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Abstract

Can you predict what someone is going to do just by watching them? This is certainly difficult: it

would require a clear mapping between observable indicators and unobservable cognitive states.

In this report we demonstrate how this is possible by monitoring eye gaze and pupil dilation,

which predict dissociable biases during decision making. We quantified decision making using the

Drift Diffusion Model (DDM), which provides an algorithmic account of how evidence

accumulation and response caution contribute to decisions through separate latent parameters of

drift rate and decision threshold, respectively. We used a hierarchical Bayesian estimation

approach to assess the single trial influence of observable physiological signals on these latent

DDM parameters. Increased eye gaze dwell time specifically predicted an increased drift rate

toward the fixated option, irrespective of the value of the option. In contrast, greater pupil dilation

specifically predicted an increase in decision threshold during difficult decisions. These findings

suggest that eye tracking and pupillometry reflect the operations of dissociated latent decision

processes.
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There is tremendous value in understanding how people reach decisions. Yet it is difficult to

objectively characterize the latent processes that contribute to decision making, especially in

real-time. To understand such processes, simple observable indicators that reflect

unobservable decision processes must be identified. In this report we describe how the

observable measures of eye gaze and pupil dilation reflect the operations of dissociated

latent systems associated with decision making.
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Decision making is often formally modeled by the Drift Diffusion Model (DDM), which

provides an algorithmic account of how evidence accumulation and response caution

contribute to a binary decision process through the separate latent parameters of drift rate

and decision threshold, respectively (Ratcliff & McKoon, 2008a; Ratcliff, 1978). These

parameters have orthogonal influences on the joint measures of accuracy and response time

(RT): higher drift captures greater information in the stimulus and results in shorter RT and

better accuracy, whereas higher threshold captures increased response caution and results in

longer RT and better accuracy. While many investigations use the DDM to account for

decision making in noisy sensory environments, this procedure has proved equally valuable

to understanding decision making when participants choose between options that have

different values, whether values are acquired through learning (Cavanagh, Wiecki, et al.,

2011) or selected on the basis of preference (Krajbich, Armel, & Rangel, 2010; Krajbich &

Rangel, 2011).

It has long been known that the decision to select an option out of multiple alternatives can

be predicted by gaze dwell time, thought to be a measure of visual attention (Glaholt, Wu, &

Reingold, 2009; Krajbich et al., 2010; Krajbich, Lu, Camerer, & Rangel, 2012; Krajbich &

Rangel, 2011; Schotter, Gerety, & Rayner, 2013; Shimojo, Simion, Shimojo, & Scheier,

2003). This suggests that visual attention has a potentially causal influence on value

comparison. Indeed, manipulation of dwell time is associated with increased ventromedial

cortical and striatal valuation signals (Lim, O'Doherty, & Rangel, 2011) and can even

influence behavioral selection (Armel, Beaumel, & Rangel, 2008; Shimojo et al., 2003).

This collection of findings has recently been expanded into a model of an attention DDM

(aDDM) in which gaze dwell time influences the speed of integrated evidence (drift rate),

acting to amplify the inherent value of the fixated relative to non-fixated item (Krajbich et

al., 2010, 2012; Krajbich & Rangel, 2011). However, these findings rely on explicit self-

reported ratings of stimulus value, making it difficult to generalize the predictive power this

model in other contexts. Moreover, it is unclear whether gaze influences value integration

(thus causally affecting choice) as in the aDDM, or whether instead gaze might reflect a

latent indicator of the participant's endogenously selected choice, in which case it may be

predictive independent of value.

Here we extended these findings in two novel ways. First, we utilized controlled and

implicit measures of value acquired via history of probabilistic reinforcement, controlled to

provide a range of positive and negative values. We found that gaze and value both

influence drift rate, but that the relationships are independent rather than modulatory.

Second, we supported the novel hypothesis that pupil dilation reflects an independent latent

decision parameter: the need to increase decision threshold when faced with difficult

choices.

Most current eye tracking systems also measure pupil dilation, which is influenced by

autonomic nervous system activities. It has long been established that psychological

manipulations of orienting, anticipation, fear, cognitive load, arousal, difficulty, anticipation,

risk, novelty, surprise, and conflict all cause increases in pupil dilation (Chatham, Frank, &

Munakata, 2009; Goldwater, 1972; Hess & Polt, 1960; Kahneman & Beatty, 1964; Laeng,

Sirois, & Gredeback, 2012). Fitting with this large variety of correlated affective and
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cognitive states, Critchley and colleagues (2005) discovered that the conflict-related increase

in pupil size correlated with activity in perigenual Anterior Cingulate Cortex (ACC). Indeed,

the ACC/insula orienting network is implicated in this same broad host of cognitive and

affective states, and these neural systems have direct influence over autonomic activities

(Craig, 2002; Devinsky, Morrell, & Vogt, 1995; Shackman et al., 2011). In their role of

orienting and signaling the need for control, these neural systems have been structurally

(Aron, Behrens, Smith, Frank, & Poldrack, 2007) and functionally (Cavanagh, Wiecki, et

al., 2011) implicated as cortical systems that signal the need for increased cognitive control

(e.g. raising of the decision threshold) in the face of decision conflict.

We previously demonstrated that frontal midline electroencephalographic (EEG) activities

generated by ACC and the surrounding medial wall were specifically implicated in conflict-

induced decision threshold adjustment (Cavanagh, Wiecki, et al., 2011). While the

mechanistic action of threshold increase was initiated by communication between ACC and

the subthalamic nucleus, here we propose that pupil dilation may be an observable

downstream measure reflecting the ACC `alarm bell' indicating the need for control. The

current experiment was therefore designed to test a double dissociation. First, we formally

tested for independent and interactive influences of eye gaze dwell time and value on drift

rate (Krajbich et al., 2010, 2012; Krajbich & Rangel, 2011) using hierarchical Bayesian

parameter estimation of the DDM. Second, we tested the novel hypothesis that pupil dilation

predicts an increase in decision threshold during decision conflict. Findings supported this

condition-specific double dissociation in observable measures of latent decision processes.

