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Large-scale phenotyping of multicellular organisms is one of the current challenges in biology. We present a comprehensive
and scalable pipeline that allows for the efficient phenotyping of root growth traits on a large scale. This includes a high-
resolution, low-cost acquisition setup as well as the automated image processing software BRAT. We assess the performance
of this pipeline in Arabidopsis thaliana under multiple growth conditions and show its utility by performing genome-wide
association studies on 16 root growth traits quantified by BRAT each day during a 5-d time-course experiment. The most
significantly associated genome region for root growth rate is a locus encoding a calcium sensing receptor. We find that loss
of function and overexpression of this gene can significantly alter root growth in a growth condition dependent manner and
that the minor natural allele of the Calcium Sensor Receptor locus is highly significantly enriched in populations in coastal
areas, demonstrating the power of our approach to identify regulators of root growth that might have adaptive relevance.

INTRODUCTION

One of the ultimate aims in the biological sciences is to relate
genotype to phenotype. While recent years have yielded a plethora
of genome sequences, the systematic quantification of complex
phenotypes in multicellular organisms, such as those related to
growth and development, remains a tremendous challenge. The
model plant Arabidopsis thaliana is highly suitable for quantifica-
tion of growth-related traits since growth occurs continuously
throughout the lifespan of the organism. It is amenable to highly
efficient transgenic approaches (Lloyd et al., 1986; Clough and
Bent, 1998), has large mutant collections (Alonso et al., 2003), and
many isogenic strains of diverse geographic origin (accessions)
that are sequenced or densely genotyped are available to the
community (Horton et al., 2012), providing a powerful toolbox to
study genotype to phenotype relations (Atwell et al., 2010). In
particular, the Arabidopsis root is a model that promises to fa-
cilitate a systems-level understanding of genotype-to-phenotype
relations due to a unique collection of functional genomics re-
sources at the level of cell types and for multiple growth condi-
tions (Brady et al., 2007, 2011; Dinneny et al., 2008; Iyer-Pascuzzi
et al., 2011; Breakfield et al., 2012; Petricka et al., 2012). What is
currently needed is the ability to accurately assess root phenotypes
of large populations of genetically distinct roots in order to system-
atically quantify the phenotypic consequences of different geno-
types. However, while root growth traits have been quantified in

many laboratories, available phenotyping tools are not optimal for
the quantification of root traits of large populations. One limitation is
that the production of high-quality images is technologically chal-
lenging and often requires significant investments. Additionally,
while a diverse set of software solutions exists to computationally
extract traits from such images (for a comprehensive collection,
see http://www.plant-image-analysis.org/), most existing root
analysis software requires interactive user input, thus impeding the
ability to scale up and thereby limiting the numbers of roots that
can be quantified. What is thus missing to make high-throughput
root growth analyses widely tractable are efficient, easily usable,
and low-cost tools to acquire high-quality root image data paired
with largely automated image processing and analysis tools.
We developed a cost-efficient phenotyping system for Arabi-

dopsis roots that enables scalable image acquisition and pro-
cessing, as well as storing of positional information of plant
genotypes and automated annotation of multiple genotypes per
plate, and that can be easily set up in other laboratories. Here, we
describe its setup and evaluate its performance to produce and
process a large data set as well as its robustness toward different
growth conditions. Moreover, we show its utility by performing
genome-wide association (GWA) mapping on all quantified traits
for a time course of 5 d. Finally, we evaluate a biological role of
the candidate gene exhibiting the most significant association for
a root growth rate trait. We find that genetic perturbation of this
calcium sensor gene results in significant alterations of root
growth and provide evidence for an adaptive significance of allelic
variation at this locus for growth in coastal environments.

RESULTS

The pipeline starts with the acquisition of images of agar plates by
a flatbed scanner cluster (Figure 1). These plates should contain
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seedlings grown with even distribution across the agar surface
(Figure 2A). A graphical user interface (GUI) enables untrained users
to operate the flatbed scanner cluster and allows for automatic
naming of output images. Using eight scanners for 16 plates con-
taining 384 individuals, we could acquire images with a resolution of
1200 dpi, which is equivalent to a theoretical resolution of;21 mm/
pixel. One such acquisition round takes 372 s and results in images
containing 576 megapixels (MP). The imaging capacity of the
scanner cluster can be easily increased by the addition of more
scanners. Unlike most camera-based setups, the optical path in
flatbed scanners is fixed, alleviating the need for calibrations and

allowing the direct conversion of length units. Additionally, this
setup is very cost efficient, currently requiring a lower investment
than a single 40-MP CCD camera (without objective) that can only
capture a single plate with 24 seedlings at a resolution equivalent to
1200 dpi.
The scanner cluster allows a single researcher to capture

images of thousands of individual roots in one day. To quantify
multiple root traits from all roots contained in such a large number
of images, we designed a software package called BRAT (Busch-
lab Root Analysis Toolchain). We integrated BRAT as a plug-in in
the platform-independent, open source framework Fiji (Schindelin

Figure 1. Multi-CCD Flatbed Scanner Cluster and the Image Acquisition Tool.

(A) Eight Epson Perfection V600 photo scanners are used in parallel to provide high-throughput image acquisition. The scanners are operated by
a single control unit.
(B) Plate position is fixed with support frames.
(C) To improve contrast, the scans are done in a dark room with the scanner lid open.
(D) Screenshot of the software controlling parallel image acquisition.
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Figure 2. Overview of BRAT Pipeline.

