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Abstract

p21-activated kinases (Paks) are positioned at the nexus of several oncogenic signaling pathways.

Overexpression or mutational activation of Pak isoforms is frequently seen in various human

tumors, and recent data suggests that excessive Pak activity drives many cellular processes that are

the hallmarks of cancer. In this review, we discuss the mechanisms of Pak activation in cancer, the

key substrates for this family of kinases that mediate their developmental and oncogenic effects,

and how small molecule inhibitors of these enzymes might best be developed and deployed in the

treatment of cancer.

Several protein kinases have been identified as drivers of the growth, survival, and spread of

human cancers. Many oncogenic kinases have been successfully targeted by drugs, but

resistance is common and there is a need for additional targets and agents. p21-activated

kinases (Paks) are serine/threonine-specific intracellular protein kinases that are positioned

at the intersection of a number of signaling pathways required for oncogenesis. When

activated by mutation, overexpression, or by upstream elements such as Rac or Cdc42, most

Pak isoforms have oncogenic signaling effects in cells, including the acquisition of growth

signal autonomy, evasion of apoptosis, and promotion of invasion and metastasis (Fig. 1).

For these reasons, it is important to understand the mechanisms of Pak activation in cancer,

the key substrates for these kinases that mediate their developmental and oncogenic effects,

and their potential value as drug targets for the treatment of cancer.

By sequence and structure, the six mammalian Paks can be categorized into two subgroups:

group I (PAK1-3) and group II (PAK 4-6). These two subgroups have both overlapping and

distinct functions, and are regulated by different autoinhibitory mechanisms that can be

exploited in the design of specific small-molecule inhibitors (Box 1). Gene knockout mouse

models vividly demonstrate the distinct roles of Pak family members in normal tissue

development, with phenotypes ranging from no apparent effect to early embryonic death

(Table 1). The development of such models has also underscored the unique place of each

Pak family member in cancer pathophysiology. In addition, these models allow a better

understanding of signaling deregulation in Pak-active tumor cells, which may lead to new

opportunities for targeted anticancer therapy.
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Box 1

Mechanisms of Pak activation

All Paks possess a conserved C-terminal serine/threonine kinase domain with a single

phosphorylation site and an N-terminal regulatory domain. The regulatory domain of

group I Paks (PAK1-3) is structurally distinct from that of group II Paks (PAK4-6),

consistent with the different mechanisms regulating activity of these proteins.

The three Group I Paks are thought to be regulated via a trans auto-inhibition

mechanism113. The N-terminal p21-GTPase binding domain (GBD) overlaps with an

autoinhibitory domain (AID) (see the figure). PAK folds into an inactive homodimer,

wherein the AID domain binds to the kinase domain of its partner. Binding of active Rho

GTPases such as CDC42 and RAC1 to the GBD, and coincident binding of

phosphoinositide to an adjacent segment rich in basic amino acids, leads to dissociation

of the AID from the kinase domain, re-organization of the dimer, and subsequent

autophosphorylation114–116. When the phosphorylated kinase domain binds to a

substrate, it adopts a monomeric conformation114. Subsequent autophosphorylation at

multiple sites stabilizes this catalytically active state. Additional mechanisms, including

transphorylation by other kinases, and the binding of phospholipids and SRC-homology

domain 3 (SH3)-domain-containing proteins such as the adaptor proteins NCK and

GRB2, and the exchange factor PIX, can also modify group I Pak activity and

function116–125.

The mechanism(s) of activation of group II Paks is less clear. Unlike group I Paks the

kinase domain of the group II Paks is constitutively phosphorylated126. Hence, transition

to the active form likely depends on conformational changes. Until recently, it was

believed that group II Paks, with the possible exception of PAK5127, lacked an AID and

that interactions with CDC42 served mainly to determine subcellular localization128, 129.

However, a recent study proposes the presence of an AID in the N-terminus of PAK4 that

inactivates the kinase domain in cis, until binding of GTP-CDC42126. An alternative

model proposes that PAK4 is inhibited by interaction of the kinase domain to a newly

defined pseudosubstrate sequence (PS) within the PAK4 regulatory domain. In this

model, the binding of SH3 domain-containing proteins to the PS releases the catalytic

domain, thereby promoting kinase activity130. It is thought that PAK5 and PAK6 also

follow this model, but this has not been experimentally verified.
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Upregulation of Pak in cancer

Pak function is increased in many human cancers and is in general positively correlated with

advanced grade and decreased survival1, 2. The mechanisms underlying increased Pak

activity most often entail gene amplification of PAK1 on chromosome 11q13 or PAK4 on

chromosome 19q13 (Box 2), though in some circumstances Pak mRNA and/or protein may

be overexpressed in the absence of gene amplification. In addition, Paks can be

hyperactivated by mutations in upstream regulators such as Rac or its exchange factors. For

all but the last of these mechanisms, it is assumed that overexpression of wild-type Pak will

effectively increase its activity due to increased enzyme concentrations. Recently, activating

point mutations in the PAK4 and PAK5 gene (the latter, unfortunately, referred to as PAK7

in genomic databases) have been described in association with colon and lung cancers, but

these are not yet validated as drivers of tumor formation3–6.