Methods

Participants

A total of 24 participants were recruited from the community or Brown University

psychology subject pool to complete the experiment. Participants received either $20 or

extra course credit for participation. Written informed consent was obtained from all

participants. Four participants were excluded due to poor recordings of pupillometry,

yielding a total of 20 participants (12 male, average age 20 years).

Probabilistic Selection Task

Participants performed the probabilistic learning task twice using different non-overlapping

character sets; the assignment between characters and reinforcement probability within each

set was randomly assigned (Fig 1A). Data were averaged across both sessions. Each task

included a forced choice training phase in which reinforcement probabilities were acquired,

followed by a subsequent testing phase (Frank, Seeberger, & O'Reilly, 2004). Eye tracking

and pupil data were only analyzed from the testing phase, but we describe both parts here for

completeness. During the training phase the participants were presented with a pair of

complex visual stimuli (out of three possible pairs), where each choice option (selected with

the `d' and `k' keyboard keys) was associated with a different probabilistic chance of

receiving `Correct' or `Incorrect' feedback. These stimulus pairs (and their probabilities of

reward) were termed A / B (80% / 20%), C / D (70% / 30%) and E / F (60% / 40%). The

participants underwent training trials (consisting of one to six blocks of 60 stimuli each)
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until they reached a minimum criterion of choosing the probabilistically best stimulus in

each pair ((A>B)≥65%, (C>D)≥60%, and (E>F)≥50%). This same criterion has been used in

multiple previous studies with this task. Participants who did not reach this criterion by the

end of the sixth block (N=6 in the first task, N=5 in the second task) were moved to the

testing phase regardless.

The testing phase comprised pure decision making: participants chose between all possible

pairings of distinct options (presented eight times each; 120 trials per session, two sessions

total). Trials began with a fixation cross for 1000 ms. Stimuli were presented for a maximum

of 4000 ms, and disappeared as soon as a choice was made. Participants were then presented

for a blank black screen for 1000 ms. No feedback was provided in the testing phase.

Although no choice between probabilistic stimuli in the test phase is necessarily “correct”,

hereafter we refer to the selection of the optimal (more reinforcing in the training phase)

choice as accuracy.

Conflict trials were defined based on the reinforcement value difference between the

available choice options (with smaller, more subtle differences in reinforcement values

associated with increasing conflict), see Figure 1A. Thus, we analyzed performance

separately for a subset of very high and very low conflict trials, including high conflict win-

win (AC, AE, CE), high conflict lose-lose (BD, BF, DF), and low conflict win-lose (AB,

AD, AF, CD, BC, BE) conditions (Cavanagh, Bismark, Frank, & Allen, 2011; Cavanagh,

Wiecki, et al., 2011; Frank, Samanta, Moustafa, & Sherman, 2007). Prior studies and models

suggest that particularly in the win-win conditions, a “hold your horses” mechanism is

needed to prevent impulsive responding due to the presence of high value options, in order

to optimize the selection of the most rewarded action (Frank et al., 2007; Frank, 2006). We

thus hypothesized that pupil dilation would be reflective of an increase in decision threshold

particularly in these trials. For DDM estimations and subsequent empirical comparisons (see

below), we parsed these high and low conflict trials into five finer grained categories (10%,

20%, 40%, 50%, and 60%) corresponding to the difference in the probabilistic values

learned during training (i.e. 80%–70%=10% for A vs. C, 80%–30%=50% for A vs. D, etc.).

To test how gaze dwell time and stimulus value contributed to action selection, we

additionally parsed test phase trials into two distinct sets associated with choosing the most

rewarding option (defined as the accuracy of choosing A over C, D, E and F), vs. the

avoiding the most punishing option (defined as the accuracy of choosing C,D, E and F over

the most punishing symbol B), see Figure 3E and (Frank et al., 2004). Within each

participant, these sets were then split into quantiles based on the proportional amount of

gaze time on A (the best option) or B (the worst option) as compared to the other choices

(C,D,E,F), facilitating a quantification of the influence of gaze time on stimuli with

appetitive (A) vs. aversive (B) qualities. While these measures of reward seeking and

punishment avoidance vary flexibly within individuals, participants also differ in their

general tendency to learn by seeking reward vs. avoiding punishment. Individuals more

adept at avoidance learning have previously been shown to be more sensitive to negative

outcomes and exhibit enhanced error-related brain activity (Cavanagh, Bismark, et al., 2011;

Frank, Woroch, & Curran, 2005). Thus, we also investigated if gaze time influenced

selection of aversive stimuli (as predicted by the value-based aDDM) or avoidance of
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aversive stimuli (e.g. if gaze is predictive independent of value) within a subgroup of

participants who were more adept at avoidance learning. These individuals (N=9) were

characterized by better accuracy at avoiding the most punishing option over choosing the

most rewarding option (as each are defined above), see Fig 3E.

Eye Tracking and Pupillometry

Eye tracking and pupillometry were recorded from an SR Research Eyelink 1000 system.

The Eyelink system was configured using a 35mm lens, 9-point gaze location calibration,

monocular sampling at a rate of 500Hz, and elliptical fitting for pupil area recordings.

Participants were seated approximately 65 cm away from the eyetracker and performed the

study using a stationary head mount. The eye-tracker was re-calibrated prior to each task.

Tasks were presented using the Matlab Psychophysics Toolbox and directly interfaced with

the eye tracker using the Eyelink API Psychophysics Toolbox v3.0 (Cornelissen, Peters, &

Palmer, 2002).

