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Abstract

We explored how phonological network structure influences the age of words’ first appearance in

children’s (14–50 months) speech, using a large, longitudinal corpus of spontaneous child-

caregiver interactions. We represent the caregiver lexicon as a network in which each word is

connected to all of its phonological neighbors, and consider both words’ local neighborhood

density (degree), and also their embeddedness among interconnected neighborhoods (clustering

coefficient and coreness). The larger-scale structure reflected in the latter two measures is

implicated in current theories of lexical development and processing, but its role in lexical

development has not yet been explored. Multilevel discrete-time survival analysis revealed that

children are more likely to produce new words whose network properties support lexical access

for production: high degree, but low clustering coefficient and coreness. These effects appear to be

strongest at earlier ages and largely absent from 30 months on. These results suggest that both a

word’s local connectivity in the lexicon and its position in the lexicon as a whole influences when

it is learned, and they underscore how general lexical processing mechanisms contribute to

productive vocabulary development.
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Why do children systematically produce some words at an earlier age than other words?

What biases guide word learning, and how might these biases change as the child develops?

Researchers have identified a variety of word properties that influence acquisition, including

semantic, morphosyntactic, and formal properties (e.g. Gentner & Boroditsky, 2001;

Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Hills, Maouene, Riordan, &

Smith, 2010; Hills, Maouene, Maouene, Sheya, & Smith, 2009; Stevens, Yang, Trueswell,

& Gleitman, 2012; Steyvers & Tenenbaum, 2005; Stoel-Gammon, 2011; Vihman &

Velleman, 2000). Some of these are properties of the word itself, and others concern

relationships among words on semantic or formal dimensions. In the latter group, much

attention has focused on how the phonological similarity of single words to other words in

the rest of the lexicon influences ease of acquisition. The most common and long-standing

operational definition of phonological similarity involves phonological neighbors, words

that differ by the addition, deletion, or substitution of one phoneme (Landauer & Streeter,

1973). The number of neighbors that a target word has, based on this definition, is known as

the target’s (phonological) neighborhood density.

The focus on neighborhood density has yielded important insight into the role of

phonological similarity in language development as well as lexical processing (Bernstein

Ratner, Newman, & Strekas, 2009; Bernstein Ratner et al., 2009; Charles-Luce & Luce,

1990; Coady & Aslin, 2003; Garlock, Walley, & Metsala, 2001; Luce & Large, 2001;

Metsala, 1997; R. S. Newman & German, 2002; Stoel-Gammon, 2011; Storkel, 2004;

Swingley & Aslin, 2002; Vitevitch, Luce, Pisoni, & Auer, 1999; Vitevitch & Luce, 1998,

1999; Vitevitch, 2002), and neighborhood density is a central concept in prominent theories

in these domains (Dell & Gordon, 2003; Luce & Pisoni, 1998; Metsala & Walley, 1998;

Walley, 1993). However, the results of neighborhood density research are complex, and

researchers have long grappled with a sense that neighborhood density does not capture

important aspects of phonological similarity between words in the lexicon (e.g. Bailey &

Hahn, 2005; Mathey, Robert, & Zagar, 2004; Mathey & Zagar, 2000; Yarkoni, Balota, &

Yap, 2008; Zamuner, 2009).

Some of these problems stem from a formal consequence of the traditional definition of

phonological neighbor: a word’s neighbors usually have neighbors of their own, which in

turn have other neighbors, and so on. The definition of phonological neighbors thus

implicitly defines a representation of an entire lexicon in which each word is connected to

all of its neighbors, a phonological network (Arbesman, Strogatz, & Vitevitch, 2010a,

2010b; Vitevitch, 2008). In the present study, we apply this definition over a large corpus of

child-directed speech to construct a phonological network that approximates the lexical

exposure of American English speaking preschoolers.

The structure of complex networks such as this may be quantified both at and beyond the

scale of local neighborhoods (M. E. Newman, 2003), potentially shedding light on the

relationship between when children learn a word and how the word is embedded in the

phonological network. We focus on three common network-theoretic measures, all defined

at the level of individual words: traditional neighborhood density (henceforth referred to

using the equivalent networktheoretic term degree), clustering coefficient and coreness (all

defined below). The impact of a word’s degree on when it is learned has been extensively
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studied in previous work, and clustering coefficient and coreness are particularly well-suited

to measuring the kind of larger-scale network structure implicit in current theories of lexical

and phonological development (cf. recent attention to clustering coefficient in research on

adult lexical processing Chan & Vitevitch, 2009, 2010; Yates, 2013). We will use the term

phonological network properties to denote degree, clustering coefficient, and coreness,

which together provide a richer description of each word’s phonological relationship to the

rest of the lexicon than is available from degree alone.

We assess the power of these phonological network properties for predicting when new

words enter children’s productive lexicons, using a large longitudinal corpus of spontaneous

child-caregiver interaction spanning child ages 14–50 months (Rowe & Goldin-Meadow,

2009; Rowe, Raudenbush, & Goldin-Meadow, 2012). Using longitudinal data allows us to

examine both how phonological network structure affects word learning, and how its role

changes as children develop. We do so using survival analysis, a statistical technique for

modeling the time elapsed prior to some event, here the first time a target word is observed

in the spontaneous speech of a given child (Barber, Murphy, Axinn, & Maples, 2000;

Reardon, Brennan, & Buka, 2002; Singer & Willett, 1991, 2003). Survival analysis also

allows us to control for a set of covariates known to impact word learning: frequency,

length, syntactic category, phonotactic probability, child gender, and quantity of caregiver

speech input.

Our study thus focuses on two main questions about children’s productive vocabulary

growth:

1. Do children produce some words earlier than others based on both local and larger-

scale phonological network properties in child-directed speech? If so, what are the

directions of the effects of degree, clustering coefficient, and coreness?

2. Does children’s sensitivity to these properties change over time, and if so, how?

We begin with an overview of aspects of network science which are relevant for our

investigation, then contextualize the network-theoretic approach within the literature on

neighborhood density and review recent efforts to apply it to lexical organization,

processing, and acquisition. We then describe our data, analytic strategy, and results.