Box 2

PAK gene amplification

Amplification of PAK genes represents the best-described mechanism for increased Pak

function in cancer. For example, amplification of chromosomal region 11q13, containing

PAK1, has been reported in a variety of human cancers, including a large percentage of

breast and ovarian cancers7, 131, 132 (see the figure). In breast cancer, amplification of

11q13 is associated with poor prognosis, and there is much interest in identifying driver

genes within this region132. PAK1 amplification is also prevalent in melanoma lacking

BRAF mutations96. This finding, along with reports of activating mutations in the group I

Pak activator RAC1 in melanoma133, 134, suggest that certain BRAF-wild-type forms of

melanoma might be also driven by PAK1 activation.

The 11q13 amplicon comprises multiple subclusters of amplified genes, many of which

have been implicated in breast cancer, including CCND1 (Cyclin D1)135–137. As PAK1

signaling augments Cyclin D1 expression, perhaps via its transcriptional activator, β-

catenin26, 102 and/or Erk, it is possible that co-amplification of PAK1 and CCND1 has a

cooperative effect. It is also intriguing that several other genes within the amplified

cluster encode proteins that activate Erk or act in the DNA repair pathway, indicating

potential oncogenic interactions with Pak1.
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The PAK4 gene also lies within a chromosomal region (19q13.2) that is commonly

amplified in human malignancies, in particular pancreatic cancer, oral squamous cell

carcinoma, basal-like breast cancer, and serous and endometrioid ovarian cancer138–141.

Amplification of PAK4 is associated with aggressive disease and poor prognosis138. Cells

overexpressing PAK4 display sensitivity to PAK4 knockdown by siRNA140, 142, 143,

implying that an oncogene-addicted state exists in such cells. Interestingly, the peak of

the 19q13 amplicon includes the CCNE1 (Cyclin E1) gene, a genomic arrangement that

is physically, and perhaps functionally, analogous to the proposed relationship between

CCND1 and PAK1 on chromosome 11. In addition, like PAK1, transgenic over-

expression of PAK4 is sufficient to drive mammary tumorigenesis in 3D cultures and in

xenografts144, consistent with the idea that overexpression of the wild-type allele alone

can be sufficient for transformation in the appropriate cellular setting.

Amplification peaks correspond to q-values from the GISTIC analysis presented on

www.tumorscape.org. The plots were generated from q values using Microsoft Office

Excel.

Interestingly, using an unbiased search for protein kinases that can transform immortalized

human mammary epithelial cells, it has been reported that Pak1 exerts a powerful effect on

the acquisition of anchorage-independence and other hallmark properties of transformed

cells7. In this study, the authors showed that overexpression of Pak1 (as occurs in most

11q13 amplified breast cancers) simultaneously augmented activation of Erk and Met (the

receptor for hepatocyte growth factor (HGF)) signaling; Met is activated via inhibition of the

tumor suppressor protein Merlin (Fig. 2). Importantly, disruption of Erk or Met signaling

inhibited PAK1-driven anchorage-independent growth. Also, this and other studies of

11q13-amplified cells are consistent with the idea of PAK1 “addiction”, as such cells

exhibited marked sensitivity to PAK1 (but not PAK2) siRNA7, 8. Given that most Paks

have, in addition to catalytic activity, important scaffolding functions, it will be important to

determine if PAK1-amplified cells also show enhanced sensitivity to anti-Pak small

molecule inhibitors. If so, the presence of PAK1 amplification might serve as a useful

patient selection criterion for designing clinical trials of anti-Pak1 drugs.

Regulation at the transcriptional level has not been described in detail for any of the PAK

isoforms. PAK1 mRNA has been reported as a target of miR-7 and also let-7, a miRNA that

is thought to play a role as a tumor suppressor in several human malignancies910. The

expression of PAK2 and PAK4 has also been shown to be regulated by miRNAs11–13.

Finally, PAK3 transcription was recently reported to be regulated by AP-114. Given reports

that expression of certain PAK genes is increased by oncogenic signals15, we can expect that

future work will uncover additional regulators of PAK transcription or translation that are

relevant to cancer.
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Promoting growth signal autonomy

In most cell types, Pak isoforms, with the possible exception of PAK216–18, promote cell

cycle progression when overexpressed, and hinder such progression when removed or

inhibited15, 19, 20. These observations, coupled with the fact that PAK genes are frequently

amplified (PAK1 and PAK4) or mutated (PAK5) in human cancers, are consistent with a role

for these enzymes in promoting oncogenesis by stimulating cell proliferation in the absence

of growth signals. The mechanisms underpinning this aspect of Pak signaling are understood

in some detail, as Paks have been shown to activate components of the Erk, Akt, and Wnt

signaling pathways, all of which are closely tied to cell cycle progression (Fig. 2). In the Erk

pathway, various Pak isoforms have been shown to phosphorylate c-RAF at S338 and

MEK1 at S298. While it has been proposed that these phosphorylation events are required

for efficient Erk activation and subsequent expression of Cyclin D1, a key driver of cell

cycle (G1) progression, there are a number of puzzling aspects to this model that remain

unresolved. For example, it has recently been reported that over-expression of kinase-dead

forms of PAK1 can activate Erk in the absence of phosphorylation of c-RAF on S338 (or the

equivalent phosphorylation of b-RAF on S445), perhaps by serving as a scaffold to facilitate