All data processing was performed using custom Matlab scripts. Pupil measures were taken

from the measurement of pupil area, gaze measures were taken from the X and Y

coordinates. Blink artifacts detected using the Eyelink blink detection algorithm were

removed using linear interpolation from 60 ms prior to 150 following the event (Siegle,

Ichikawa, & Steinhauer, 2008). If another blink occurred within these interpolation points,

all time points between the two blinks were averaged together and the interpolation window

was extended. If a blink occurred between fixations within one coordinate window, gaze

time was interpolated as the total time including the blink (Krajbich et al., 2010). Most

blinks occurred when gazing at the central fixation or when shifting between the stimulus

pairs. Continuous data were epoched (−500 to 4000 ms) surrounding the onset of choice

option pairs. Each epoch was then visually inspected by modifying the EEGLab viewer

(Delorme & Makeig, 2004) to display the time course of pupil, gaze, and event detection

outputs (saccades, blinks, fixation). Remaining artifacts were user-identified for linear

interpolation. Exceedingly noisy conditions were marked for removal. Trials with RTs

below 200 ms or above the RT deadline of 4000 ms were removed.

Gaze dwell time was measured as the percent of time that the participant's gaze was on the

side of the screen as the optimal choice option (outside of a 100 pixel central vertical buffer

between the two sides), divided by the total dwell time in the optimal and suboptimal

stimulus sides from presentation until response (Fig 1B). Dwell time on non-central

locations is known to affect pupil dilation by diminishing the size of the pupil in relation to

the stationary camera (Brisson et al., 2013; Gagl, Hawelka, & Hutzler, 2011). We controlled

for any potential influence of eye movements by counterbalancing the presentation of the

stimulus pairs so each choice option appeared on the right and left sides of the screen an

equal number of times. These counterbalancing methods ensured that variations in dwell

time, fixations, and saccade timing were uncorrelated with pupil dilation.

Pupil responses were calculated as the percent change from the trial-specific pre-stimulus

mean (−500 ms to stimulus onset). Stimulus-induced pupil responses begin with a light-

induced constriction and recovery that lasts for about one second. In addition, pupil dilations

are affected by the act of committing a motor response (Richer & Beatty, 1985). To account
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for these issues, all task-specific stimuli were luminance matched and all analyses of high

conflict effects used both statistical and subtractive contrasts with the low conflict (win-lose)

condition. Pupil dilations are very slow, and thus are lagged in time to eliciting events, often

peaking after about a second (Gagl et al., 2011; van Steenbergen & Band, 2013). Therefore

an a priori region-of-interest for conflict-related pupil dilation was set from 1000 to 3000

ms post stimulus All pupil data that were subject to analysis and display were quantified at

the resolution of the eye tracker (500 Hz). For within-subject single trial analyses, pupil size

was measured as the mean dilation from the response to 500 ms following the response,

effectively capturing the influences prior to the decision. Given the strong autocorrelation of

the pupil response, longer windows provided highly similar results as those reported here.

When testing the within-subject single trial relationships between psychophysiological

variables (eye gaze, pupil dilation) and performance (RT, accuracy), Spearman's rho and

logistic regression were used. Tests of the between-subjects differences in these correlations

used t-tests and analyses of variance.

Drift Diffusion Model

The DDM models two-choice decision making as a noisy process accumulating evidence

over time (Fig 2). This process approaches one of two boundaries with a certain speed (drift-

rate, influenced by the amount of evidence conveyed by the stimuli). When one of the two

boundaries is crossed, the associated response is executed. The distance between the two

boundaries is called the decision threshold; larger thresholds lead to slower, but more

accurate responding. Estimation of these underlying decision processes was accomplished

using DDM analysis of test phase choices. We fit each participant's choices and RT

distributions with a DDM model assuming that the proportional difference in reward values

for the two options sets the drift rate (Cavanagh, Wiecki, et al., 2011; Ratcliff & Frank,

2012), i.e. the rate of evidence accumulation for one option over the other. We used

hierarchical Bayesian estimation of DDM parameters, which optimizes the tradeoff between

random and fixed effect models of individual differences, such that fits to individual

subjects are constrained by the group distribution, but can vary from this distribution to the

extent that their data are sufficiently diagnostic (Wiecki, Sofer, & Frank, 2013). This

procedure produces more accurate DDM parameter estimates for individual and groups,

particularly given low trial numbers or when assessing coefficients between

psychophysiological measures and behavior.

Estimation of the Hierarchical DDM (HDDM) was performed using recently developed

software (http://ski.clps.brown.edu/hddm_docs) (Wiecki et al., 2013). Bayesian estimation

allowed quantification of parameter estimates and uncertainty in the form of the posterior

distribution. Markov chain Monte-Carlo (MCMC) sampling methods were used to

accurately approximate the posterior distributions of the estimated parameters. Each DDM

parameter for each subject and condition was modeled to be distributed according to a

normal (or truncated normal, depending on the bounds of parameter intervals) distribution

centered around the group mean with group variance. Prior distributions for each parameter

were informed by a collection of 23 studies reporting best-fitting DDM parameters

recovered on a range of decision making tasks (Matzke & Wagenmakers, 2009), see the

supplement of (Wiecki, Sofer, & Frank, 2013) for visual depictions of these priors. A model
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using non-informative priors (e.g. uniform distributions that assign equal probability to all

parameter values over a large interval) resulted in highly similar results. There were 5000

samples drawn from the posterior; the first 200 were discarded as burn-in following the

conventional approach to MCMC sampling whereby initial samples are likely to be

unreliable due to the selection of a random starting point.

We estimated regression coefficients in separate HDDM models to determine the

relationship between single trial variations in psychophysiological measures (eye gaze, pupil

dilation) and model parameters (drift rate, decision threshold):

1

In these regressions the coefficient β1 weights the slope of parameter (drift rate, threshold)

by the value of the psychophysiological measure (proportional gaze dwell time, pupil

change from baseline) on that specific trial, with an intercept β0. We extended this

regression approach to formally compare three competing models of the influence of value

and gaze dwell time on drift rate. Each of these models contained multiple regression

coefficients in order to test independent and interactive influences of value and gaze dwell

time on drift rate. In each of these models, the continuous influence of value (10%, 20%,

40%, 50%, 60%) was used instead of the condition-specific differences (win-win, lose-lose,

and win-lose), although we do plot the condition-specific effect of gaze in one instance for

descriptive purposes. For descriptive clarity, these models are formally explained in the

Results section. This regression approach was also used to model the influence of pupil

dilation on decision threshold in the corrected win-win and lose-lose conditions.