Background

The Lexicon as Phonological Network

A complex network consists of a set of nodes and a set of edges linking pairs of nodes based

on some edge condition (M. E. Newman, 2003). In a phonological network of the kind

examined here (see the network fragment in Figure 1), the nodes are the words in the

lexicon, and the most common edge condition is the traditional definition of a phonological

neighbor (Landauer & Streeter, 1973): two words are linked if they differ by the addition,

subtraction, or substitution of a single phoneme (Arbesman et al., 2010a, 2010b; Vitevitch,

2008), based on words’ adult-like segmental composition. While this definition neglects the

role of features, suprasegmentals, the position of the edit, and so on (e.g. Bailey & Hahn,

2005; Mathey et al., 2004; Mathey & Zagar, 2000; Yarkoni et al., 2008; Zamuner, 2009),
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considering an entire network substantially enriches the concept of phonological

neighborhoods with the capacity to quantify larger-scale structure.

The most local property of nodes in a network is their degree, which in the present case

corresponds to neighborhood density: the number of edges connected to the word.

Clustering coefficient expands the focus to take in properties of a target word’s neighbors,

and is defined as the proportion of all pairs of a target’s neighbors that are neighbors of each

other. For example, in Figure 1, sat has four neighbors, sit, pat, cat, and rat. There are thus

six possible pairings of its neighbors: sit-pat, sit-cat, sit-rat, pat-cat, pat-rat, and cat-rat, but

only the last three of these combinations represent pairs of neighbors. The clustering

coefficient of sat in this network fragment is thus 3/6, or 0.5.

The most global phonological network property of individual words that we examine here is

coreness, which quantifies a word’s embeddedness in the network (Alvarez-Hamelin,

Dall’Asta, Barrat, & Vespignani, 2005, 2008; Dorogovtsev, Goltsev, & Mendes, 2006). It is

the most global because it is calculated based on the structure of the entire network: a node

(word) has coreness k if it both remains in the network after recursively pruning all nodes

with degree < k, and is removed after recursively pruning all nodes with degree ≤ k. Note

that a word’s coreness may not exceed its degree, but it may be smaller. For example, while

sick, in Figure 1, has two neighbors, it resides in the first core because after removing sicker,

which has degree 1, sick has only one remaining neighbor and is therefore also pruned.

Words with higher coreness belong to increasingly cohesive subgroups of the network,

which are intuitively “deeper” in the network, and words with lower coreness belong to less

cohesive subgroups of the network, which are intuitively more “peripheral”.

Phonological Network Structure and Acquiring a Lexicon

Coreness and clustering coefficient quantify aspects of the interrelatedness of local

neighborhoods, making them well-suited to our primary goal of investigating the role of

larger-scale phonological similarity structure in word learning. Current theory attributes

degree effects in word learning to the ways in which children represent and process

phonologically similar words, and we will argue below that a role for larger-scale network

structure is also implicit in both of these mechanisms. This leads us to expect significant

effects of clustering coefficient and coreness, in addition to degree, on children’s word

learning.

However, the current literature does not provide a clear indication of what the direction of

these effects should be, and in fact there is little reason to expect all three phonological

network properties to relate to word learning in the same way. In general, phonological

similarity has been thought of as both a challenge (because similar words are more

confusable; Ferguson & Farwell, 1975; Hallé & de Boysson-Bardies, 1996; Storkel & Lee,

2011; Vihman & Velleman, 2000; Vihman, 1996), and an opportunity (because words with

many neighbors tend to be composed of frequent phonological material; Lindblom, 1992;

Menn, 1978; or because neighbors can support novel words’ representations in working

memory; Storkel & Lee, 2011).
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Following the first of these lines of reasoning, the challenge of representing phonologically

similar words in memory is thought to drive the emergence of segmental detail in children’s

phonological representations, an idea most extensively developed in the Lexical

Restructuring Hypothesis (Beckman, Munson, & Edwards, 2007; Metsala & Walley, 1998;

R. S. Newman, 2008; Stoel-Gammon, 2011; Walley, 1993). Since words with many

neighbors can only be distinguished from those neighbors through the representation of rich

segmental detail, but less well specified representations are sufficient for words with few

neighbors, detail (or the ability to use detail efficiently, R. S. Newman, 2008) emerges first

in children’s representations of words with high degree (Garlock et al., 2001).

The second line of reasoning is apparent in a more articulated view of the development of

phonological representations recently proposed by Storkel and Lee (2011), in which children

must first identify new words requiring a new lexical entry (triggering), then develop a

specified representation for the word (configuration) and integrate that representation with

the rest of the lexicon (engagement). Under this view, confusability with many neighbors

may inhibit triggering by making it harder to distinguish a new word from other, existing

representations, but neighbors may be more helpful in the later stages of word learning by

facilitating the processing of new words or helping to maintain them in working memory

longer. Other ways of dividing up the process of word learning may be possible (e.g. Werker

& Curtin, 2005), but Storkel and Lee’s account points out how the similarity of a word with

its neighbors may result in confusability under some circumstances, and support under

others. Crucially, a role of the interconnectedness of neighborhoods is implicit in both of

these mechanisms.

Regarding the demands that neighbors place on representation, we might at first glance

consider densely interconnected neighborhoods to simply increase the general level of

confusability across a wider portion of the network, making acquisition, or triggering, more

difficult where degree, clustering coefficient, and coreness are all high. On the other hand,

the confusability of a new word with its immediate phonological neighbors may well depend

on the pressure to represent those neighbors in detail, implicating both clustering coefficient

and coreness. Where clustering coefficient is high, a target word’s neighbors tend to differ

from the target in few segmental positions and the neighbors’ relationships with each other

thus highlight precisely the detail that will help distinguish the target. Where coreness is

high, many dense neighborhoods are interconnected, supporting the emergence of detailed

representations across a larger area of the lexicon. High clustering coefficient and coreness

may thus in a sense pave the way for the addition of new words, since better specified

representations of their neighbors should reduce confusability.

Regarding lexical processing, a role for clustering coefficient and coreness is implicit in the

basic idea of spreading activation (e.g. Luce & Pisoni, 1998), because there is nothing to

prevent activation from flowing beyond a target word’s neighbors to their own neighbors

and beyond, apart from gradual decay at greater distances (Chan & Vitevitch, 2009). Chan

and Vitevitch suggested that the interconnectedness of neighbor relationships among the

words surrounding a target, which they measured using clustering coefficient, can affect the

gradient of activation between the target and its competitors (see also Chen & Mirman,

2012) by allowing activation to either dissipate farther out in the network (low clustering
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coefficient) or become pooled among competitors (high clustering coefficient). This accords

with the inhibitory effects of clustering coefficient on adult performance in both word

recognition (Altieri, Gruenenfelder, & Pisoni, 2010; Chan & Vitevitch, 2009; Yates, 2013)

and production (Chan & Vitevitch, 2010) tasks, and a similar scenario is expected for

coreness, where the interconnectedness of neighborhoods provides paths whereby activation

may flow among competitors, boosting their activation relative to the target. If working

memory and other lexical processing mechanisms play a substantial role in the development

of new phonological representations, we would therefore expect inhibitory effects of

clustering coefficient and coreness on acquisition, in contrast to the facilitatory effects

reported for degree (Storkel & Lee, 2011; cf. the facilitatory effects of degree on speech

production, Vitevitch, 2002; Vitevitch & Sommers, 2003).