Raf/Mek interaction21. Also, MEK1 S298 phosphorylation has been shown to be

dispensable for ERK activation in some circumstances22. Some of these issues may relate to

overexpression artifacts, but the weight of data suggests that, in addition to its kinase

activity, Pak scaffolding functions contribute to proliferative signal transduction. Such

kinase-independent mechanisms have also been invoked to explain the positive effects of

Pak on Akt activity and cell survival. In this case, formation of a PAK1/PDPK1 (3-

Phosphoinositide-Dependent Protein Kinase 1) complex is thought to promote recruitment

of Akt to the plasma membrane and subsequent Akt activation23.

In a K-ras-driven transgenic mouse model of skin cancer, it has been reported that Pak1

deletion delayed both cancer initiation and progression, blocked G1 progression, and nearly

extinguished activation of Erk and Akt by K-ras (Table 1)24. Treatment of these mice with

either of two distinct, reasonably specific, small molecule inhibitors of Pak (see below)

recapitulated these phenomena, establishing PAK1 as a potential drug target in K-ras driven

cancers. Treatment with Erk or Akt pathway selective small molecule inhibitors showed that

the major anti-tumor effect in this model was related to loss of the Erk rather than the Akt

arm of the K-ras signaling pathway. These data show that, in this genetically engineered

mouse cancer model, PAK1 regulates the activation of both Erk and Akt by K-ras, but it is

the Erk effects that are more critical to tumorigenesis. Whether these conclusions regarding

mechanism will apply in general to K-ras transformation is unclear, as it has been recently

reported that depletion of PAK1 or PAK4 in K-ras or b-RAF mutant colon cancer cells

resulted in decreased proliferation, but by a mechanism independent of the Erk pathway25.

Recently, a number of groups have uncovered interactions of Pak with the Wnt/β-catenin

pathway26–28. PAK1 associates with and phosphorylates β-catenin on at least two sites,

S663 and S675, and these phosphorylation events stabilize β-catenin and promote its

relocalization to the nucleus and subsequent transcriptional activity, including upregulation

of MYC and Cyclin D1 (Fig. 2)26. Similar effects have been reported for PAK4 and

PAK529, but this phenomenon is likely not universal among all the members of the Pak
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family, as PAK2 depletion has been shown to have no effect on β-catenin expression levels

or phosphorylation in breast epithelial cells26. Unlike the aforementioned K-ras skin cancer

model, in ERBB2- (also known as HER2) transformed breast epithelial cells, the role of

Pak1 in stabilizing β-catenin appears to be more important than its effects on either Erk or

Akt activation, as loss of either PAK1 or PAK2 alone diminishes the activity of these latter

two signaling proteins, but only PAK1 loss leads to destabilization of β-catenin and to

growth arrest. These data show that different cell types, and/or different oncogenic drivers,

are likely to deploy Pak signaling in unique and not-yet predictable patterns, emphasizing

the need to assess a variety of tumor models when evaluating the therapeutic potential of

Pak isoforms or the Pak family as a whole as drug targets in cancer.

Interestingly, in Drosophila melanogaster, the group II Pak mushroom bodies tiny (MBT)

(which is most similar to vertebrate PAK4) has been shown to phosphorylate the β-catenin

ortholog Armadillo at two sites, one equivalent to mammalian β-catenin S675, destabilizing

its interactions with Drosophila E-cadherin and thereby causing decreased cell-cell

adhesion30. In mammalian cells, it is unclear whether Pak-induced loss of β-catenin from

adhesion sites, as opposed to increased transcription of β-catenin target genes in the nucleus,

mediates any of the effects of Pak on transformation.

Other cell cycle-related targets of Pak include nuclear hormone receptors, Aurora kinase A

(AURKA), and Polo-like kinase 1 (PLK1) 31–34. PAK1 phosphorylates the estrogen receptor

(ER) at S305, promoting its activation and subsequent signaling through Cyclin D133. This

event is linked to tamoxifen resistance in ER-positive breast tumors insensitive to hormone-

based therapies, suggesting that PAK1 inhibition might be beneficial in the treatment of

tamoxifen-resistant breast cancer19, 35. On a similar note, PAK6 has been shown to

modulate the activity of the androgen receptor34. The phosphorylation of PLK1 and

AURKA by PAK1 regulates cell-cycle proliferation by affecting cytokinesis and mitotic

entry31, 32.