(A) Whole plate image. Highlighted area corresponds to magnification shown in (B). Bar = 1 cm.
(B) Segmented roots superimposed on the original image. Bar = 1 cm.
(C) Flowchart of BRAT workflow.
(D) Anatomy of a 3-d-old Arabidopsis seedling.
(E) BRAT performance in supervised mode.
(F) BRAT performance in unsupervised mode.
FN, false negatives; TP, true positives; FP, false positives; N, total number of objects.
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et al., 2012). It can be run on a personal computer or workstation
as well as on powerful computer clusters. Image analysis using
BRAT involves a fully automated pipeline that processes all image
files in a specified directory. In the case of time series, the images
of the plates are aligned using a scale invariant feature transform
algorithm (Lowe, 2004) to align the images of the same plate that
were acquired at different time points. The aligned images are
then cropped based on detection of the plate borders (Supplemental
Figure 1). A binary image is created using a threshold calculated
by background area sampling at the center of the plate. Regions
of interest (ROIs; foreground objects, which are all potential
seedlings on the plate) are identified using a marching squares
algorithm (Lorensen and Cline, 1987). To exclude non-plant ob-
jects and, thus, only identify plants, a two-step process is used
based on the assumptions that (1) shoots (i.e., the hypocotyl and
cotyledons) are the only large green objects on the image and (2)
a root always belongs to a shoot (Supplemental Figure 2). The
border of the shoot serves as an estimate for the detection of
hypocotyl/root transition. These steps essentially create a virtual
model of each seedling on the plate. Importantly, the plant de-
tection is not dependent on the growth directions of the plant to
allow for the detection and quantification of agravitropic roots.
From these data, 16 traits related to root length, width, and topol-
ogy features of each root object are calculated for each image of
the time series (Table 1). Once the image processing is com-
pleted, a GUI enables the user to assign genotypes for each root
using a genotype layout file (Supplemental Table 1) and to conduct

unsupervised or supervised quality control (QC). The unsu-
pervised QC requires only the specification of the pattern used
to plant the seeds and excludes objects that are identified at
locations offset from the pattern, as well as root objects that
display a negative growth rate. As an alternative option, the su-
pervised quality control interface allows a user to check the
segmentation of all root images using a GUI and to reject in-
correctly segmented roots, roots of insufficient quality (e.g., roots
grown into the agar or partially covered by leaves), or non-root
objects that were erroneously classified as roots. The supervised
QC-GUI was designed for efficiency, speed, and portability,
providing the user with a side-by-side view of the original and
segmented images and methods for quick confirmation of cor-
rectly segmented roots (Supplemental Figure 3). QC tasks can
potentially be distributed to multiple individuals.
BRAT automatically generates multiple text files containing

trait values that can be used in text editors or spreadsheet
applications such as MS Excel or can be imported into data-
bases. One text file contains trait values for individual plants at
each time point, a second file trait values for plants over time,
and a third file summary statistics for all traits for each genotype
such as mean, median, and SD of traits. In total, 16 traits related
to the primary root are quantified by BRAT (Table 1), including
root length and growth rate (in case of time series), root width
(equivalent to root diameter) in multiple intervals of the root
length, and root growth direction and gravitropism-related traits.
While the resolution of the input images is generally not a limiting

Table 1. 16 Traits Extracted and Evaluated by BRAT

Trait No. Trait Definition

1 Total length Path length calculated along the primary root
2 Euclidian length Length of the primary root vector
3 Root tortuosity Total root length divided by Euclidian length
4 Root growth rate Difference in total root lengths on two subsequent time

points
5 Relative root growth rate Root growth rate divided by total length at the earlier time

point
6 Root angle Angle between root vector and the vertical axis of the

picture (assumed vector of gravity) (°)
7 Root direction index Score for average pixel-by-pixel deviations from growth

relative to vector of gravity (see Supplemental Figure 14
for detailed description).

8 Root horizontal index SD of the primary root skeleton in horizontal dimension
9 Root vertical index SD of the primary root skeleton in vertical dimension

10 Root linearity Coefficient of linear determination; R2 of linear regression
line fitted to pixels of primary root skeleton

11 Average root width Average width over the primary root length
12 Root width 20 Average width over first interval of the primary root length

(0 to 20%) at hypocotyl/root junction
13 Root width 40 Average width over second interval of the primary root

length (20 to 40%)
14 Root width 60 Average width over third interval of the primary root length

(40 to 60%)
15 Root width 80 Average width over fourth interval of the primary root

length (60 to 80%)
16 Root width 100 Average width over fifth interval of the primary root length

(80 to 100%) at the root tip
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factor in the measurement of root length and root growth
direction-related traits (these measurements are usually based
on thousands of pixels), root width assessment is close to the
resolution limit of the images that we acquire. However, we
reasoned that by integrating many width estimations along the
longitudinal axis of the root, the average of these statistically
dispersed points would give an accurate estimate of the true
average root width. To not occlude deviations of root width that
occur in larger areas of the root, BRAT measures root width in
five intervals along the longitudinal axis of the root. To assess
whether the BRAT estimation of root width is accurate, we
measured the width of at least 15 individuals in 10 accessions
with BRAT and used the same individuals to conduct confocal
microscopy (Supplemental Figure 4), which we consider the
gold standard for quantifying root width. While the width mea-
surements of the individuals were moderately correlated between
BRAT and confocal microscopy (Pearson’s r = 0.52; Supplemental
Figure 4A), when considering the averages of the accessions, the
correlation dramatically increased (Pearson’s r = 0.95; Supplemental
Figure 4B). The variation at the level of the individuals is most likely
due to a mixture of technical measurement errors and biological
variation. Nevertheless, our data clearly show that the estimation of
average root width of an isogenic population of plants using BRAT
is very accurate, while estimating the width of individual plants will
result in significantly more variation. While this approach will not
capture small important local artifacts that are of clear importance in
older and more complex root systems (Ryser, 2006; Pierret et al.,
2013), our data show that BRAT is very suitable to measure root
diameter of young primary roots for comparing population averages
of plants that are genetically different and/or grow in different
conditions.