Bayesian hypothesis testing was performed by analyzing the probability mass of the

parameter region in question (estimated by the number of samples drawn from the posterior

that fall in this region; for example, percentage of posterior samples greater than zero).

Statistical analysis was performed on the group mean posteriors. The Deviance Information

Criterion (DIC) was used for model comparison, where lower DIC values favor models with

the highest likelihood and least number of parameters (Gelman, 2004). While alternative

methods exist for assessing model fit, DIC is widely used for model comparison of

hierarchical models (Spiegelhalter, Best, Carlin, & van der Linde, 2002), a setting in which

Bayes factors are not easily estimated (Wagenmakers, Lodewyckx, Kuriyal, & Grasman,

2010).

Simulations from Estimated Drift Diffusion Model Parameters

While the methods described above are useful for fitting models to empirical data, it is also

important to demonstrate that any estimated combination of model parameters can simulate

performance outputs that are qualitatively similar to the empirical inputs that led to the

parameter estimation in the first place. First we contrasted empirical and simulated outcomes

to examine the influence of value and gaze duration on action selection. The observed

(empirical) probabilities of selecting the optimal stimulus were calculated for the five sets of

value differences (10%, 20%, 40%, 50%, 60%) within each of two different stratifications of

the gaze time on the optimal stimulus (high = z-score>0 vs. low = z-score<0). Then

synthetic choice probabilities were simulated from the posterior predictive distribution of the
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best fitting model (independent Model 1, as detailed in the Results) for these same value and

gaze stratifications. The simulated values for each of these conditions were each entered into

the following formula to predict the probability of selecting the optimal choice based on the

analytic solution to the DDM for choice probabilities, where the letters reflect standard

notation for DDM parameters: a = decision threshold, v = drift rate, z = the starting point for

the drift process (always at .5*a):

2

To simulate the influence of pupil dilation on decision threshold, 50 data sets were generated

based on the estimated single trial influence of pupil dilation on decision threshold. The

single trial relationships between pupil dilation and simulated/empirical performance (RT,

accuracy) were tested using Spearman's correlations and logistic regression, respectively.

The mean rho/logistic beta of these 50 simulated sets were then shown in Figure 5F. The

Supplemental Materials provide examples and additional descriptive tests of these

simulation procedures.

Results

Probabilistic Selection Task

As shown in Figure 1C, participants performed similarly as in other experiments with this

task (Cavanagh, Bismark, et al., 2011; Frank et al., 2007; Ratcliff & Frank, 2012). Win-win

and lose-lose accuracies were significantly lower than win-lose accuracy (F(1,19)=27.61,

p<.01, partial η2=.59, ts>5.25, ps<.01), but were not different from each other, t<1. Win-win

and win-lose RTs were significantly faster than lose-lose RT, (F(1,19)=57.71, p<.01, partial

η2=.75; ts>5.36, ps<.01), but were not different from each other (t<1).

Gaze Dwell Time

The aDDM predicts a number of relationships between gaze and behavior: A) the first item

fixation should be random with respect to value, B) the duration of the first fixation should

predict selection, C) the final item fixation before action should be biased towards the

chosen item (unless it is has a much lower value than the alternative), and D) the

proportional difference in gaze dwell time should influence choice for equal values of the

alternative options (Krajbich et al., 2010, 2012; Krajbich & Rangel, 2011). Several

predictions of this model were validated. The first fixation was unrelated to stimulus value

(Fig 3A, ps>.22). Within subject logistic regressions indicated that the amount of time spent

gazing on that first item predicted selection in the easiest win-lose condition (p<.01), but not

in the harder high conflict conditions (ps>.4; Fig 3B). The last fixation predicted selection in

the win-win and win-lose conditions (ps <.01; Fig 3C), but not in the lose-lose condition

(p=.13). Conversely, proportional gaze time strongly predicted selection in all conditions (ps

<.01; Fig 3D).

To follow up these differences in the propensity of gaze time to predict selection of the

fixated option vs. selecting the optimal option, we assessed whether gaze effects interacted

with the value of choice options. We thus parsed the test phase trials into sets associated
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with choices involving choosing the most rewarding option vs. the avoiding the most

punishing option (Frank et al., 2004). These sets were then split into quantiles based on the

proportional amount of gaze time on A (the best option) or B (the worst option) as compared

to the other choices (C,D,E,F). Fig 3E shows that increasing gaze on the optimal A stimulus

predicted selection, and thus accuracy (linear trend: F(1,19)=9.95, p<.01, partial η2=.34),

whereas increased proportional gaze time on the worst B stimulus also predicted selection,

and thus worse accuracy (linear trend: F(1,19)=75.65, p<.01, partial η2=.80). These

influences of gaze on selection were found regardless of individual differences in overall

learning to choose A vs. avoid B. Indeed, even the subgroup of participants more adept at

avoidance learning (better at avoiding B than choosing A) still displayed a significant

pattern of increasing propensity to select B the more it was observed (F(1,8)=16.84, p<.01,

partial η2=.68). Thus, increased gaze duration predicted selection even when the option had

an aversive value. Note that this pattern contrasts with predictions of the aDDM, which

holds that gaze amplifies the value of the fixated proportional to non-fixated item. Hence if

this value is aversive, greater gaze time should result in better (not worse) avoidance of that

item, as stated in (Armel et al., 2008).