PAK4 augments G1/S transition by down-regulating the transcription of the cyclin

dependent kinase inhibitor, p21Waf1 36, though the details underlying this phenomenon have

not been described. In Xenopus oocyte extracts, PAK4 has also been shown to also regulate

G2/M transition by phosphorylating the small GTPase RAN, an event that impedes its

binding to the guanine nucleotide exchange factor (GEF) RCC1, interfering with nucleotide

exchange and the ability of RAN to facilitate the assembly of microtubule asters during

mitosis37, 38. These mechanisms may explain the mitotic arrest observed in PAK4 depleted

cells.

Promoting Cell Survival

Several members of the Pak family have been shown to inhibit apoptosis. Some of these

effects are mediated by phosphorylation of BAD, which renders this protein unable to bind

BCL2 and participate in apoptotic signaling39. The phosphorylation of BAD is regulated by

Pak in at least two ways. First, c-RAF is a known substrate of PAK1, PAK2, and

PAK540, 41. Pak-mediated phosphorylation of c-RAF at S338 results in its translocation to

the mitochondria and subsequent binding to and phosphorylation of BAD41. Paks have also
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been shown to phosphorylate BAD directly39. Reports that PAK1 regulates apoptosis by

phosphorylating Dynein Light Chain-1 (DLC1, also known as DYNLL1) at S88 are difficult

to reconcile with the observations that the purported phosphorylation site on DLC1 lies

within a poor Pak consensus motif, native (non-glutathione-S-transferase (GST) fused)

DLC1 is not modified by PAK1 in vitro, and phosphorylation of DLC1 on S88 is not

represented in mass spectroscopy phosphoproteome databases42. Nevertheless, PAK1

clearly binds DLC142, 43 and, in this complex, appears to hinder the ability of BIML to bind

BCL2, thus impeding apoptotic signaling43.

It has been also shown that Pak activates the nuclear factor κB (NFκB) pathway. Activation

of NFκB signaling by PAK1 has been reported to increase resistance to apoptosis in

mammary epithelial cells44, and to be required for transformation by Kaposi’s sarcoma-

associated herpes virus45. However, the mechanism(s) underlying NFκB pathway activation

is still unclear, as a convincing direct PAK1 target in this pathway has yet to be identified.

What is known is that, in endothelial cells, PAK1 somehow modulates the ability of reactive

oxygen species to activate NFκB in response to disturbances in blood flow46. This

phenomenon is likely relevant to several aspects of tumorigenesis, including cell survival,

angiogenesis, and inflammation.

Based mainly on in vitro overexpression studies PAK2 has been reported to have both anti

apoptotic and pro apoptotic functions. Inhibition of apoptosis occurs through mechanisms

similar to those described for PAK1, but it has been also proposed that PAK2 can

phosphorylate Caspase-7 at S30, T173 and S239, decreasing the pro-apoptotic activity of

Caspase-747. On the other hand, late in apoptosis PAK2 itself becomes cleaved by

Caspase-3 or Caspase-3-like proteases, liberating the kinase domain from the regulatory

domain48. The resulting proteolytic fragment, PAK2-p34, containing the protein kinase

domain, induces nuclear blebbing and reduced protein synthesis, the latter mediated by

phosphorylation of MAPK signal-integrating kinase 1 (MNK1)49. Interestingly, conditional

activation of PAK2 in Hs578T human breast carcinoma cells suppresses activation of

caspase-3, generation of PAK2-p34, and apoptosis in response to the anticancer drug

cisplatin50. These data suggest a feedback process in which PAK2 promotes survival in part

by suppressing its own cleavage to a pro-apoptotic fragment.

Much less is known about the mechanisms by which group II Paks augment cell survival.

However, there are hints that at least some of these mechanisms differ from those used by

group I Paks. For example, PAK4 has been shown to inhibit apoptosis by inhibiting an early

apoptotic molecule, Caspase-8, through a kinase-independent mechanism51.

Activating invasion and metastasis

Tumor cell migration and invasion are key factors in metastatic distribution to distant

organs. The initial stages of these processes involve extensive remodeling of the

cytoskeleton, disruption of cell adhesions, and release of proteases that digest the

extracellular matrix. Paks play an important role in regulating these events, mediated by a

number of cytoskeletal effector proteins, including GEFs, GTPase activating proteins
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(GAPs), and guanine-nucleotide dissociation inhibitors (GDIs) that control Rho family

GTPases, and proteins that act more directly on actin (Figure 1).

As part of a protein complex containing the Rac GEF β-PIX (also known as ARHGEF7), the

Arf GAP GIT1, and the adaptor protein Paxillin, PAK1 induces rapid turnover of focal

contacts at the leading edge of cells, promoting increased cell motility525354. The molecular

events underlying this process involve the phosphorylation of paxillin by PAK1, an event

that augments the association of Paxillin and GIT1 and targets the GIT1-PIX-PAK signaling

module to the leading edge. In line with this model, expression of dominant negative PAK1

in invasive breast carcinoma cell lines is associated with decreased invasion and

migration55, and these cells display stable focal adhesions, increased stress fibers, and

enhanced cell attachment.