BRAT is designed to allow for high-throughput phenotyping of
early root growth and development. Highly relevant parameters for
high-throughput phenotyping are computing time and, most im-
portantly, the time required for user interaction. We therefore
compared the performance of BRAT regarding these parameters
with the popular published root analysis software tools EZ-Rhizo
(Armengaud et al., 2009), RootTrace (French et al., 2009), SmartRoot
(Lobet et al., 2011), and RootReader2D (Clark et al., 2013). We
conducted this comparison in two common scenarios for quan-
titative large-scale data acquisition. The first scenario is that
multiple individuals with the same genotype are quantified. Here,
outliers due to wrong segmentation of images are acceptable if
the trait median is used. The second scenario represents appli-
cations in which isogenic replicates are not available and thus
require high precision. We measured computation time and
human time input required for these two cases on a set of five
plates imaged over 5 d. We then inferred the times for the set of
19,560 single root images that we used for a genome-wide
association study (see below). For the first scenario (multiple
replicates are available; some false positives are acceptable),
BRAT can be employed in unsupervised mode. While the other
analysis software tools would require 32 to 147 h (Supplemental
Table 2) on a standard desktop computer, only 11 h would be
required with BRAT. However, on a cluster with at least 163
nodes, BRAT would process the data in <7 min, while the other
applications cannot be run on a cluster because they require
user interactions. For scenario 2, additional quality control for

BRAT (supervised mode) would add ;21 h of human input,
totaling up to 32 h on a desktop computer or less than 22 h on
a 163-node cluster (one node per time series). Thus, taken to-
gether and compared with other approaches, BRAT processing
in unsupervised mode potentially speeds up image analyses of
roots on our test set by more than two orders of magnitude (278
times faster if run on a 163 node cluster), and even if used in
supervised mode it can achieve a substantial reduction of costly
human work time (22 versus 32 h on our data set).
Software solutions that rely on user input to identify roots and

check the segmentation are only prone to human error. To allow for
high throughput and for the use of computer cluster infrastructure,
BRAT uncouples user input from processing and is thus prone to
additional errors. To assess this, we measured the false-negative
rate (proportion of potential roots not quantified) and the false-
positive rate (proportion of roots falsely quantified or assigned
a wrong label) on a test set sufficient for genome wide association
mapping (3912 seeds of 163 accessions planted and imaged once
daily for 5 d totaling 19,560 potential root images). The false-
negative rate using BRAT was 21% using the supervised approach
and 25% when employing BRAT in unsupervised mode (Figures
2E and 2F). We note that these numbers rather underestimate the
performance of BRAT as some of the false negatives might simply
be due to nongerminated plants or plants deemed as insufficient
samples for technical reasons (e.g., if the agar was pierced when
planting the seed). While all false positives can be excluded in the
supervised mode, the false-positive rate under regular growth
conditions using BRAT in unsupervised mode was 14% (Figure
2F). We also tested the robustness of BRAT’s performance in
stress conditions or severe chemical perturbation of root growth
on a set of 96 root images (Figure 3). For all tested conditions
(including control conditions), the false-negative rate of BRAT in
supervised mode ranged between 5 and 18% and in unsupervised
mode 0 and 16%, while the false-positive rate ranged from 4 to
26% (Supplemental Figure 5). It should be noted that these results
were acquired on a much smaller set than the aforementioned data
(96 expected plants in contrast to 19,560 in the main data set) and
are thus more prone to random variation in the estimated per-
centages due to rather small sample size. For instance, the error
rates for normal Murashige and Skoog (MS) medium were much
lower in this set (e.g., supervised BRAT false-negative rate: 5% in
contrast to 21% in the large, main data set).
To show the utility of our phenotyping pipeline to quantify root-

related traits on a large number of Arabidopsis accessions at a high
throughput, we conducted genome-wide association studies
(GWAS) on the trait averages of the 16 traits quantified by BRAT for
each day of a 5-d time series on 163 accessions. In total, we thus
conducted 78 GWAS (14 traits on each of the 5 d and two time-
dependent traits [growth rates] on the last 4 d) and found 35 as-
sociation peaks that passed the 5% false discovery rate (FDR)
significance threshold (Supplemental Data Set 1). Interestingly,
none of the genes in proximity of the most significant associations
were among the major known regulators of root development,
highlighting the potential of GWA to identify previously unknown
regulators (Meijón et al., 2014). The most prominent associations
could be detected with the relative growth rate (i.e., the root growth
rate relative to the total length of the root at the initial time point of
the interval; Supplemental Figure 6) for days 2 to 3 in which three
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significantly associated single nucleotide polymorphisms (SNPs)
span a region ranging from the promoter to the fifth exon of
a Calcium Sensor Receptor gene (CaS; Figure 4M). While it had
been described that mutations in this chloroplast-localized gene
resulted in retarded shoot growth (Vainonen et al., 2008), an in-
volvement in root growth had not been demonstrated. However,
calcium signaling has been implicated in the determination of root
growth (Monshausen et al., 2011; Laohavisit et al., 2013). Given the
data from our genome-wide association study, we hypothesized
that this gene might be involved in root growth determination.

Interestingly, while expression of the gene is most prominent in the
shoot, analysis of the root map (Brady et al., 2007), a transcriptome
atlas with cell-type resolution, showed that CaS is expressed in the
procambium tissue of the root at intermediate levels (Supplemental
Figure 7). When grown under the same condition as we used for
GWAS, the cas-1 knockout mutant showed a significant reduction
of root growth rate (Student’s t test P value = 0.001; Figure 4N),
leading to a significantly shorter root measured 7 d after germi-
nation (Student’s t test P value = 0.013; Supplemental Figure 8).
The overexpression line did not show a significant change in this

Figure 3. BRAT Is Robust toward Various Experimental Conditions.

Images of whole plates and selected magnifications under different experimental conditions that lead to variations in image background color, image
contrast, and the direction of root growth. Top row (from left to right): 13 MS medium, pH 5.7, 21°C; low temperature, 13 MS medium, pH 5.7, 10°C;
high temperature, 13 MS medium, pH 5.7, 29°C; low pH, 13 MS medium, pH 4.6, 21°C; bottom row: sulfur-deficient medium, 13MS medium 2 S, pH
5.7, 21°C; iron-deficient medium, 13 MS medium 2 Fe, pH 5.7, 21°C; phosphorus-deficient medium, 13 MS medium 2 P, pH 5.7, 21°C; auxin
transport inhibitor (1-N-Naphtylphthalamic acid) treatment, 13 MS medium + 10 mM 1-N-naphtylphthalamic acid, pH 5.7, 21°C. White boxes in the
whole plate images indicate an area that was magnified. Bars = 1 cm.
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Figure 4. Genome-Wide Association Mapping for Root Traits.