We more formally assess the influence of gaze on value in the context of the DDM

quantitative fits below. First, we demonstrate the motivation for this modeling approach

with the simple effects supporting the influence of gaze time on drift rate. Fig 4A shows

group averages of within subject logistic regressions (for accuracy) and non-parametric

correlation coefficients (for RTs) as a function of proportional dwell time on the optimal

stimulus. Increased dwell time on the optimal stimulus significantly predicted accuracy in all

conditions (ps<.01), as well as shorter RT particularly in the easiest win-lose condition (p<.

01), fitting with an account of increased drift rate.

Drift Diffusion Modeling with Gaze Dwell Time

First, to test whether value differences between choice options drive the drift rate, we

estimated separate DDM parameters for each condition (Fig 4B). High conflict win-win and

lose-lose conditions (having small value differences) were characterized by much lower drift

rates than the low conflict win-lose condition (ps <.01), but did not differ from each other.

The lose-lose condition was also associated with a higher decision threshold than the win-

win condition (p<.05), see (Ratcliff & Frank, 2012).

These between-condition patterns account for the condition-wide differences in RTs (e.g.

slower in lose-lose) and accuracy (e.g. better in win-lose) shown in Figure 1C prior to

consideration of the within-condition (single trial) influences of gaze time and pupil dilation

on decision parameters. We then estimated regression coefficients in separate HDDM

models to determine the relationship between single trial variations in psychophysiological

measures and DDM parameters. Model 1 tested for simple independent influences of value

and gaze on drift rate (ν), where ropt and rsub are the reward probabilities of the optimal and

suboptimal choices (See Fig 1A), and gazeopt and gazesub are the proportions of gaze time

devoted to the optimal and suboptimal choices on each trial (See Fig 1B):
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3

where ε is a noise term defining intratrial drift. Posterior predictive simulations from this

independent Model 1 (Fig 4C squares) closely track the empirical findings (Fig 4C circles),

where increasing value differentiation and increased gaze duration predicted selection of the

optimal option.

Note that although the model is characterized by independent influences of value and gaze,

it still captures the empirical finding of greater effects of gaze when value differences are

small. This is a simple geometric property of the DDM where a fixed additive effect has a

larger effect when drift rate is low than when it is high (Ratcliff & McKoon, 2008b). Figure

4D shows the posterior belief densities for these value and gaze terms, revealing strong and

statistically significant effects of both variables (see Table 1). For illustrative purposes, we

also tested the effect of gaze dwell time on drift rate estimated separately for each value

condition (Fig 4E: winwin mean β=.35, lose-lose mean β=.41, win-lose mean β=.25, all ps<.

01).

Next, we contrasted alternative formal models of the relationship between gaze time and

stimulus value on drift rate. As noted above, the aDDM (Krajbich et al., 2010, 2012;

Krajbich & Rangel, 2011) proposes that visual fixation (gaze) on an option is not

independent to its value (as in Model 1) but rather influences the degree to which values are

integrated toward making a choice. In particular, the aDDM specifies that evidence

accumulates as a function of the two decision values according to:

4

where t is the unit of time integrated over, d is a constant that converts values to drift rate,

r(fixated) and r(non-fixated) are the relative values of the fixated and non-fixated options, θ is

the degree to which the value of the unfixated item is discounted (from 0 to 1), and ε is

noise. Thus whereas the aDDM in equation 4 is written in terms of the evolution of the

decision variable itself (such that Vt depends on Vt−1), it is straightforward to express this in

HDDM terms in which we estimate the drift rate v (the slope with which the decision

variable changes):

5

We tested the aDDM in our HDDM framework by indexing the relative time fixated on the

optimal vs. suboptimal choice in each trial, and constructing competing models to determine

whether gaze time influences drift rate by modulating value (as proposed by the aDDM and

Model 2 below), or by simply influencing choice independent of value (Model 1 above).

Note that equation 5 can be re-expressed to estimate two separate coefficients β1 and β2 to

assess the influence of each choice option value on drift rate:

6
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where d(rfixated − θ * rnon-fixated) from eq. 5 is replaced by β1 * rfixated − β2 * rnon-fixatedwith

β1 = d and β2 = d * θ; hence θ = β2/β1. According to the aDDM, β1 > β2 (i.e.θ < 1,

indicating that values of fixated options are integrated more than non-fixated ones). Notably,

parameter estimates from Model 2 revealed that indeed, β1 > β2, consistent with the aDDM

prediction that gaze increases value integration. However, as shown in Table 1, Model 2 fit

worse (had a higher DIC) than the simple independent Model 1.

To further evaluate whether gaze effects are best described as independent or interactive, we

constructed an additional Model 3 which included both interactive terms (β1, β2) and an

independent simple additive influence of gaze time (β3):

7

Model 3 thus allowed us to assess whether there is a simple effect of gaze (β3), and if so,

whether this alters the conclusions about β1 and β2 effects of gaze on value. If the effects of

gaze and value are truly independent (Model 1), then when fitting Model 3 the β1 term

should be equal to that of β2 because the gaze effects have already been taking into account,

implying that we have the standard DDM with drift proportional to value with an additive

effect of gaze time.

Indeed, when fitting Model 3 with a pure gaze effect on drift rate, this β3 parameter yielded

a large regression weight, improved the DIC, and the resultant β1 and β2 were roughly equal

(no significant differences in posterior densities, implying that the values of both options

were equally integrated). Thus the initial finding that β1 > β2 in Model 2 was due to the fact

that the effect β1 regressor was correlated with pure gaze differences, and that once the pure

gaze effect was taken into account the resulting value component amounts effectively to the

pure DDM without gaze modulation of value (ie., β1 ~ β2, θ~1; see methods). This

conclusion based on parameter estimation was confirmed by the observation that Model 1

including simple independent contributions of pure value (ropt − rsub) and pure gaze (gazeopt

− gazesub) provided the best fit to the data from a model selection standpoint.