The emerging theoretical picture is thus complex. The initial recognition of new words may

be inhibited by high degree, clustering coefficient, and coreness because of their high

confusability among known competitor words, although the effects of clustering coefficient

and coreness could instead turn out to facilitate word learning, because high values for these

properties are expected to support more detailed representations of a new target’s direct

competitors, helping to distinguish the target. If, however, general processes involved with

lexical access substantially mediate lexical development, at least following children’s first

encounter with a word, then we might expect facilitatory effects of degree, but inhibitory

effects of clustering coefficient and coreness. This latter possibility is particularly

compatible with a view of lexical development as a process of learning to produce words

that the child has already begun to recognize (Stokes, 2014).1

The existing evidence, focused primarily on degree, does not unambiguously support any of

these possibilities. Prior investigations of this issue have relied on two major strategies. The

first explores differences in the overall composition of child and adult lexicons as evidence

for children’s biases in word learning. The second examines whether individual words or

non-words are more or less difficult to acquire (in naturalistic or laboratory contexts) based

on the presence of neighbors.

There is less empirical evidence concerning our second research question, how children’s

sensitivity to phonological similarity changes over time. From the existing literature on this

issue, summarized below, the expectation that sensitivity to phonological similarity does

change seems clear, but there are several possibilities for what type of change should take

place.

Studies of phonological similarity structure across the entire lexicon—
Focusing on the overall composition of the lexicon, Charles-Luce & Luce (1990, 1995)

predicted that, if representing confusable words is a challenge for children, then the early

lexicon should be characterized by sparser neighborhoods than the adult lexicon. Comparing

the lexicons of 5 and 7 year-olds with an adult lexicon (a dictionary), they found support for

this view, but the fact that most words in the child lexicon had at least some neighbors, and

1Note that this only requires that children have begun to develop phonological representations of the neighbors; they need not be able
to produce them yet, nor even necessarily comprehend them fully.
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some had many, appears to indicate substantial sensitivity to detail (Dollaghan, 1994).

Moreover, Coady and Aslin (2003) argued that since children’s lexicons are smaller than

adults’, it might be more meaningful to measure the proportion of the lexicon to which a

target word was similar, rather than the raw number of neighbors. Using this metric, they

obtained the opposite result: children’s lexical neighborhoods (age 42 months) were denser,

not sparser, than adults’.

In network-theoretic terms, these studies compared the degree distributions of phonological

networks, which is one of several measures of global network structure. For example, in

(adult) phonological networks in a variety of languages (Arbesman et al., 2010a, 2010b),

most of the lexicon resides in a single interconnected “giant component”, and the rest resides

in many smaller “islands.” In addition, the degree distribution tends to be fit well by a

truncated power law (Arbesman et al., 2010b), the average shortest distance between any

randomly selected pair of nodes is small, the average clustering coefficient is high, and

edges tend to connect nodes with similar degrees, a property known as assortative mixing.

Networks (linguistic or otherwise) with these properties are often said to exhibit small-world

structure,2 and have been argued to be easily searchable and to exhibit stable structure in the

face of missing nodes (Amaral, Scala, Barthelemy, & Stanley, 2000; Kleinberg, 2000; Watts

& Strogatz, 1998).

Carlson, Bane, and Sonderegger (2011) used several of these metrics (including degree

distribution, average degree, average shortest path, assortativity, and mean clustering

coefficient) to compare lexicons derived from corpora of child-, child-directed, and adult-

directed speech. The child- and child-directed speech lexicons, approximating the

productive vocabularies and cumulative input of 4 year-old children, exhibited values more

indicative of small-world networks than the adult lexicon, suggesting that the growth

process underlying child phonological networks may be biased to favor searchability and

stability.

One interpretation of the findings of Carlson et al. (2011) and Coady and Aslin (2003) is that

children acquire words in a way that favors a “denser” lexicon, which in the context of the

current study would lead us to expect facilitatory effects of all three phonological network

properties. However, small-world structure per se does not necessarily indicate anything

about the biases that guide children’s piecemeal acquisition of the lexicon. Children’s

lexicons may simply replicate the properties of their input, as suggested by the highly

similar network properties found in these studies between the child- and child-directed

speech networks, despite the latter being much larger. Moreover, while small-world

structure can be a sign of certain kinds of growth processes in other types of networks

(Albert & Barabási, 2002), a peculiarity of phonological networks necessarily yields small-

world structure regardless of the underlying growth process (Gruenenfelder & Pisoni, 2009).
3

2More precisely, small-world networks are defined as having a low average shortest path length, and a high clustering coefficient,
compared to random networks.
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Thus, while studies evaluating the overall composition of the phonological network suggest

that children may favor a “denser” lexicon in some sense (higher degree, and properties

more consistent with small-world networks), the sensitivity of these findings to

methodological decisions, as well as issues of how to interpret small-world structure, make

this suggestion tentative at best.

Phonological similarity and the learning of individual words—The research on

effects of phonological similarity on the learning of individual words has not yet addressed

larger-scale phonological network properties such as clustering coefficient and coreness, and

for degree the emerging picture is complex. Experimental studies using both non-words and

words provide ample evidence that children find highly similar words to be more

challenging to learn than less similar words across the first 5 years of life (Pater, Stager, &

Werker, 2004; Stager & Werker, 1997; Swingley & Aslin, 2007; but see Fennell & Werker,

2003; McKean, Letts, & Howard, 2013; Werker & Curtin, 2005; Yoshida, Fennell,

Swingley, & Werker, 2009). However, facilitatory effects of phonological similarity emerge

under certain conditions. For example, while multiple repetitions of phonological neighbors

led to reduced non-word learning in 17 month olds, exposure to only a few repetitions of the

neighbors led to enhanced learning (Hollich, Jusczyk, & Luce, 2002). Similarly, hearing

known neighbors boosted 2 year-olds’ recognition (Merriman & Marazita, 1995), and 4

year-olds’ production (Demke, Graham, & Siakaluk, 2002), of novel nouns. Finally, Storkel

and Lee (2011) found better learning of low-degree than high-degree non-words on an

immediate posttest, but this pattern was reversed on a delayed posttest a week later.