(A) to (D) Root linearity trait on day 3.
(E) to (H) Root width at 20 to 40% interval of root on day 3.
(I) to (M) Relative root growth rate trait (day 2 to day 3). Box indicates region depicted in (M).
(A), (E), and (I) Examples for accessions with low trait values.
(C), (G), and (K) Examples for accessions with high trait values.
(B), (F), and (J) Histogram of mean trait values for accessions.
(D), (H), and (L) Manhattan plots for GWAS. Line denotes 5% FDR threshold. Black box in (L) indicates location of most significant association of all
GWAS performed in this study.
(M) Genomic region surrounding the most significant GWA peak from (L). Top: gene models in genomic region. The x axis represents the position on
chromosome 5. Bottom: 2log10(P values) of association of the SNPs. Line denotes 5% FDR threshold.
(N) and (O) Effects of loss of function and overexpression of CaS gene on root growth rate on day 7 to 8 (n > 26) on MS agar plates (pH 5.7) (N) and root
length in hydroponic culture on day 5 (n = 17) in 2% MGRL nutrient solution (pH 5.0) (O). x axis, genotype; y axis, root growth rate (mm/day) or primary
root length (mm), respectively; whiskers, 6 1.5 times the interquartile range; Student’s t test P value < 5*1023 and < 5*1024 indicated by two asterisks
and three asterisks, respectively.
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assay. However, when grown in hydroponic solution, overexpres-
sion of CaS resulted in significantly increased root length (Student’s
t test P value < 1024; Figure 4O), while there was no significant
reduction of root length observed in the cas-1 mutant (Figure
4O). This shows that changes in CaS expression can alter the
root growth rate in a growth condition–dependent manner (agar
plates contained MS medium at pH 5.7, and the hydroponic
medium was a 2% MGRL nutrient solution at pH 5.0) and dem-
onstrate that the CaS gene is a regulator of root growth.

To assess whether the CaS locus is a target of selection, and
thus potentially of adaptive value, we determined whether there
were signatures of natural selection at this locus. For this, we used
the Arabidopsis Selection Browser (http://regmap.uchicago.edu/cgi-
bin/gbrowse/arabidopsis/), which visualizes selection data derived
from the worldwide Regional Mapping Project (RegMap) Arabidopsis
accession panel (Horton et al., 2012). In support of an adaptive
significance of the CaS locus, multiple significant signatures of

selection could be found in close proximity to the CaS locus
(Supplemental Figure 9B). To explore potential common ecological
factors for specific CaS alleles, we plotted the origin of the 1307
accessions of the RegMap panel on a map and then indicated the
alleles of the most significantly associated SNP for relative growth
rate at the CaS locus (further denominated as minor and major CaS
allele) (Supplemental Figure 9A). Notably, accessions with the minor
CaS allele seemed to frequently cluster in various European coastal
regions (Figure 5A). To test whether this was a statistically significant
observation, we calculated the approximate distance from the re-
ported collection site of each accession to the nearest coast (Figure
5B) and found that the minor allele accessions were indeed originally
collected at locations significantly closer to the coast than the ac-
cessions containing the major allele (Wilcoxon rank sum test
P value < 2.2*10213). Together, this indicates that variation at the
CaS locus that leads to specific root growth rate changes might
be of adaptive significance for growth in coastal environments.

Figure 5. Minor Alleles of the CaS Gene Are Enriched in Coastal Populations of A. thaliana.

(A) Geographic distribution of the top CaS SNP alleles in European accessions of the RegMap panel. CaS major alleles at the chromosome 5 position
7738620 (T) are depicted as blue symbols, whereas minor (A) alleles are depicted as red symbols.
(B) Box plot of the distances from collection sites of accessions containing minor (red) or major (blue) alleles to the nearest coast. x axis, genotype;
y axis, approximate distance to nearest coast (km); whiskers, 6 1.5 times the interquartile range.
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DISCUSSION

We have shown that with our pipeline it is possible to quantify root-
related phenotypes from a large population of Arabidopsis plants.
We designed the setup to be easily replicable and scalable. Im-
portantly, the software is open source and platform independent,
so that the larger community can easily adopt and use it. For this,
we provide a website with all instructions and software needed to
recreate and use the pipeline (http://www.gmi.oeaw.ac.at/research-
groups/wolfgang-busch/resources/brat).

Using this pipeline, it is possible to generate large quantitative
data sets in a matter of weeks. Such data sets promise to result in
new biological insights. Indeed, in this study, we identified a reg-
ulator of root growth that acts in a growth condition-dependent
manner and whose allelic variation might have adaptive signifi-
cance for growth in coastal environments. Interestingly, local ad-
aptation to coastal, potentially saline impacted environments has
been shown before, where a sodium transporter allele conferred
elevated salinity tolerance (Baxter et al., 2010). Since calcium
sensing is a crucial pathway for salt stress tolerance in Arabi-
dopsis (Guan et al., 2013), and has shown to be important for salt
and drought stress in rice (Oryza sativa) (Xu et al., 2011), natural
allelic variation at the CaS gene locus might be one way in which
coastal populations adapt their growth to a saline environment. As
such, our findings provide an excellent starting point to study the
links between calcium signaling-dependent root growth and ad-
aptation to growth in saline environments.