These findings were highly similar when tested on all test phase trials (not just win-win,

lose-lose, and win-lose choices as defined in Fig 1), and they were clearly stronger than any

potential influence of gaze time on decision threshold (All DICs > 6320 for Models 1–3

predicting threshold instead of drift rate). Therefore, participants may select poorly valued

options (such as `B') when looking at them more, since the influence of gaze dwell time on

selection is independent, and not interactive, with stimulus value.

Pupil Response

Figure 5A–B shows stimulus and response-locked pupil dilation as a percent change from

pre-stimulus baseline. There was a significant increase in the a priori stimulus-locked region

of interest as revealed by a repeated measures ANOVA (1000 to 3000 ms post stimulus:

F(1,19)=7.74, p<.05, partial η2=.07). Follow up paired t-tests revealed that win-win trials

had significantly larger pupil dilations than win-lose trials, (t(19)=3.53,p<.01), with lose-

lose trials falling between these extremes (win-win>lose-lose: t(19)=1.66, p=.11; lose-

lose>win-lose: t(19)= 2.18, p=.07). For illustrative purposes, significant differences between
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each pair of conditions are shown over the time course of the pupil response. Figure 5C–D

shows relationships between pupil dilation and RT (time point by time point correlation

coefficients) and pupil dilation and accuracy (pupil difference in optimal minus suboptimal

choices). These single trial correlations revealed a complex pre- and post-response

relationship between pupil change and RT in all conditions. This pattern was due to the

influence of the light and response reflexes. These canonical responses thus needed to be

accounted for. Sample-by-sample subtractions of the win-lose correlation from the win-win

and lose-lose correlations revealed a constant influence of pupil dilation on RT (Fig 5E).

Notably, post-response pupil dilation was associated with longer RTs and better accuracy

particularly in the win-win condition, a pattern consistent with an increase of the decision

threshold during high conflict choices.

Drift Diffusion Modeling with Pupil Dilation

In contrast to the effect of gaze on drift rate, HDDM revealed significant posterior belief

distributions for the effect of pupil dilation on decision threshold for high conflict

conditions. This model of decision threshold fit the empirical data (DIC: 4387) better than

an alternative model investigating the influence of pupil dilation on drift rate (DIC: 4396).

Conflict-specific effects were highlighted using subtraction of the average win-lose

condition from single trial win-win and lose-lose trials. Figure 5F shows the significant

effects for the conflict-specific influence of pupil dilation on decision threshold (win-win

mean β=.075, p<.01, lose-lose mean β=.04, p<.05). These same findings were also replicated

in a more temporally sensitive analysis with statistical contrasts against the win-lose

condition (instead of subtraction as above), demonstrating the robustness of this effect (See

Supplemental Materials). Posterior predictive simulations yielded estimated RTs and

accuracies from this model that estimated single trial changes in decision threshold as a

function of pupil dilation (Fig 5G). Larger pupil dilation correlated with slower RTs and

better accuracy in the win-win condition (all empirical and simulated ps<.05), but effects in

the lose-lose condition were varied (only simulated RT significantly correlated with pupil

dilation p<.01). These simulations indicate that the trial-by-trial effect of pupil dilation on

decision threshold can be accurately estimated, particularly for high conflict appetitive

conditions.

Discussion

The findings reported here support the hypothesis that eye gaze and pupil dilation reflect

dissociated biases in latent decision parameters of evidence accumulation (drift rate) and

response caution (decision threshold), respectively. These findings suggest that it is possible

to predict variance in distinct decision processes simply by observing the eyes of a subject.

Gaze Time and Evidence Accumulation

The evidence reported here suggests that the influences of value and gaze time have

independent influences on drift rate when choices are based on experienced, implicit

valuation. While many of the predictions of the aDDM (Krajbich et al., 2010, 2012;

Krajbich & Rangel, 2011) were confirmed here, evidence from psychophysical contrasts,

model comparisons, and model parameters suggest that the model over-specifies the
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multiplicative influence of gaze time on value as related to drift rate. We found that

increased gaze dwell time can predict selection independent of value, even when gaze is

focused on the least positive (or most aversive) option.

The aDDM directly suggests that longer gaze times on a negative value should lead to

increased rejection (Armel et al., 2008), which was not observed. This was most strongly

demonstrated by the increasing relationship of gaze time on the most aversive B stimulus

and selection (leading to poorer accuracy), even in a sub-group of participants who learned

the task with increased ability to `avoid B' over `seeking A'. Thus the influence of gaze time

on selecting B cannot be attributed to poor learning of its value. Instead, these findings

support the notion that better avoidance of aversive stimuli is also reflected by looking away

from the aversive items. However, this interpretation is predicated on the assumption that

the B stimulus is aversive and not just of low value. Nevertheless, even if the B option had a

positive but simply lower value than other options, the aDDM would still predict that the

effect of gaze would be diminished in the lose-lose compared to the win-win condition given

the smaller multiplicative influence of lower values (see Supplement for a detailed

example). Figure 4E demonstrates that the HDDM reveals the opposite of this prediction.

The findings reported here differ from a prior study (Armel et al., 2008), which showed that

participants were more likely to avoid an aversive food item if it had been presented for a

longer period of time than an alternative option – but critically these options appeared

sequentially. Our findings from this forced-choice experiment suggest that when participants

fixate on aversive or low-value options, they still may be more likely to actively avoid those

options by choosing to look at, and ultimately select the other option. Yet, if instead they

dwell on the low value option for a longer period of time, they are more likely to choose it.