LIM Kinase (LIMK) represents another important target for Pak in actin remodeling. PAK1

phosphorylates and activates LIMK, which subsequently phosphorylates Cofilin at serine 3,

an event that inhibits the ability of Cofilin to sever and depolymerize actin filaments56. Such

regulation of Cofilin by the PAK1/LIMK pathway is required for RAC1-induced actin

reorganization at the cell’s leading edge56. This activity may be specific to particular Pak

isoforms, as it has been reported that, in breast carcinoma cells, PAK1, but not PAK2,

mediates the formation of Heregulin-stimulation of lamellipodial protrusions, maturation of

focal adhesions, Cofilin phosphorylation, and loss of RHOA activity57. A similar dichotomy

regarding Pak isoforms and cytoskeletal activity has been observed in mast cells, in which

PAK1 and PAK2 appear to play opposing roles with respect to actin organization and

degranulation58, 59.

Tumor cell invasion also requires the reorganization of the extracellular matrix to provide

space for cell movement. Destruction of the extracellular matrix is, in part, controlled by the

release of matrix metalloproteinases (MMPs). Genetic experiments suggest that Pak

mediates certain aspects of extracellular matrix organization downstream of CDC42, as

matrix remodeling could not be restored to Cdc42−/ − MEFs by reintroducing mutants of

CDC42 that lacked Pak binding60. PAK1, 2, 4, and 5 have been shown to regulate MMP

expression in a variety of cancer cell types61, 626364. Increased expression of MMPs has

been suggested to result from Pak-mediated activation of JUN N-terminal kinase

(JNK)65, 66. PAK4 has also been reported to interact with MMP-2, and knockdown of PAK4

in glioma cell lines is associated with down-regulation of MMP-2, decreased migration, and

loss of invasiveness64.

Finally, recent work has demonstrated that PAK1 knockdown in prostate cancer cells was

associated with reduced motility, reduced MMP9 secretion, and increased expression of

TGFβ, which in these cases, is growth inhibitory67, 68. Interestingly, in these cells, PAK1

appeared to be the major Pak isoform required for invasiveness, despite the prominent

expression of group II PAK4 and PAK634, 67, 69.

Pak and Angiogenesis

Pak involvement in endothelial cell biology and angiogenesis has been under scrutiny due to

the well-established role of these enzymes in cell proliferation, cytoskeleton rearrangement,
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and migration20, 70, 71. In mouse models, molecules that signal both upstream and

downstream Pak have been shown to be critical for vasculogenesis and angiogenesis72–74.

For example, endothelial knock out of Rac1 or Cdc42 is lethal during mouse development,

associated with impaired formation of blood vessels72, 74. Furthermore, adult primary

endothelial cells that lack Rac1 or Cdc42, show impaired proliferation, attachment,

migration and angiogenesis72, 74. Whether these effects are mediated through any of the

Paks is not known; however, both Pak2 and Pak4 knock out mice are embryonic lethal due

to multiple organogenesis defects, including severe cardiovascular abnormalities75, 76.

Recent studies from our group show that endothelial-specific deletion of Pak2 is associated

with embryonic death at E9.5, with grossly impaired blood vessel formation in both the

embryo body and the yolk sac (Radu and Chernoff, unpublished observations). In contrast,

there is no notable vascular phenotype in Pak1-null mice75. It should be noted that PAK2 is

the main isoform expressed in endothelial cells. For this reason, even though PAK1 and

PAK2 may serve different, and perhaps even opposing cellular functions26, 58, the weight of

current evidence favors the view that PAK2 is the more relevant mediator of angiogenic

signaling downstream of Rho family GTPases.

Proliferation, survival, migration, and tube formation

In breast cancer cells, it has been shown that PAK1 is required for vascular endothelial

growth factor (VEGF) expression downstream of an activator of ERBB signaling,

Heregulin, thus promoting angiogenesis77. Data from another group demonstrated that the

ability of PAK1 to phosphorylate myosin light chain (MLC) is critical for endothelial cell

cytoskeletal dynamics that mediate migration78. Furthermore, various scaffolding proteins,

including NCK and Filamin B, have been shown to form protein complexes that are

essential in PAK1- and PAK4-mediated endothelial migration79, 80. PAK1 and PAK4 have

been found to modulate c-RAF and BAD phosphorylation levels and inhibit apoptosis in

endothelial cells13, 81. With respect to blood vessel lumen formation, PAK2 and -4 are

required for this process in vitro, acting in a pathway that involves Rho GTPases, Src,

protein kinase C ε (PKCε), and c-RAF82, 83 (Fig. 3). It has also been suggested that PAK4

plays a role in angiogenesis through phosphorylation of the integrin αvβ5, which affects

endothelial cell motility and permeability84.