Applications such as GWAS are only possible with large num-
bers of quantitative trait measurements. BRAT facilitates screens
at the throughput needed for this, but this throughput comes at
the cost of higher error rates than obtained with human-guided
root analyses software. However, on very large data sets and
when measuring multiple individuals of the same genotype, the
increased throughput easily compensates for the increased error
rates. For other applications, BRAT contains an option for su-
pervised quality control. It is conducted on small-sized com-
pressed images, which allows outsourcing of this process. For
very large screens in a supervised setting, we see a huge potential
for crowd-sourcing—a method that has been employed very
successfully for images in astronomy (Land et al., 2008).

BRAT does not perform well on low contrast images or with
large amounts of condensation in the plate. However, conden-
sation that results in water droplets can be avoided by optimi-
zation of plate pouring (i.e., allowing the evaporation of water for
a longer time before sealing the plates) and by ensuring that the
temperature during scanning is not lower than that during
growth. Generally, a higher false-negative rate occurs near the
borders of the plate. User-induced errors such as piercing the
agar surface while placing the seeds or extreme forms of root
topology (e.g., growing in a circle) can also lead to errors in
segmentation. Thus, even with a powerful pipeline like this, it is
of high importance to optimize screening and image acquisition
conditions prior to large-scale screens.

Overall, we think that our pipeline will provide the community
with a simple but powerful way to move toward a more quan-
titative approach to studying early root growth. We also believe
that similar high-throughput approaches with simple and low-
cost image acquisition procedures and robust, automated image

processing algorithms will be crucial in making quantitative bi-
ology feasible for a large number of researchers in a number of
fields over the next years.

METHODS

Plant Materials and Growth Conditions

For surface sterilization, Arabidopsis thaliana seeds of various accessions
were placed for 1 h in opened 1.5-mL Eppendorf tubes in a sealed box
containing chlorine gas generated from 130mL of 10% sodium hypochlorite
and 3.5 mL of 37% hydrochloric acid. Sterile seeds were then put on the
surface of 13 MS 50 mL agar media, pH 5.7, containing 1% (w/v) sucrose
and 0.8% (w/v) agar (Duchefa Biochemie) in 12 3 12-cm square plates
(Greiner). The placement of the seeds was guided by a printout of a seed-
planting grid schematic (Supplemental Figure 10A) placed below the plate.
Each plate contained eight accessions with three biological replicates. To
account for positional effects within and between the Petri dishes, we plated
24 seeds for each accession over eight plates in a permutated block design
(Supplemental Figure 10B). Plates were positioned in racks that oriented the
plates in a vertical position and kept at 4°C for 72 h in the dark for seed
stratification. Thereafter, the racks containing the plates were transferred to
a growth chamber constantly kept at 21°C and a 16-h-light/8-h-dark cycle.
The racks were removed to the image acquisition room once per day and
then immediately returned to the growth chamber.

For root growth quantification, we used seeds from 163 Arabidopsis
accessions from the RegMap panel (Horton et al., 2012) (Supplemental
Table 3). To minimize maternal effects, we only used seeds harvested from
plants grown under the same conditions in the same growth chamber at the
same time. Columbia-0 wild type, cas-1 mutant, and 35S:CaS over-
expressing lines (Nomura et al., 2008) were used for root growth tests. For
assays on agar plates, plants were grown as described above for 8 d until
the roots reached the plate border. The hydroponically grown plants were
grown for 5 d in 2% MGRL nutrient solution (pH 5.0) as described by
Kobayashi et al. (2007). In the analyses of the hydroponically grown plants,
the 85% longest roots were used for data analysis to eliminate seedlings
that failed to grow normally because of late germination.

Image Acquisition

We used eight Epson V600 CCD flatbed color image scanners (Seiko
Epson) for image acquisition. The BRAT image acquisition tool (Figure 1D)
on a standard desktop computer running Ubuntu Linux allowed the si-
multaneous control of the scanners. To provide a stable scanner con-
figuration and avoid automatic reconfiguration of the scanner setup after
each reboot of the control computer, the tool addresses not the scanner
but the physical USB port, to which a scanner is connected. A frame
(Figure 1B) providing support for two plates was permanently mounted on
each scanner. The scanning process is internally invoked using the tools
of the popular SANE scanning project (http://www.sane-project.org/);
thus, in principle, all scanning hardware supported by this project can be
used as an acquisition device. The tool triggers scanning of the two areas
on each scanner in which the plates are positioned. These positions are
predetermined by the frames. Scans were performed with a resolution of
1200 3 1200 dpi. This resulted in an image size of ;6000 3 6000 pixels
(;36MP) for each of our 123 12-cm agar plates. The images were stored
as 8-bit RGB TIFF files and automatically named based on an initial user
input into the image acquisition tool. To enhance image quality, scanning
was performed in a dark room and with the scanner lid open.

While the theoretical resolution of our images is 21.17 mm/pixel (1200
pixels per inch), the real resolution is decreased by the scanner’s internal
optical system (a combination of mirrors and lens) and external effects.
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Using a microscope calibration slide (Supplemental Figure 11), we esti-
mated the maximal real resolution of the Epson V600 scanners at these
settings to be 50 mm (i.e., we can only distinguish between two objects if
their distance is more than 50 mm). Wewould expect a similar degradation
of resolution in camera-based systems. However, due to the large number
of pixels and sufficient number of individual roots that are averaged, the
trait average estimation accuracy of the pipeline is much higher than
50 mm (Supplemental Figure 4B).

Image Processing Software

BRAT involves different tools that perform and handle image segmen-
tation, quality control, and trait evaluation. We implemented all tools as
plug-ins for Fiji (Schindelin et al., 2012). This assures that all parts of the
pipeline can be run on most popular operating systems (Linux, MacOS X,
and Windows) running Java 1.6 or higher. Additionally, there is no
complicated installation process. Image processing can be performed
using a GUI on Linux, MacOS X, or Windows systems or using the
command line on computer clusters.