Thus, while children may have difficulty with direct conflict between similar words,

phonological neighbors may support word learning as long as competition is not too great

(e.g. when the neighbors are already known to the child or when they are not too salient), or

they may support some underlying processes of word learning (e.g. configuration and

engagement), but not others (triggering).

There have been fewer investigations of the role of phonological similarity in word learning

with naturalistic data. The analyses of the overall composition of the child lexicon reviewed

above (Carlson et al., 2011; Charles-Luce & Luce, 1990, 1995; Coady & Aslin, 2003), used

naturalistic data, but we have already reviewed the difficulties in interpreting their results.

Storkel (2009, see also 2004) analyzed the timing of nouns’ appearance in children’s (aged

16–30 months) productive lexicons, based on the proportion of children of each age reported

by their parents to have produced the nouns on the MacArthur-Bates CDI (Fenson et al.,

1994). Short, high degree words were known by more children and acquired at an earlier age

(but see Stokes, 2010; Stokes, Kern, & Dos Santos,2012), but the strength of the effect

decreased steadily after age 2., This finding does not conclusively demonstrate a degree

effect, as Storkel used a composite score of length and degree, but it yields some support for

predicting a positive effect of degree here. There is also evidence for substantial variability

in children’s sensitivity to degree (Maekawa & Storkel, 2006). To our knowledge, the

3Unlike many other kinds of networks, the nodes in a phonological network (words) comprise strings of lower-level units from a finite
inventory (phonemes). Gruenenfelder and Pisoni constructed a set of such networks based on lexicons of randomly generated non-
words, and found that the resulting phonological networks had the same small-world properties noted by Vitevitch (2008) for the
English phonological network.

Carlson et al. Page 8

J Mem Lang. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



current study is the first to examine the effects of clustering coefficient and coreness on

word learning.

Developmental change in sensitivity to phonological similarity—Storkel’s (2009)

finding supports the expectation of developmental change in the effects of phonological

similarity, as do differences in the results of experimental studies using different age ranges,

cited in the previous subsection. The early effects of phonological similarity may be positive

or negative, depending on various factors, but in either case the effects seem to attenuate

with age. Developmentally graded effects are also expected under the PRIMIR model of

infant speech processing (Werker & Curtin, 2005).

Attenuation is also supported by the idea described above that children’s ability to use

phonological detail is driven by the need to distinguish similar words in memory (Beckman

et al., 2007; Ferguson & Farwell, 1975; Hallé & de Boysson-Bardies, 1996; Vihman, 1996).

Since phonological detail is expected to emerge first in denser areas of the lexicon, and then

spread to sparser areas, the greatest difference between dense and sparse areas should occur

early and attenuate as words in the sparser areas ‘catch up’ to those in denser areas. This

should be true for both local (degree) and larger scale (clustering coefficient and coreness)

phonological network properties, based on the reasoning above. However, the

developmental attenuation of effects may or may not be apparent in the age range examined

here (14–50 months), given that lexical restructuring is likely to continue well into later

childhood (Metsala & Walley, 1998; Walley, 1993).

The effects of phonological network structure on working memory or other lexical access

processes, however, persist in adulthood, as evidenced by the extensive literature on degree

and the growing literature on clustering coefficient (Altieri et al., 2010; Chan & Vitevitch,

2009, 2010; Luce & Large, 2001; Vitevitch et al., 1999; Vitevitch & Luce, 1998, 1999;

Vitevitch & Sommers, 2003; Vitevitch, 2002; Yates, 2013). Thus, phonological network

structure may continue to impact word learning in adults (Storkel, Armbruster, & Hogan,

2006). To the extent that this mechanism is implicated in children’s productive vocabulary

growth as well (Storkel & Lee, 2011), we might expect it to be fairly stable

developmentally. The question is whether we will be able to detect any effects of

phonological network structure on processing in spontaneous speech data. When children’s

lexicons are small, the effects of ease of processing on productive vocabulary may be

apparent (Storkel, 2009), but later on children’s word choice is more likely to reflect their

communicative needs than their lexical knowledge or ease of lexical processing (Rowland,

Fletcher, & Freudenthal, 2008; Tomasello & Stahl, 2004). Thus, an apparent attenuation of

phonological network effects on productive vocabulary may not indicate a change in the

underlying mechanism.

In the present study we use the Chicago corpus (Rowe & Goldin-Meadow, 2009), a large

longitudinal corpus of spontaneous child-caregiver speech, to test our expectation of

developmentally graded effects of phonological network properties on the timing of words’

entry into children’s productive vocabularies. The caregiver speech samples offer an

approximation of children’s lexical experience, allowing us to measure words’ network and

other properties. The children’s longitudinal samples allow us to observe the age at which
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words enter children’s speech for the first time, forming the basis for our survival analysis.

By analyzing how children sample words from the available input, we are also able to test

whether children simply replicate the network properties of their input lexicon, or actively

favor words with particular properties.

Materials and Methods

Data

The Chicago corpus consists of speech samples from 64 child-caregiver dyads who were

observed during everyday interaction in the home for 90 minutes every four months, from

child age 14 to 58 months (Rowe & Goldin-Meadow, 2009). Caregivers were asked to do

whatever they would normally do during the same time interval. In the present study, we use

only the 10 samples up to age 50 months. Two of the dyads were excluded due to missing

data. In addition, if a child missed a recording session (to keep the sample durations

relatively uniform, sessions that were cut short at less than 80 minutes were also considered

“missed”, for our purposes), that child’s data from subsequent sessions were removed, or

“right-censored”, in the terminology of survival analysis. This is because what is being

modeled in our discrete-time survival analysis is the age at the session of a child’s first

production of a word (see the Analysis subsection, below). Thus, if a child missed a

recording session, data points from subsequent sessions are not informative, because her

first productions of words could have occurred during the missed session. The data from

nine children were censored at ages varying from 18 months to 42 months. The remaining

53 children were present for all 10 sessions.

The data for our study thus encompass 569 sessions from 62 dyads. 30 of the 62 children

were female, and in most dyads the primary caregiver was the mother (in one dyad it was

the father, and in five dyads both parents participated as primary caregivers). All children

were being raised monolingually in English, and the sampling of families was designed to

approximately span the range of socioeconomic status, assessed using a composite of

income and caregiver education, in the greater Chicago area. Several metrics of the size of

the corpus are given in Table 1.

The initial transcription included all words produced by the child or the primary caregiver,

including onomatopoeia and interjections. The speech of other individuals who might have

been present, and caregiver speech to individuals other than the child were not transcribed.

