a stable or declining population
(m < 1). In the former case there is a non-zero probability of
ultimate survival, and probabilities of exceeding any given
value increase to this limit. It is not possible, of course, that
Amerindian tribes could increase at a rate of m = 1.1 or even
1.05 for 400 generations (these values are given only for com-
pleteness), but we see that even in 16 generations 1.5% of new
mutants will exceed 100 copies if m = 1.1. However, the
probability within this period of large numbers of replicates is
small. An average m value of 1.0 could, of course, be main-
tained over long periods. In this case the population (and hence
all variants) must eventually become extinct, and the proba-
bility of exceeding any specified number of copies will attain
a maximum before decreasing to zero. (This is an inevitable
feature of a branching process model.) Note that at 100 gen-
erations 3 in 1000 variants will exceed 100 copies, while at 400
generations only 1 in 1000 will do so, but in the latter case over
1/3 of those exceeding 100 copies also exceed 1000, while in the
former only 1 in 79 does so.

Conclusions
In tribal populations with relatively high prereproductive
mortalities, the probability that any specific variant will ever
attain very large numbers of replicates is small, though in a
population expanding rapidly over a short period some variants
may relatively quickly attain polymorphic frequencies. In such
a population a variant introduced by a migrating adult has a
much higher survival probability than a mutation arising in a

newborn, but if the tally is from adult-to-adult a corre-
spondingly longer period is required before a given number of
replicates can be attained. A cyclic pattern of population in-
crease can also considerably enhance survival probabilities for
mutants arising at certain points in the cycle, and the demo-
graphic history of a population is thus an important factor in
assessing the probability that variants will become replicated
in large numbers.
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