To process the images, the user needs to specify the directory of image
files to be processed. BRAT supports a variety of popular image formats,
including TIFF, jpeg, bmp, and gif. In fact, all formats that can be opened by
Fiji are possible inputs. The images have to be in RGB format with 8-bit
color depth. While the segmentation algorithm is not dependent on the
image resolution, the accuracy of the results is. Note that for any large-scale
project, we discourage the use of images stored in a format with lossy
compression (such as the popular jpg format) or low image resolution, as
these can result in lower efficiency and accuracy of the pipeline. If the
images are named according to a specific naming pattern (Supplemental
Figure 12), the same plates at different times are identified as such au-
tomatically; otherwise, each imagewill be treated as a separate plate. Since
the plates are scanned from a bottom view, they appear horizontally flipped
in the images. Using an additional option, BRAT can be instructed to
account for this fact. Without further options, the unsupervised process of
image segmentation can be started.

BRAT produces multiple file outputs. For each segmented root,
a compressed diagnostic image is generated that contains an image of the
original plate, the original image of the plant, and an image in which the
segmentation is overlaid on this original plant image. This last image can be
used for quality control. A second diagnostic image gives the user the ability
to check the segmentation process on a “per plate” basis. The different
measurements as well as the coordinates of all segmented plant pixel types
are saved as tab-separated text files. This file format is human readable (e.g.,
the files can be opened with any text editor for a first check) and can be
imported to popular applications like MS Excel for further processing
without any additional effort. While the stored measurements are used in an
additional evaluation step, the coordinates are a complete numeric rep-
resentation of the plants.

There are two modes of processing the data to calculate rates of
change traits and population statistics of traits. If a certain fraction of false
positives is acceptable and mean trait values suffice, an automated
assignment of genotypes to objects can be performed by BRAT. This
unsupervised QC requires a fixed grid layout (i.e., spatial information on
how the seeds were placed) to be specified by the user (examples
available on the website http://www.gmi.oeaw.ac.at/research-groups/
wolfgang-busch/resources/brat). This is achieved via a simple GUI or
coordinate file. The unsupervised QC distinguishes between false positive
objects and real plant objects by evaluating whether each object is within
a threshold distance to the grid. Only objects below this threshold are
retained for further analyses and assigned a coordinate on the plate.
Using a user-supplied file that specifies the genotype of each seed ac-
cording to the grid coordinates, each object is assigned a genotype.

In cases that require a very low number of false positives (e.g., no
sufficient replication), BRAT provides a quality control tool that enables

the user to efficiently iterate over diagnostic images of the segmentation.
For each of the segmented plant objects, the user decides to retain or
dispose an object and whether the position of the plant was detected
correctly. Most user decisions can be executed by pressing the ENTER
key or by clicking the mouse (Supplemental Figure 3). To further increase
the speed of the supervised QC, the tool prefetches images from the
storage volume so that the images open quickly even when accessed
over a slow network connection. Once supervised or unsupervised QC
has been completed, BRAT calculates and stores the traits and their
summary statistics (see trait calculations and output).

Image Segmentation

Once image segmentation has been initiated by the BRAT GUI or on the
command line, an unsupervised image processing routing is started. First,
the image is flipped (if the appropriate parameter is set) and images of the
time series are registered and aligned using Fiji’s implementation of the
scale invariant feature transform algorithm (Lowe, 2004). For this, scale-
invariant features are detected on each image of this time series. Identical
features are then matched on different images of the same time series.
Features found with high confidence in multiple images are used to
calculate an optimal affine transformation (translation, rotation, and
scaling), which minimizes the spatial deviation of the identified features.
Then, the images are cropped automatically to reduce computation time
and potential artifacts deriving from the border regions of the images. The
automated cropping works independently of the color of the background
(i.e., when scanning the plates in a bright room, the background is brighter
then the plate itself, while imaging in a dark roomwith open scanner lid will
result in a dark background). For cropping the brightness levels of a 1003

100 pixel area at each corner of the image is measured. Because the
corners of the plates are rounded, this area is always outside the plate,
even if the images should have already been cropped by the user to fit
the outer borders of the plate (Supplemental Figure 1). To determine the
“inside-plate” region, the brightness levels of a 2003 200 pixel area at the
center of the image are determined. A threshold that separates the inside-
plate pixels from the “outside-plate” pixels is calculated. If the outside-
plate region is dark, the minimum level of brightness of the inside-plate
region is used as a threshold. If the outside-plate region is bright, the
maximum level of brightness is taken as threshold value. This threshold
value is used to create a binary (black/white) representation of the original
image. Then, a variation of the marching squares algorithm, implemented
in Fiji’s wand tool, is applied to the binary image to define the outline of the
ROI. The algorithm generates the contour of a 2D region. To do so, it
investigates a 23 2 pixels neighborhood of the binary image. Depending
on the pixel values found, the algorithm decides which pixel to visit next
and again starts investigation of the neighborhood region at the new
position. It terminates when the starting pixel of the contour is visited
a second time. Only connected regions are identified in this process. The
plate is then subsequently cropped (Supplemental Figure 1), i.e., only the
inside-plate area is considered for the plant detection.

BRAT’s plant detection algorithm can be split into two main parts. In
the first step, the shoot component of each plant is detected by its distinct
green color. In the second step, this shoot component serves as a seed
point for detection of the whole plant. The detection of the shoot com-
ponents uses the color information from the original image to detect the
green seedlings on the plate. To achieve this, the original RGB channels
are converted into the hue-saturation-brightness color space. However,
the remains of the seeds (seed coats) are frequently located in front of the
green parts and act to separate a detected shoot component into two parts.
To prevent this, the difference of the foreground objects from the background
is used rather than the absolute hue value (the absolute hue value of seeds
differs significantly from that of shoot parts but they show comparable values
if their difference from the background is taken into account). Since the
background is the largest region in our images, the color of this component is
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assumed as the main mode of the hue channel histogram. To limit the area in
which the algorithm searches for shoots and thereby decrease computation
time and false-positive rate, a mean hue value is calculated for each image
line. Since our plants are placed in rows, we expect an increased hue dif-
ference for rows of the image where shoots are located. Regions in which the
difference from thebackground is high are assumedaspotential plant regions.
To segment the shoot components as single ROIs, we apply the marching
squares algorithm again to the thresholded image. Thresholding is done using
Fiji’s default thresholdmethod, a variation of the IsoData algorithm (Ridler and
Calvard, 1978) (Supplemental Figure 2). If a time series is processed, the shoot
component detection is first completed on the last image of the time series
since this is the time point with the largest shoots. The representation of the
same plant but at an earlier time point will be largely covered by the shoot
detection on the last day, and we can therefore significantly shrink the area in
which we searched for the shoot in earlier scans, in turn facilitating the as-
signment of the same identifier to a plant throughout the time series.