It is useful to consider how the valenced forced-choice conditions used here may lead to

different findings than observed previously. It may be expected that the win-win and lose-

lose conditions should have identical findings given the relative value differences are

identical for each constituent trial pair. Yet as revealed by simple performance differences

(Fig 1C), appetitive and aversive conflict differ in a number of meaningful ways. First, it has

been long known that RTs are slower in this lose-lose condition (Cavanagh, Bismark, et al.,

2011; Frank et al., 2007; Ratcliff & Frank, 2012). This slowing is thought to be a result of

the compounded influence of two aversive responses, which produce additional slowing via

the cortico-striatal indirect pathway, in part by amplifying the subthalamic response to

conflict (Frank et al., 2004; Ratcliff & Frank, 2012). This slowing is captured by an

increased decision threshold (Fig 4B). Moreover, the cognitive strategies that contribute to

successful test phase execution differ between selection (win-win) and avoidance (lose-

lose). One example of this difference may be revealed by the tendency of the last fixation to

predict selection in all conditions except lose-lose (Fig 3C) due to active avoidance rather

than appetitive seeking. It remains possible that while proportional gaze duration influences

evidence accumulation and option selection in all conditions (Fig 3D), eye movements

characterized by volitional saccades may contribute to different aspects of cognitive

strategies during avoidance vs. reward seeking.
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Formal model comparison and parameter estimation approaches provided converging

evidence that value differences directly influence drift rate (as in the simple DDM) and that

the effect of gaze is an independent influence on drift rate. Previous reports of the aDDM

only included choices between appetitive options, and hence could not easily differentiate

between a model in which gaze directly influences drift rather than modulates the values,

which are confounded (Krajbich et al., 2010, 2012; Krajbich & Rangel, 2011). A more

recent example of the aDDM during complicated purchasing decisions revealed a much

smaller multiplicative effect of value and gaze (θ = 0.7, closer to standard DDM), clearly

demonstrating that task dynamics have a strong influence on the strength and existence of

this phenomenon (Krajbich et al., 2012).

Pupillometry and Response Caution

The dynamics of pupil dilation have previously been quantified using numerous formal

modeling approaches, including learning rate (Nassar et al., 2012), prediction error

(Preuschoff, 't Hart, & Einhäuser, 2011), neural gain (Eldar, Cohen, & Niv, 2013), and

salience in decision making (Fiedler & Glöckner, 2012), but none have investigated a

potential role in decision threshold adjustment. This event-specific dynamic analysis of

decision threshold is a relatively novel advancement in models of two-alternative forced

choice, supported by previous neurobiological studies and DDM modeling (Cavanagh,

Wiecki, et al., 2011; Ratcliff & Frank, 2012). How does the participant decide to increase

the decision threshold upon seeing a difficult choice? According to computational models,

premotor areas of cortex (including ACC) rapidly detect the strength of stimulus-response

links based on past history, and when the two response options have similar frequencies this

conflict evokes a fast signal via the cortico-subthalamic “hyperdirect” pathway to raise the

decision threshold (Ratcliff & Frank, 2012). In parallel, the striatum accumulates noisy

value signals for the two options. Thus the system can raise the threshold for difficult

choices based on response heuristics before detecting the relative value differences.

In this study, appetitive (win-win) decision conflict was most strongly associated with

increased pupil dilation, which itself was associated with longer RT, better accuracy, and

increased decision threshold. The apparent sensitivity of these effects to appetitive conflict

likely relate to the greater requirement for cognitive control in this situation to overcome the

otherwise impulsive tendency to choose either good option (Cavanagh, Wiecki, et al., 2011;

Frank et al., 2007) – that is, action invigoration associated with positive value would

otherwise act to reduce the effective decision threshold. Nevertheless, aversive decision

conflict (lose-lose) did have a smaller but statistically significant relationship between pupil

dilation and increased decision threshold (Fig 5F), despite the larger intercept (Fig 4B).

These findings are consistent with previous observations that high conflict appetitive or

aversive choices are associated with increased decision threshold and with increased

mediofrontal signatures of conflict (Cavanagh, Wiecki, et al., 2011), thus lending support to

the notion that pupil dilation may reflect downstream processing of ACC activities.

Future studies may also aim to test this effect using very long decision periods or neutral

luminance changes in order to obviate the influence of the pupil light reflex. Given that the

pupil light reflex is parasympathetically mediated whereas task-relevant dilations are
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sympathetically mediated (Beatty & Lucero-Wagoner, 2000), trial-specific variance is likely

to be unrelated to reflexive activities and is thus recoverable (Wierda, van Rijn, Taatgen, &

Martens, 2012). In this study, the win-win and win-lose conditions were characterized by

highly similar RTs, allowing post-hoc subtraction or regression, but these procedures may

not have been as effective for the lose-lose condition which had reliably longer RTs.

Regardless, considerable evidence suggests that pupil dilation to appetitive decision conflict

was clearly associated with longer RTs, better accuracy, and increased decision threshold.

Future Directions and Implications

These findings suggest that the addition of eye gaze and pupil dilation measures would be

beneficial to consider in future investigations of neural systems involved in evidence

accumulation (Gold & Shadlen, 2007; Hare, Schultz, Camerer, O'Doherty, & Rangel, 2011;

O'Connell, Dockree, & Kelly, 2012) and decision threshold adjustment (Cavanagh, Wiecki,

et al., 2011; Domenech & Dreher, 2010; Forstmann et al., 2010). Such methodological

integration will be necessary to test the independent and potentially causal nature of gaze

time on action selection. For example, the interpretation of the relationships between

observable variables and latent effects described here may not be reflective of the neuronal

processes contributing to either of these facets, as neuronal input-output conversions are

likely to be non-linear (thus obviating the difference between additive vs. multiplicative

effects)(Wagenmakers, Krypotos, Criss, & Iverson, 2012).

The diffusion model is but one particular instance of a class of sequential sampling models

of decision making. Although alternative models differ in some details, all involve a single

decision boundary and accumulated evidence over time. Given the large similarities and

equivalence under certain conditions (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;

Donkin, Brown, Heathcote, & Wagenmakers, 2011), we predict that similar conclusions

would likely be drawn if relating the psychophysiological measures to other related models,

such as the linear ballistic accumulator model (Brown & Heathcote, 2008) and the leaky

competing accumulator model (Usher & McClelland, 2001).