Vascular permeability

There is little doubt that Pak (probably PAK2) affects endothelial barrier function85; it is

whether it promotes or reduces permeability, or both, that is at issue. In a hypoxia-induced

hypertension model, activation of Rac/Pak signaling has been shown to protect against

hypoxia-induced increase in vascular permeability86. In line with these findings, inactivating

mutations in zebrafish Pak2a (a gene that encodes a protein that is highly homologous to

human PAK2) or its binding partner β-Pix are associated with brain hemorrhage due to

immature vasculature and improper endothelial-mesenchymal contacts87. On the other hand,

it has also been shown that group I Pak signaling leads to an increase in vascular

permeability by modulating cell contraction. It was proposed that a Pak-PIX-GIT1 complex

induces phosphoryation of MLC, resulting in a contracted cell with permeable cell

junctions88, 89. Supporting a positive role for Pak in promoting endothelial permeability,

other studies have shown that PAK1 can phosphorylate vascular endothelial (VE)-cadherin.
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Upon phosphorylation by PAK1, VE-cadherin dissociates from β-arrestin-2 and translocates

from cell:cell junctions to the cytoplasm, weakening endothelial cell:cell contacts and

increasing vascular permeability (Fig. 3)90, 91.

The issue as to whether Paks help or hinder endothelial barrier function could have

important clinical implications, as the effects of small molecule Pak inhibitors might be

expected to resemble those seen in gene disruption studies. It is possible that Pak serves both

functions depending on context and isoform, issues that should be resolved as more

endothelial specific Pak knock out mice become available for study.

Anti-Pak Therapeutics

Although several broad-range kinase inhibitors demonstrate potent Pak inhibition92, 93, such

non-selective compounds have limited utility. As Paks are increasingly recognized as

plausible targets for cancer therapeutics, the search for both pan-Pak inhibitors and group-

specific Pak inhibitors has intensified. This task, however, has proven particularly

challenging for the Paks due to the large size and high flexibility of the catalytic pocket as

well as gaps in our understanding of Pak regulation.

A potent, ATP-competitive pyrrolopyrazole Pak inhibitor, PF-3758309, though originally

designed as a PAK4 inhibitor, efficiently targets both group I and II Paks, as well as a

number of other, off-target kinases (Fig. 4)94. PF-3758309 inhibits growth of many types of

tumor cell lines and has also demonstrated potent anti-cancer properties in xenografts and in

a K-ras-driven, transgenic mouse model of skin cancer24, 94–96. Although the signaling

effects of this compound in vivo resemble those seen in Pak1 knockout mice,24 it remains

difficult to ascribe these desirable biological effects to Pak inhibition alone. This will need

to be shown using more Pak-specific analogs of PF-3758309, or experiments showing that

drug-resistant Pak alleles can overcome PF-3758309-mediated tumor growth inhibition

Despite these issues, the suitable potency (IC50 ~4.7 nM) of PF-3758309 combined with its

oral availability led to its advancement to phase I clinical trials. However, PF-3758309 was

withdrawn from clinical use due to undesirable pharmacologic properties, most prominently

excessive drug efflux97.

A group I specific ATP-competitive Pak inhibitor, FRAX-597, was recently shown to

reduce the initiation and progression of K-ras-driven tumors in a mouse model of skin

cancer, as well as reduce the growth of Merlin-deficient schwannoma xenografts24, 98. This

compound, however, has substantial off-target activity against receptor tyrosine kinases

(Fig. 4). Surprisingly, treatment with FRAX-597 has been shown to result in reduction of

total PAK1 and PAK2 levels, and this effect is abolished in cells treated with the proteasome

inhibitor MG132 (Chow and Chernoff, unpublished observations), suggesting that

FRAX597 acts not only as an ATP-competitive inhibitor but also as a Pak destabilizing

agent. Such a combination of inhibitory mechanisms - competition with ATP and

destabilization of the kinase - are particularly attractive features of this compound and might

be exploited in more specific future analogs.

In an attempt to exploit the capacious ATP binding pocket present in all the Paks, a metallo-

pyridocarbazole scaffold has been used to position a rigid, bulky, ruthenium complex within
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the ribose binding site99. The resulting compound, termed FL172, efficiently fills the large

catalytic pocket, thus gaining high PAK1 inhibitory efficacy (IC50 ~1 μM) as well as

reasonably high selectivity over other related protein kinases. Among 264 kinases tested,

only 15 showed an inhibition similar to that of PAK1 (Fig. 4). However, compounds such as

this based on organometal conjugates usually suffer from poor solubility and relatively high

toxicity and it is therefore unclear whether this strategy will yield clinically useful inhibitors.

Attempts to develop allosoteric Pak inhibitors have also been described100. For example,

IPA-3 (inhibitor p21-activated kinase-3), a sulfhydryl-containing compound that targets the

N-terminal regulatory domain of group I Paks, was isolated in a deliberate attempt to

uncover non-competitive PAK1 inhibitors100. Reversible covalent binding of IPA-3 to the

PAK1 regulatory domain prevents GTPase docking and the subsequent switch to a

catalytically active state101. This unique mechanism of action likely accounts for the

exceptional target specificity of IPA-3, a property that makes it useful as a tool compound

for in vitro research and as a proof of concept. However, the pharmacokinetic properties of

the compound as well as undesirable redox effects in cells, due the continuous reduction of

the sulfhydryl moiety, makes IPA-3 unsuitable for further clinical development.