Once the shoots have been detected, the detection of plants begins.
For this, the saturation channel is used since roots show low saturation
compared with the background. However, some artifacts (e.g., water
droplets under the plate cover) create a nonuniform background and
substantial noise in the image. Since both effects have an impact on the
intensities of the saturation channel, we first apply a 3 3 3 pixel median
filter and then an edge filter (Sobel filter). While the median filter averages
(blurs) the image with only minor effect on edges and therefore reduces
the noise in the channel, the edge filter creates a gradient of saturation
values. This way, the border of the foreground object (root) is emphasized,
while large variations in background are filtered out. Relatively large ar-
tifacts (mostly water droplets in our case) can lead to fraying of root edges.
Therefore, the detected plant selections are refined using the brightness
information. Since the background can show great variation in brightness
due to water droplets on the plate cover, water accumulation on the plate,
reflection, and refraction artifacts, this channel gets flattened by sub-
tracting an artificial flat-field. The artificial flat-field is calculated by ap-
plying a median filter with large radius to the brightness channel. The
result of this operation is then subtracted from the original, with the result
that only pixels with a brightness value substantially above the back-
ground will show high values, while those with a brightness level close to
background levels will be represented by low or even negative values. In
the following step, only pixels that meet both conditions—showing low
saturation (i.e., identified as an edge pixel in the former steps) and high
(relative to background) brightness (i.e., showing a high value after
processing the mentioned steps on the brightness information)—are used
as “root-pixels.”Once all plant objects have been detected, each object is
skeletonized (i.e., the object area is converted to a line representation that
preserves the general shape of the object area). To accomplish this, we
use Fiji’s skeletonization algorithm, which is implemented as a thinning
algorithm from Zhang and Suen (1984). The end point of the root is the
point on the skeleton’smain path that ismost distant to the center ofmass
of all shoot pixels. Starting from this point, we move along the main path
until we reach the detected shoot region to determine the start point of the
root. The skeleton of themain root is then defined as the longest-shortest-
path on the skeleton from the start to the end point through the skeleton.
This is determined by converting the skeleton to a mathematical graph
object and using Dijkstra’s Shortest Path algorithm (Dijkstra, 1959) to get
the shortest paths for all possible start and end points. To accomplish
these tasks, we use the Java Universal Network/Graph Framework (http://
jung.sourceforge.net). To be able to measure traits like root width,
a distance map (Danielsson, 1980) is used that is produced with Fiji’s
DistanceMap plug-in and stored within the skeleton.

Trait Calculations

The skeleton, landmark, and distance map data is used to extract various
traits (Table 1). To calculate the total root length, the main root is traversed

and the distances between neighboring pixels are summed up, adding
a value of 1 if themovement is in a vertical or horizontal direction and a value
of =2 if in a diagonal direction. The Euclidian length is the length of the
primary root vector in 2D specified by the hypocotyl/root junction and the
root tip projected to the root skeleton. Root tortuosity, the property of root
curvature, is the ratio of the total root length to the root Euclidian length.Root
growth rate is calculated from the difference of total root lengths between
two subsequent time points. Relative root growth rate is the root growth rate
divided by the total root length at the initial time point of the time interval. It
allows a more accurate comparison of growth rates among individuals that
differ in length. The root angle describes the angle between the root vector
and the vector of gravity (parallel to the y axis) (Supplemental Figure 13). To
calculate the direction index, wemove along themain root. At each pixel, we
add a value to the sum of all previous pixels. This value is dependent on the
angle of the line between the current pixel and the next. For example, if we
move straight downward, a value of 0 is added, in the case of a diagonal
downwards direction, the value will be 1 (Supplemental Figure 14). The total
sum is then divided by the number of pixels visited. Themore gravitropic the
root grows, the lower the direction index value, while the less gravitropic the
root grows, the higher the value. Root horizontal index and root vertical index
are the SD in x and SD in y dimension, respectively; they describe the spread
of the root in the horizontal (x-coordinates) or vertical (y-coordinates)
dimensions. They are calculated using the equations:

horizontal index ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2 1
∑
N

i¼1

ðxi 2 �xÞ2
s

vertical index ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2 1
∑
N

i¼1

ðyi 2 �yÞ2
s

where N is the number of root pixels, xi are the x-coordinates of the root pixels,
and yi are the y-coordinates of the root pixels. The root linearity is the coefficient
of linear determination (R2) of the linear regression line fitted to the pixels of the
primary root skeleton using the method of least squares. A value near 1 would
mean that the root could be approximated by a straight line, while a low value
stands for a curved or wavy root. The root width is calculated by determining
the distance map of the root pixels and is therefore proportional to the root
diameter. It is calculated in different longitudinal zones of the root. The average
root width denotes the root width averaged over all root pixels. Additionally, the
root widths over intervals or longitudinal zones are calculated. “Root Width 20”
denotes the mean value for the section from 0 to 20% of the total root length
starting at the hypocotyl-root junction point. “Root Width [40, 60, 80, 100]” are
similar values for the sections 20 to 40%, 40 to 60%, 60 to 80%, or 80 to 100%
of the total root length, respectively.

File Output

BRAT generatesmultiple files. The segmentation stepwrites a file containing
the basic measurements of root and shoot objects. In the postprocessing
step in which the user provides the genotype layout file (Supplemental Table
1), these measurements are used in the calculations where averages, me-
dians, and various combinations of different traits are derived. The calcu-
lations are done on a per-plant basis and on a per-accession basis. For each
calculation, the number of involved individuals and the standard variations for
the traits are saved. This enables the user to filter underpopulated or high-
variation subsets.