Children were credited with the word attempted, even if pronunciation varied, as long as the

word could be identified. Morphological errors (e.g. runned) were transcribed as produced.

Phonological network in child-directed speech—For the present study, the ambient

lexicon was considered to be all orthographically unique words uttered by any caregiver in

the Chicago corpus (n = 14890), with the restrictions listed here. Part of speech was

determined using the MOR tagger in CLAN (MacWhinney, 2000; Sagae, Davis, Lavie,

MacWhinney, & Wintner, 2010). In the case that one orthographic form corresponded to

words in more than one syntactic category, the more frequent part of speech was used, based

on the output of the tagger. Phonological forms for each word were obtained from the CMU

pronouncing dictionary (Carnegie Mellon Speech Group, 1993), and words not appearing in
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CMUdict were omitted (n = 1325).4 Inflected forms were retained, such that the lexicon

consisted of the full set of phonological forms encountered by children in the ambient

lexicon as defined here (n = 13565).

This lexicon was used to construct a phonological network of the kind described above.

Construction of the network, as well as measurement of the phonological network properties

(degree, clustering coefficient, and coreness) for each word, were performed in Python using

the NetworkX library (Hagberg, Schult, & Swart, 2008). Each word in the lexicon

corresponded to one node in the network and two nodes were linked by an edge if the

phonological edit distance between the nodes was 0 or 1. Note that homophones—words

with different orthography, but the same phonological form—were thus counted as

neighbors. Degree and coreness were calculated for all words, and clustering coefficient for

words with degree of 2 or more, because clustering coefficient is not defined for words with

less than two neighbors.

Child word acquisition data—The analysis of children’s word acquisition presented

below uses a subset of the words in the ambient lexicon, as defined above, chosen based on

several criteria. The first and most important restriction was to consider only the 652 words

which were produced at least once by at least 30 of the 62 children in the child speech

samples of the Chicago corpus (all of which were present in the caregiver corpus as well).

This restriction was one of two ways in which we addressed an important difficulty with

using spontaneous speech to gauge vocabulary knowledge. The appearance of words in

spontaneous speech is strongly influenced by talkers’ need to use those words during the

observation (Ota & Green, 2013; Rowland et al., 2008; Tomasello & Stahl, 2004), and as a

result, we are unlikely to observe a very low-frequency word in a given child’s spontaneous

speech, even if the child knows the word. Placing the cutoff at about half the sample of

children resembles the common practice of using the age at which half of children have

acquired a word as its age-of-acquisition (e.g. Goodman, Dale, & Li, 2008). Thus, the words

included in this analysis would all have an age of acquisition at or before 50 months, the

latest age recorded in the sample.

The second way we sought to capture effects of usage or communicative need on our

chances of observing first productions was by including word frequency (in caregiver

speech) as a predictor in the model. Any effects of frequency are thus not interpretable as

effects on word acquisition, per se, but by controlling for this variable we aimed to make

any effects of the phonological network properties more directly interpretable as reflecting

acquisition rather than usage.5

4Note that we do not assume that children produce the words in an adultlike way. The use of adultlike representations of words does,
however, reflect the fact that children must contend with the adult forms in their environment.
5Additionally, we refit the model reported below using a much lower threshold, including all 1239 words that were acquired by at
least 10 children (instead of 30) by the end of sampling, and obtained the same qualitative results, including the attenuation of
phonological network effects by about 30 months. Since the effect of communicative need on the likelihood of observing utterances of
known words is stronger for lower frequencies, this offers some reassurance that the effects reported below are not influenced by this
feature of spontaneous speech.
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In addition to variations in communicative need, a second difficulty in assessing vocabulary

knowledge from spontaneous speech is the possibility that children may differ in how

“talkative” they are, either in general, or across individual recording sessions. Our multilevel

survival model accounts for this possibility to some extent with a by-child random intercept

and by-child random slopes for the effect of age (see below for full model specification).

Additional fluctuations might be captured using a fixed effect covariate (e.g. number of

tokens produced by the child at each session), or with by-session intercepts nested within

child. However, we do not expect talkativeness to alter the effects of phonological network

properties, so we do not include these effects in order to reduce model complexity.

From this set of 652 words, we further excluded 101 words matching one or more of several

criteria:

1. Communicators (e.g. hey, okay; 34 words) and onomatopoeic words (3 words),

which tend to be more variable or to occur in reduced form in spontaneous speech.

2. All 63 words with degree < 2, for which clustering coefficient is undefined.6

3. Seven words consisting of one phoneme (e.g. I), for which the notion of

neighborhood does not make intuitive sense (these seven words are all neighbors,

despite sharing no phonological material).

Thus, our analysis considers a set of 551 words, listed in Appendix 2: 213 nouns, 140 verbs,

114 modifiers, and 84 closed-class words. Descriptive statistics for these words are given in

Table 2, both for the untransformed variables, and the log-transformed versions included in

the survival model as predictors.78

Analysis

Background: multilevel survival analysis—At a high level, our goals in modeling

this dataset are to understand how a set of variables affects when a given child produces a

given word for the first time, and how the effects of some of these variables change over

time. Survival analysis (also known as event history analysis or hazard modeling) is a

statistical methodology commonly used to analyze this type of data: an event (such as a

child producing the word mommy) is either observed to occur at, but not prior to time point t,

or it is observed to never occur. A survival analysis models how the hazard probability of

the event’s first occurrence changes over time, according to a hazard function. The hazard

function is also affected by a set of predictors (such as the degree of mommy in the child’s

input), whose effects may be allowed to change over time. Survival modeling is widely used

in other fields to model events such as the onset of cigarette use (see e.g. Singer & Willett,

1991, 2003), and it has also been applied to language development datasets like ours, to

model the first occurrence of various language milestones, e.g. the production of a child’s

6An alternate strategy would be to assign these words clustering coefficient = 0 because they have no neighbors that are neighbors of
each other. We refit the model reported below using this strategy and obtained the same qualitative results.
7Note that “word length” in this table refers to the mean length in phones, computed over all pronunciations listed in the CMU
dictionary. Thus, non-integer word lengths are possible. For example, the length of “are” is 1.5, since the CMU dictionary lists the
pronunciations [ˈαɹ] and [ɚ].
8To avoid taking log(0), a constant was added to degree, clustering coefficient, and coreness before applying a log transformation. For
each variable the constant was equal to one half the difference between the lowest and second-lowest values of that variable. This step
was taken for the other word properties so that all log transformations were carried out in the same way.
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first words (Ota & Green, 2013; Smolík, 2013; Tamis-LeMonda, Bornstein, & Baumwell,

2001; Tamis-LeMonda, Bornstein, Kahana-Kalman, Baumwell, & Cyphers, 1998).