Apart from the small molecule drugs, Pak allosteric peptide inhibitors have been widely

used as laboratory tools. Although the isolated PAK1autoinhibitory domain (AID) (Box 1)

efficiently regulates PAK1 function, the need to deliver the peptide into cells makes the

approach challenging for therapeutic use. Moreover, induction of cell cycle arrest by the

PAK1 AID can occur independent of inhibiting PAK1 kinase activity102, most likely due to

AID binding to the fragile-X proteins FMR1 and FRX1, which modulate the stability of the

cell-cycle inhibitor p12waf1 103, 104. However, the AID derived from PAK2 lacks FMR1/

FXR1 binding and presumably exerts its biological effects purely through Pak inhibition.

Two other peptide inhibitors, comprising the cell permeant TAT peptide fused to the PIX-

interacting motif (TAT-Pak18) or the Nck binding motif of Pak1, have also been described.

These peptides are thought to prevent proper cellular localization (and activation) of PAK1

through disruption of PAK1-NCK or PAK1-PIX interactions. The Pak-mediated growth

suppression effect of TAT-Pak18 has been shown on Pak1-dependent ovarian cancer cell

lines105, while a Pak-Nck inhibitory peptide affects endothelial cell migration and

contractility83, 106.

Conclusions and Future Directions

Paks occupy a central position in oncogenic signaling, driving several processes that are the

hallmarks of cancer initiation, growth, and spread. In proliferative signaling, Pak activity is

required for efficient activation of ERK, Akt, and β-catenin in many tissues. These effects

may render cells particularly sensitive to specific small molecule inhibitors of Pak.

With respect to deciphering the role of Paks in cancer, we have a reasonable signaling

framework in hand, but certain basic questions remain. The foremost of these are the

identities of the most relevant substrates, and whether these are unique to individual

members of the Pak family. What is needed are more comprehensive and unbiased

approaches for substrate identification. Efforts in this direction have already begun,
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employing diverse technologies such as protein microarray screens 107, 108, substrate

capture109 and phosphoproteome signatures110, but additional important substrates

undoubtedly remain to be discovered. It will also be important to more clearly distinguish

scaffolding from catalytic functions, as only the latter are expected to be blocked by

conventional small molecule inhibitors.

What sorts of cancers might benefit from Pak inhibitors? We suggest three scenarios. First,

given the apparent “addiction” of Pak-amplified cells to Pak activity, we suggest that tumors

bearing 11q13 or 19q13 amplifications (Box 2), which are commonly found in breast,

ovarian, and pancreatic cancer, should be particularly susceptible to small molecule

inhibitors of group I and group II Paks, respectively. In addition, the genomic organization

of these amplicons suggests that such tumors might also display synergistic responses to

combined inhibition of Pak and signaling proteins that drive cell cycle progression, as genes

encoding Cyclins are frequently co-amplified with Paks. Second, because oncogenic signals

from ERBB2, K-ras, and Merlin have been shown to depend on Pak1 function in mouse

models, tumors driven by mutations in the genes encoding these proteins might also be good

candidates for anti-Pak therapeutics. Finally, the stabilization of β-catenin by PAK1 suggests

that tumors that depend on overactive Wnt signaling, such as most colon cancers, might also

respond well to Pak inhibitors. As with other anti-signaling agents, it is likely that Pak

inhibitors will prove most useful in combination with other targeted drugs, as has been

suggested in xenograft models8, 26.

Due to the structural characteristics of their catalytic domains, the Paks, in particular the

Group I Paks, are challenging targets with respect to the development of specific

competitive inhibitors, but recent progress using a variety of chemical scaffolds suggests

that this challenge can be met. In addition, the unusual activation mechanisms for both Pak

subgroups (Box 1) provide opportunities for the further development of allosteric inhibitors.

Whether competitive or non-competitive, such inhibitors will need to be used with caution,

as mouse models indicate that certain Pak functions, in particular, maintenance of normal

vascular permeability and hematopoietic stem cell function, may be required even in adult

animals (Table 1)111, 112. While it is important to acknowledge these provisos, the central

position of Paks in key oncogenic signaling and their potential tractability as drug targets

make these enzymes worthy of increased study by the community of cancer cell biologists

and by the pharmaceutical industry.

Glossary Terms

Cyclin D1 A cyclin that, in partnership with cyclin-dependent kinases, is a

key protein in progression through the G1 phase of the cell cycle.