Eye tracking is already heavily utilized in fields as diverse as human-computer interaction

(tobii.com; theeyetribe.com), website evaluation (gazehawk.com), marketing

(invivobva.com; imotionsglobal.com), driver safety (sixsafetysystems.com), and high

performance training (polhemus.com; eyecomcorp.com). Yet simultaneous metrics of pupil

dilation have not been commercially utilized to the same extent as eye gaze, perhaps due to

low specificity (as noted in the introduction). However, commercial enterprises have begun

integrating eye tracking with measurements of facial musculature (realeyesit.com) and

observational pulse monitoring (vitalsignscamera.com), suggesting that such an additional

independent metric would be highly desirable if the information content of the signal could

be reliably determined. Indeed, simultaneous eye tracking and pupillometry have already

been utilized for understanding complex behavioral economic interactions (Wang, Spezio, &

Camerer, 2010).
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Conclusion

We suggest that continued investigation of eye tracking and pupillometry using formal

computational models will enhance the predictive sensitivity and specificity of these

observable states. The outcome of such investigations will not only be fruitful for the study

of psychological science, but may also contribute to technological innovations for varied

commercial and public health applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Probabilistic value-based decision making task, psychophysiological measurement, and

performance. A) During training, each stimulus pair was presented separately. Participants

learned to select the better of the two options (the `winner') solely through probabilistic

feedback (% reinforcement is displayed below each stimulus). During the testing phase,

each option was paired with all other options and participants had to choose the best one,

without the aid of feedback. Here we investigated high conflict appetitive (`win-win') and

aversive (`lose-lose') and low conflict (`win-lose') conditions within the test phase. B)

Example single trial data for pupil dilation and horizontal eye gaze. Gaze was quantified as a

proportional value based on the percent of dwell time on the optimal stimulus until the

choice. C) As in other studies of this task, participants were more accurate in the easy win-

lose condition, and were slower in the aversive lose-lose condition (error bars are SEM).
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Figure 2.
Example of latent Drift Diffusion Model (DDM) parameters. Noisy sensory evidence (blue

traces) accumulates towards a bound, whereupon a response is initiated. The duration and

direction of these evidence accumulation processes account for the RT distributions in each

of the (binary) conditions (here, correct and erroneous choices are shown). On the vertical

axis, an increase in drift rate accounts for increased evidence for one response over another,

leading to shorter RTs and better accuracy (bottom towards top). On the horizontal axis, and

increase in decision threshold raises the boundaries for response execution, leading to longer

RTs and better accuracy (left toward right).
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Figure 3.
Tests of aDDM predictions of the influence of gaze dwell time on selection. The aDDM

predicts that: A) The first stimulus fixated upon should be random with respect to option

value. B) The time spent viewing the first option should predict selection. C) The final item

fixated upon should be more likely to be selected. D) The relative amount of time gazing on

an option should predict selection. E) A novel test of whether gaze time interacts with the

value of stimuli. Quantiles reflect the amount of relative time viewing the most optimal (A)

and the worst suboptimal (B) stimuli relative to other options (C,D,E,F). Relative viewing

time predicted selection in both cases, resulting in improving accuracy for the optimal

stimulus but decreasing accuracy for the suboptimal stimulus. Error bars are SEM.
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Figure 4.
Hierarchical Bayesian parameter estimation of the Drift Diffusion Model, with gaze time

regressors on major decision parameters. A) Empirical data: relationships between gaze

dwell time on the optimal stimulus with accuracy (logistic regression) and RT (Spearman's

rho). Error bars are SEM. B) Estimated DDM parameters (mean +/− sd) for each condition.

C) Probability of selecting the optimal choice as a function of value difference between the

options, separated by conditions with high vs. low gaze durations on the optimal option.

Circles are empirical choice (error bars are SEM across participants) and squares are HDDM

posterior predictive simulations from the independent Model 1 (error bars are SD of

posteriors). D) Bayesian posterior belief densities from the independent Model 1 of the

regression coefficients for value (ropt – rsub) and gaze (gazeopt – gazesub). E) Posterior

densities of the regression coefficient of gaze on drift rate in a model estimating this effect

separately for each condition. Significant effects were determined when > 95% of the

posterior density exceeded 0.
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Figure 5.
Phasic pupil change and relation to decision threshold. A) Pupil change locked to the test

phase presentation of choice options. The initial peak and subsequent trough are due to the

pupil light reflex (~100 to 1000 ms). Dots indicate mean RTs for each condition. Horizontal

bars indicate time points that were significantly different between specified conditions. B)

Response-locked pupil dilation. C) Timepoint-by-timepoint Spearman's correlations

between response-locked pupil dilation and RT. Error bars are SEM. D) Pupil dilation on

correct minus incorrect choices. Error bars are SEM. E) Correlations as in (C), but

correcting for canonical influences in high conflict conditions by subtracting low conflict

correlations. F) Posterior of the regression coefficients for pupil dilation on decision

threshold in the win-win and lose-lose high conflict conditions (corrected by subtracting low

conflict pupil dilation). Significant effects were determined when > 95% of the posterior

density exceeded 0. G) Empirical (color) and simulated posterior predictive (white)

relationships between pupil dilation and performance (RT and accuracy).
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Table 1

DIC fits and parameter values for each model of the influence of gaze time and value on drift rate. Mean (SD)

regression weights include an intercept (β0) and coefficients (β1:3) for each separate variable.

DIC β0 β1(value) β2(gaze)

Model 1: Independent 5795 .68 (.09) .44 (.02) .29 (.02)

DIC β0 β1 (gaze * value) β2 ([1 – gaze] * value)

Model 2: aDDM 5827 .68 (.09) .72 (.03) .40 (.03)

DIC β0 β1 (gaze * value) β2 ([1 – gaze] * value) β3 (gaze)

Model 3: aDDM + Gaze 5809 .68 (.09) .51 (.06) .58 (.05) .37 (.082)
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