Root Width Determination Using Confocal Microscopy

An LSM 700 Axio Observer.Z1 confocal microscope (Zeiss) with a mo-
torized stage was used for confocal image acquisition. Plants grown on
agar plates that had been measured using BRAT were incubated with 20
mg/mL propidium iodide for 10 s, washed in monoQ water, transferred to
standard microscopy slides, and mounted in monoQ water. Using a 2.53
dry objective (Zeiss Fluar 2.53/0.12 numerical aperture), an overview
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image of the each complete root was acquired using the tile scan function
(33 5 tiles) of ZEN2010 software and with a resolution of 6.252mm/pixels.
Propidium iodidewas excited at 488 nmwith full laser power and detected
at 576 to 700 nm. The focus was set at the medial longitudinal section in
the estimated interval of interest. After image acquisition, the root length
was measured using the manual segmentation tool in Fiji and divided into
five intervals (the same intervals as for the width trait measurements using
BRAT). Within the interval of interest (20 to 40% of root length starting from
the hypocotyl/root boundary), the root width was measured on the images
manually in Fiji at three points that would correspond to 20, 30, and 40% of
root length. Finally, the average value was calculated to obtain the three-
point average root width estimation for 20 to 40% interval of root length.

Performance Evaluation

The evaluation of the high-throughput software performance was based on
the same five images containing plants grown from 120 seeds (n = 118).
Image formats and resolution were modified according to software
specifications and to allow for good performance of the evaluated software.

Robustness Assay

To evaluate BRAT robustness toward various experimental conditions, we
used seven different conditions that possibly alter the background,
contrast, or root growth direction. These were sulfur deficient, iron de-
ficient, phosphorus deficient, low pH, low temperature (10°C), high
temperature (29°C), and auxin transport inhibitor 1-N-naphtylphthalamic
acid (10 mM) supplemented plates. Nutrient deficiency media were pre-
pared as described (Iyer-Pascuzzi et al., 2011). Evaluation was done on
four whole plate images containing plants grown from 96 seeds at day 3
after germination for all but one condition and at day 15 after plating in the
case of low temperature.

Genome-Wide Association Mapping

We used the average trait value for 78 traits of 163 accessions quantified by
BRAT (n = 5 to 24) to conduct GWA using an accelerated mixed model
(EMMAX) (Kang et al., 2010) followed by EMMA (Kang et al., 2008) for the
most significant 200 associations. The GWA was performed on a cluster,
with algorithms identical to the ones used in the GWAPP Web interface
(Seren et al., 2012). SNPswithminor allele counts greater or equal to 12were
taken into account. The significance of SNP associations was determined at
5% FDR threshold computed by the Benjamini-Hochberg-Yekutieli method
to correct for multiple testing (Benjamini and Hochberg, 1995).

Analyses of Allelic variation

Weused the 215KSNPdata to extract theSNPalleles for the top association
(chromosome 5; position 7738620). Wemapped these alleles using the GPS
coordinates of the accessions on the BioClim Bio11 map (Kriticos et al.,
2012) using QGIS 2.2 (http://www.qgis.org/). The visual maps were created
using the QGIS OpenLayers plug-in and by obtaining a Google Physical
Maps layer. We calculated the distance of the accessions to the closest
coordinate of the ocean using the Proximity (Raster Distance) function of
QGIS. We then extracted the distance values using the point sampling tools
of QGIS. Due to the BioClimmap resolution, the accuracy of the positions is
around 18 km. A shift of the distribution of the distances of the accessions
with the major SNP allele on chromosome 5 at position 7738620 (“T”) to the
distribution of the minor SNP allele (“A”) was tested using a two-tailed
Wilcoxon rank sum test with continuity correction (Hollander and Wolfe,
1973) in R 3.0.2 (http://www.r-project.org/) using the wilcox.test function.

The selection scan data were obtained using the Arabidopsis Selection
Browser (http://regmap.uchicago.edu/cgi-bin/gbrowse/arabidopsis/).

Accession Numbers

Sequence data from this article can be found in The Arabidopsis Information
Resource and GenBank (National Center for Biotechnology Information)
databases under the following accession numbers: CaS (AT5G23060) and
the list of gene identifier numbers in Supplemental Data Set 1.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Detection of the Plate’s Area.

Supplemental Figure 2. Plant and Shoot Detection Algorithms of BRAT.

Supplemental Figure 3. Screenshot of the Optional BRAT Quality
Control Interface.

Supplemental Figure 4. Correlation of Root Width Measurements:
BRAT vs. Confocal Microscopy.

Supplemental Figure 5. Performance of BRAT under Various Exper-
imental Conditions.

Supplemental Figure 6. Example Images of the Roots and Trait
Values for Extreme Accessions for Relative Root Growth Rate.

Supplemental Figure 7. Abundance of CaS (AT5G23060) Transcript
in the Root.

Supplemental Figure 8. Effects of Loss of Function and Over-
expression of CaS Gene on Primary Root Length on Agar Plates.

Supplemental Figure 9. Worldwide Distribution of Alleles for Top CaS
SNP and Signs of Selection at CaS Genomic Locus.

Supplemental Figure 10. Grid Layout Template and Positional
Permutations.

Supplemental Figure 11. Microscope Calibration Slide.

Supplemental Figure 12. The Naming Pattern Supported by BRAT.

Supplemental Figure 13. Illustration of Root Angle Trait.

Supplemental Figure 14. Calculation of Root Direction Index.

Supplemental Table 1. Genotype Layout File.

Supplemental Table 2. Time Requirements of High-Throughput Root
Phenotyping Software Tools.

Supplemental Table 3. 163 Accessions Used in This Study.

Supplemental Data Set 1. Significant SNPs from Genome-Wide
Association Studies.
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