The gene encoding this protein (CCND1) is frequently coamplified

with the PAK1 gene in human cancers

Kaposi’s sarcoma-
associated herpes
virus

Human herpesvirus that causes Kaposi’s sarcoma
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Nuclear blebbing vesicular outpocketing of the nuclear membrane that is a hallmark

of apoptosis

Guanine-nucleotide
exchange factors
(GEFs)

Proteins that promote the exchange of GDP for GTP on a GTPase,

thus facilitating its activation

GTPase activating
proteins (GAPs)

Accelerate the hydrolysis of GTP to GDP, leading to an increase in

the proportion of GDP-bound GTPase molecules and a consequent

reduction in their activity

Guanine-nucleotide
dissociation
inhibitors (GDIs)

enzymes that sequester GDP-bound small GTPases in the

cytoplasm

drug efflux the ability to actively pump out certain small molecule inhibitors

from cells

TAT peptide cell penetrating peptide derived from the HIV Tat protein, which,

when fused to a peptide of interest, imparts the ability of the fusion

peptide to penetrate through cell membranes into cells

protein microarray
screens

recombinant proteins arrayed on a surface such as a glass slide,

that can be assessed for phosphorylation following incubation with

a protein kinase and ATP
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Key Points

• There are two subgroups of p21-activated kinases (Paks) comprising three

members each (group I (PAK1-3) and group II (PAK 4-6)). New genetic models

of Pak in mice and fish have illustrated the unique functions of the six Pak

isoforms.

• PAK expression and activity, in particular PAK1 and PAK4, are often

upregulated in human tumors. Tumor cells with upregulated PAK tend to

become dependent on Pak signaling.

• In many cell types, Paks positively regulate at least three key proliferative

signaling pathways: Erk, Akt, and Wnt.

• In addition to their roles in proliferation, Paks also play important roles in

promoting cell survival, invasion and metastasis, and angiogenesis.

• Several potent and specific small molecule inhibitors of all Paks or of group I or

II Paks are in advanced stages of preclinical development. Such agents will need

to be used with caution, however, as Pak function may be required for

maintaining vascular integrity.

• Anti-Pak drugs may be useful in cancers bearing amplified PAK alleles, as well

as in cancers that depend on Pak for activation of downstream signaling

pathways, such as HER2-amplified breast cancer and colon cancers driven by

mutations in the Wnt pathway.
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Figure 1. Validated Pak substrates and their roles in the hallmarks of cancer
Substrates of group I and II Paks are listed according to their putative role in oncogenic

signaling. In some cases (e.g., c-Raf), given substrates play roles in multiple cellular

functions, but may be listed only once to avoid visual clutter. Pak substrates are included

only if reported by more than one group or if the reported site of phosphorylation is

represented in the PhosphoSitePlus database (http://www.phosphosite.org/homeAction.do).

Abbreviations: CALD1, caldesmin 1; ER, estrogen receptor; FlnA, Filamin A; H3, histone

3; LIMK, LIM kinase; MLC, myosin light chain; MLCK, myosin light chain kinase; Plk1,

polo-kinase-1; SSH, Slingshot; Stmn1, stathmin-1; Vim, Vimentin.
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Figure 2. Role of Pak in growth signal autonomy and cell survival
Group I Paks are activated by both Cdc42 and Rac, whereas Group II Paks are activated

only by Cdc42. Selected Pak substrates are depicted according to their role in oncogenic

signaling. Phosphorylation sites, where known, are listed for each substrate. Dashed lines

indicate that Pak has been implicated in activation of the substrate, but that the mechanism is

uncertain.
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Figure 3. Pak signaling in angiogenesis and modulation of vascular permeability
Paks control critical cellular events required for angiogenesis, including endothelial cell

proliferation, survival, attachment and migration. In endothelial cells, the phosphorylation of

BAD and RAF1 by Pak protects against apoptotic stimuli by promoting RAF1 translocation

to mitochondria and the displacement of BAD/BCL2 complexes. As seen in other cellular

contexts, in endothelial cells, the Erk pathway regulates cellular proliferation and migration

when initiated by activation of Rac/Pak pathway. The control of vascular permeability by

Pak is mediated by modulation of cellular contractility and cell:cell adhesion molecules. In

one model, direct phosphorylation of myosin light chain (MLC) by Pak leads to increased

contractility and increased endothelial permeability, as has been seen in certain experimental

settings. Pak has also been proposed to disrupt endothelial cell:cell junctions by direct

phosphorylation and subsequent internalization and degradation of VE cadherin. In another

model, activated Pak phosphorylates and inhibits GEF-H1 (also known as ARHGEF2),

leading to diminished RHOA/RHO-associated coiled-coil containing protein kinase

(ROCK)/MLC activity, decreased contractility and decreased endothelial permeability, This

model is consistent with data showing that Pak protects against an increase in permeability

in a hypoxia induced pulmonary hypertension model and in a Pak2a knockout zebrafish

model (dotted lines).
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Figure 4. Specificity of Pak inhibitors
The human kinome is represented on a radar plot. The Pak family is oriented to 12 o’clock,

emphasized by a red marking. The length of gray areas emanating from the bulls-eye

represents the degree of kinase inhibition by each inhibitor shown below. Kinase families

are indicated by different colors, as shown in the key to the right of the diagram: TK –

Tyrosine kinase; TKL – Tyrosine kinase-like; STE – Homologs of yeast Sterile 20 kinases;

CK1 – Casein kinase 1; AGC –Containing PKA, PKG, PKC families; CAMK – Calcium/

calmodulin-dependent protein kinase; CMGC –Containing CDK, MAPK, GSK3, CLK

families; ATYPICAL – Atypical protein kinase. Primary specificity data are derived from

References 24, 94, 99, and 100.
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