Standard survival analysis assumes that observations are independent, conditional on the

predictors. For structured data such as ours, which is grouped by child and by word, a

multilevel version of survival modeling is needed, which takes into account the non-

independence of observations from the same group, analogously to the multilevel regression

models which are now widely used in language research (Baayen, Davidson, & Bates, 2008;

Quené & van den Bergh, 2008). In particular, we use multilevel discrete-time hazard

modeling (Barber et al., 2000; Reardon et al., 2002), which models the hazard of an event

occurring at a discrete set of times, for grouped data. For our data, the event is a word being

produced by a child for the first time in our sample. By including crossed random effects for

word and child, we are able to model individual hazard functions for each word and for each

child. By including word-level and child-level variables in the model, we can assess how

properties of words and of children affect the hazard of first production.

Model specification—Following Reardon, et al. (2002), the analysis was conducted as

follows. First, a data matrix was prepared with one row per child per word per sampling age.

For each child-word pairing, the dependent variable was set to one at the age at which the

child first produced the word, and zero at time points prior to that age. Time points after first

production were removed, because the event being modeled (first production) had already

occurred. As noted above, if a child missed a recording session, all subsequent time points

for that child (for all words) were removed. A discrete-time multilevel hazard model for this

data can be estimated by fitting a multi-level logistic regression with a logit link (Barber et

al., 2000). We did so using the glmer() function from the lme4 package in R (Bates,

Maechler, & Bolker, 2013), which fits multilevel generalized linear models using the

Laplace approximation.

Fixed effects: A range of fixed effects were included in the model, to capture a number of

factors which affect a child’s probability of producing her first instance of a word at a given

time. These are summarized in Table 3. These predictors are related to several types of

variables: (1) time (child’s age during a session), (2) characteristics of children (child-level

variables: gender, and caregiver lexical richness), and (3) properties of words (word-level

variables). The word-level variables can be further divided into phonological network

properties (degree, clustering coefficient, coreness), and other word properties (length in

segments, frequency, phonotactic probability, part of speech). In addition to main-effect

terms for variable types (1)-(3), terms for interactions between child age and word-level

predictors were included, to examine changes in children’s sensitivity to network structure

over time.

Child age was coded in intervals of four months starting at 14 and ending at 50 months, and

centered at 30 months. Based on visual inspection (e.g. Figure 2) and on fitting various

baseline hazard models (including only a linear or non-linear function of age as a fixed

effect), we determined that modeling the hazard’s dependence on age using a restricted

cubic spline with 3 knots provided the best fit (Harrell, 2001). The two spline components

were then transformed into two principal components to reduce collinearity.
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Among word-level predictors, the network-theoretic properties (degree, clustering

coefficient, and coreness), as well as frequency and word length (in phones), were log-

transformed to bring their distributions closer to normality (see Footnote 8). These variables

are not all independent, raising the spectre that multicollinearity might mask the effects of

network properties on when words are acquired, and lead to difficulty in fitting models. We

thus took the following steps to minimize multicollinearity. Because log degree and log

word length are highly correlated (r = −0.74, p < 0.001 in our sample), we residualized log

degree on log length. The resulting predictor, DEGREE’, tests whether degree has an impact on

word learning beyond its shared variance with word length.9 Likewise, log coreness is

highly correlated with log degree (r = 0.94, p < 0.001), as expected given that a word’s

coreness cannot, by definition, be greater than its degree. We therefore residualized log

coreness on log degree, as well as log length (given the correlation between length and

degree). The resulting predictor, CORENESS’, tests whether coreness has an impact on word

learning beyond its shared variance with degree (and word length). log clustering coefficient

(CLUSTERING COEFFICIENT) was not strongly related to the other three variables (Variance Inflation

Factor = 1.5), so it was not residualized.

Since we were interested in changes in the impact of the phonological network properties

over time, we included two-way interactions of DEGREE’, CLUSTERING COEFFICIENT, and CORENESS’ with

both of the child age components. Since two of these variables had been residualized on

LENGTH, we also included the interactions of LENGTH with the age components.

In addition to the effects of network properties and their interactions with child age, which

are of primary interest, we included several word-level and child-level predictors, to

control for known sources of variability in word learning. We included the child’s gender

and caregiver lexical richness (calculated as the mean number of word types produced per

90-minute recording session by the child’s caregiver in child-directed speech, across all

available samples), to account for advantages in language development for girls and for

children who experience more child-directed speech (Hart & Risley, 1992; Hoff & Naigles,

2002; Hoff, 2003, 2010; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Rowe, 2008).

We initially included SES as well, but its effect was not significant. As this measure was

missing for six of the 62 children, we chose to drop it from the analysis, in order to include

the data for those children.

At the word level, we included the word’s log frequency in the present corpus of child-

directed speech, log word length in phonemes, and log phonotactic probability, again

relative to the present corpus. We expect a higher likelihood of short, frequent words being

added to children’s lexicons (e.g. Goodman et al., 2008; Storkel & Lee, 2011; Storkel,

Maekawa, & Hoover, 2010; Storkel, 2004, 2009). We included phonotactic probability

because of the possibility that observed advantages for high-density words in acquisition

may in fact be due to their being composed of frequent phonological material (Coady &

Aslin, 2003; Lindblom, 1992; Menn, 1978). Each word’s phonotactic probability in the

corpus of child-directed speech was calculated using a bigram model over phones, with

9This residualization parallels the common practice in the neighborhood density literature, where separate analyses are conducted for
words of each length (e.g. Charles-Luce & Luce, 1990, 1995; Coady & Aslin, 2003; but see Storkel, 2004, 2009).
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bigram probabilities estimated from the caregiver speech corpus.10 Because (log)

phonotactic probability and (log) word length are highly correlated (r = −0.79 in our

sample), log phonotactic probability was residualized on log length. Before residualizing,

log phonotactic probability was also significantly correlated with degree, clustering

coefficient, and coreness (r = .64, .35, .69, respectively, all p < .001), but after residualizing

the correlations were small or nonsignificant (r = .12, p < .01, r = −.02, p > .7, and r = .04, p

> .3, respectively). Finally, we also included words’ part of speech as a factor with four

levels: noun, verb, modifier, and closed class, to account for a different baseline hazard of

first production for each of these categories (Gentner & Boroditsky, 2001; Goodman et al.,

2008).

To minimize collinearity, all continuous predictors were centered and all categorical

predictors sum-coded. Continuous word-level and child-level predictors were centered at the

word or child level (e.g. the mean log frequency across word types was subtracted from each

word’s log frequency). AGE was centered at 30 months. The condition number for the final

set of predictors was 3.4, indicating minimal collinearity (Belsley, Kuh, & Welsch, 1980).

Random effects: The model included crossed random effects for words and for children.

By-word and by-child random intercepts were included, to account for variability in

children’s “baseline” probability of producing new words and variability in words’ baseline

probability of being acquired, beyond the effects of child-level and word-level predictors

included in the model. (The by-word random intercept can be more intuitively understood as

capturing variability in when words tend to be acquired.)

The model also included all possible by-word and by-child random slopes corresponding to

predictors of interest, given our modeling goals: AGE, network properties (DEGREE’, CLUSTERING

COEFFICIENT, and CORENESS’), their interactions with AGE, as well as LENGTH and its interaction with age

(given that DEGREE’ and CORENESS’ were residualized on LENGTH). Thus, random slopes for AGE (both

components) were included for both words and children. These random slopes, together with

the random intercepts, capture variability among words and children in the baseline hazard

function, including individual differences in children’s rate of vocabulary growth as well as

systematic variability across ages in children’s talkativeness. Random slopes by child were

included for DEGREE’, CLUSTERING COEFFICIENT, CORENESS’, AGE:DEGREE’, AGE:CLUSTERING COEFFICIENT, AGE:CORENESS’, LENGTH,

and AGE:LENGTH, capturing variability among children in the influence of each of these word-

level predictors on the baseline hazard function.

We included these random slopes to mitigate Type I error in the estimates of their fixed-

effect coefficients (Barr, Levy, Scheepers, & Tily, 2013), but excluding correlations among

the random effects.11 Random slopes for the remaining predictors (child gender, caregiver

lexical richness, frequency, phonotactic probability, and part of speech) were not included,

10Specifically: over the pronunciations as used in constructing the CDS phonological network, and including a word boundary
symbol, unigram and and bigram probabilities were estimated using counts from the whole child-directed speech corpus, using Good-
Turing smoothing to account for unseen bigrams. Each word's phonotactic probability was then calculated as the product, for each
phone wi in the word, of P(wi | wi−1) = P(wi, wi−1)/P(wi−1) using the bigram and unigram models for P(wi, wi−1) and P(wi−1).
11Correlations between the random effects were excluded because the model failed to converge if correlations were included.
Furthermore, because of the transformations already applied to the predictor set to minimize collinearity, the predictors of interest
were largely uncorrelated, so we were confident that the variability in their effects among children and words would be as well.
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because it proved unfeasible to fit models with all random slopes in a reasonable amount of

time, and the effects of these predictors are not related to our primary modeling goals, so

increased Type I error for their coefficients is acceptable. Accordingly, we will be tentative

in drawing any conclusions from the fixed-effect coefficients for these predictors.

Results

Empirical Trends

Before presenting the survival model of first productions just described, we examine plots of

how children’s likelihood of first producing a word, as well as the effect of network

properties, change over time in the empirical data. These plots will give us a sense of what

results to expect from the survival model.

Figure 2 shows the “overall” hazard function and survival function observed in our

empirical data. The left panel plots the hazard at each time point t: the proportion of first

production events which occur, out of all those which could occur, at a given age. This plot

illustrates that the chance of a child producing a word for the first time rapidly rises for ages

up to 30 months, after which it plateaus at 17.5–20%. The middle panel shows the logit (log-

odds) of the hazard at each t, which is what is actually modeled in the survival model. The

right panel shows the survival function: the proportion of word/child pairs for which

acquisition has not occurred by time t, implied by the hazard function at times up to t. This

survival function illustrates that the chance of a word not having been acquired by a child,

on average, decreases steadily over the study period, with the rate of decrease slowing

slightly around 35 months.

To visualize the empirical effects of the phonological network properties on the hazard of

first production at each age, we used a more complex method to take into account

collinearity between degree and coreness (and between both and word length). At each child

age in the sample, we carried out a logistic regression of whether every possible first

production event happened, using (log-transformed) degree, coreness, clustering coefficient,

and word length (using the unresidualized versions of degree and coreness). The regression

coefficient of each network property serves as a rough measure of how that property affects

first production at a given age – without controlling for the many other factors (by-word and

by-child offsets, word part of speech, etc.) included in the full survival model. Figure 3 plots

each network property’s regression coefficient, with 95% confidence intervals, over time.

Degree (left panel) and coreness (right panel) start out having positive and negative effects,

respectively, on the hazard of first production (higher-degree words and lower-coreness

words are more likely to be produced). These effects rapidly diminish until about 30 months,

after which degree and coreness have no effect. A word’s clustering coefficient (middle

panel) does not affect the likelihood of its being produced for the first time, at any age.

Survival model

We now turn to the results of the full survival model of the first production data, described

above. Table 4 summarizes each fixed-effect coefficient corresponding to a predictor in the

analysis (listed in Table 3): its estimated value, standard error, and the corresponding Wald
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statistic and significance (by a Wald test). (The estimates of the random effect terms are

listed in Appendix 1, but we do not discuss them further.) We discuss the model’s

predictions for how the hazard of a previously unuttered word being produced is affected by

each type of predictor, in turn. The coefficients for AGE, which we consider first, determine

the shape of the hazard function for an average child and word. The remaining fixed-effect

coefficients can be interpreted as changing the position and shape of this hazard function:

the main effects correspond to shifting the vertical position of the curve (more positive

coefficient = acquisition at every time point is more likely), and interactions with age

correspond to changing the shape of the curve.

Age

Because all variables have been centered (continuous) or sum-coded (categorical), the curve

corresponding to the coefficients for AGE1 and AGE2 (plus the intercept) is the predicted hazard

at each time, averaging across parts of speech and child genders, and holding the remaining

variables at their mean values. Figure 4 shows this “overall hazard function”, in logit space

(left) and probability space (right), with ribbons showing 95% confidence intervals.12 This

hazard function shows the likelihood that an average child will produce an average word at

each age, given that that child has not yet produced the word in our sample. Thus, at age 14

months, the likelihood that a child will produce a previously unuttered word with average

properties (in our sample) is predicted to start out near 0, then rapidly increase to around

25% by around 35 months, then stay at 25–28% until the end of sampling. This predicted

overall hazard function can be compared to the trajectory of observed hazard in Figure 2. If

the model fits the data well, these curves are expected to be similar – though not identical,

since Figure 2 essentially shows an empirical mean which does not control for properties of

words and children nor the grouping of observations by words and children, while the

predicted hazard function comes from a model which does. The shapes of the observed and

predicted curves in logit space are indeed very similar, with each one flattening out at 30–35

months. The predicted hazard function is somewhat “stretched” relative to the observed

hazard, spanning a greater range in logit space (−6 to −1, versus −4.5 to −1.5). Nonetheless,

the very good fit between the predicted and observed hazard functions gives some initial

confidence in the predictions of our model.

Child-level variables, non-network theoretic word-level variables

Consistent with previous research (Gentner & Boroditsky, 2001; Goodman et al., 2008; Hart

& Risley, 1992; Hoff & Naigles, 2002; Huttenlocher et al., 1991; Rowe, 2008) we find

robust advantages for girls and for children exposed to more lexically rich caregiver speech

(FEMALE CHILD: β̂ = 0.26, p = 0.015; CAREGIVER LEXICAL RICHNESS: β̂ =0.34, p = 0.0019). For example, the

log-odds of a word’s first production is increased by 0.52 for girls relative to boys (2 ×

0.26), corresponding to a 68% increase in odds (exp(0.52) = 1.68), across all time points.

We also found that shorter words and more frequent words are acquired earlier (Goodman et

al., 2008; Storkel, 2004), with the hazard of first production higher for both types of words

(LENGTH: β̂ = −0.20, p = 0.0001; FREQUENCY: β̂ = 0.90, p < 0.0001). As discussed above, the

frequency effect controls for differences between words in the probability that children will

12At each time point, the 95% CI was calculated using the variance-covariance matrix of the fixedeffect coefficient estimates.
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need to use the word in the first place. We also find a significant difference between words

with different parts of speech (PART OF SPEECH: F(3, 2101144)=10.5, p < 0.0001). A post-hoc

Tukey test showed that nouns had an advantage compared to modifiers (p = 0.003), which

had a marginal advantage over verbs (p = 0.067), which did not differ significantly from

closed-class words (p = 0.99). Thus, the hazard of first production is highest for nouns, and

marginally higher for modifiers than for verbs and closed-class words, consistent with the

noun bias found in previous research (e.g. Gentner & Boroditsky, 2001). However, unlike

previous results (Storkel & Lee, 2011; Storkel, 2009), we did not detect a significant effect

of phonotactic probability (after residualizing on length) (PHONOTACTIC PROBABILITY’: p = 0.36).

As noted above, the exact values of the estimates for these fixed effects, and their

significances, may be inaccurate, due to the absence of associated random slopes.

Nonetheless, the signs and significances of the estimated coefficients replicate established

findings, capturing the associated variance in our data and supporting the validity of the

survival analysis technique.

Network-theoretic word-level variables

We are primarily interested in the effects of phonological network properties on the hazard

function, and how their effects change over time. These effects are captured in the model by

three fixed-effect terms per network property (one main effect, two interactions with the two

components of age), which together predict the “average effect” of the property (across time

points, children, and words), and how the property affects the trajectory of the hazard

function at each time point.

Beginning with the main effects, we find that the most local (degree) and the larger-scale

(clustering coefficient and coreness) phonological network properties of words show

opposite effects on word learning: high-degree words are more likely to be produced than

low degree words (DEGREE’: β̂ =0.22, p < 0.0001), and children are more likely to add low

coreness words to their productive vocabularies than high coreness words (CORENESS: β̂ =−0.38,

p=0.0063).13 A lower local clustering coefficient is also associated with a word being

produced for the first time, but the effect does not reach significance (p = 0.17).

Turning to the interactions with AGE, we find that the effects of all three network properties

on word learning change significantly over time (AGE1:DEGREE’, AGE2:DEGREE’: p < 0.0001;

AGE1:CLUSTERING COEFFICIENT: p = 0.028, AGE2:CLUSTERING COEFFICIENT: p = 0.037; AGE1:CORENESS’: p < 0.0065,

AGE2:CORENESS’: p = 0.24). Figure 5 shows the development over time of the predicted effects of

DEGREE’, CLUSTERING COEFFICIENT, and CORENESS’ on the hazard function – in addition to word length, on

which degree and coreness were residualized – with all predictions standardized so that the

y-axis corresponds to a change of 1 standard deviation in each network property. In other

words, the heights of the curves in each panel can be interpreted as relative effect sizes.

Positive y-values indicate that the predictor increases the likelihood of a word’s entry into

children’s speech, and negative values indicate that the predictor decreases that likelihood.

Several patterns stand out from Figure 5. First, the effects of all three phonological network

13Note that the effect of residualized coreness should be interpreted as a comparison of words with different coreness, but the same
degree.
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properties (degree, clustering coefficient, and coreness), are strongest at the earliest age

observed, Predicted effect (95% CI) and their strength diminishes over time, with all three

effects vanishing by age 30 months (in the sense of the 95% CI of the effect intersecting

with 0). Interestingly, this is also when the mean hazard curve (Figure 4) levels off,

indicating a relatively uniform likelihood of children producing any particular new word for

the first time after this age.

The effects of the network properties over time predicted by the model, shown in Figure 5,

can be compared with the observed partial effect of each network property at each time

point, shown in Figure 3. For degree and coreness, the observed and predicted patterns are

very similar: a positive effect for degree and a smaller (in magnitude), negative effect for

coreness, whose magnitudes are largest at the earliest age in the sample, and become

negligible by around 30 months. For clustering coefficient, the observed pattern, of

essentially no effect at all time points, differs from the model estimate of a small negative

effect at early ages, which disappears by about 30 months. It is likely that the model is

picking up on an effect of clustering coefficient which is only clear once word-level and

child-level properties are controlled for (as is not done in the observed trajectories).

One might wonder if the attenuation of these effects with time as estimated by the model is

inevitable, e.g. if children nearly exhaust the available words with certain properties,

removing the possibility of observing a bias later on, even if the underlying effects remained

the same. However, while this might restrict the range of certain properties in the remaining

set of words to be acquired at later ages, this reduced range should only impact the standard

errors of the estimates for the network properties, rather than the estimates themselves.

Furthermore, the fact that the separate regressions at each time point in Figure 3 do not show

increased standard errors over time suggests that reduced range for the network properties

should not affect the model’s results. Note also that the effect of word length does not

attenuate with child age, suggesting that early preferences for words with certain properties

do not necessarily lead to a reduction in the effects of those properties at later ages. Finally,

refitting the model with all words that were produced at least once by at least 10 children in

the sample (compared to the cutoff of 30) revealed the same pattern of attenuation by 30

months, suggesting that this result is not an artifact of the reduced set of words selected here.

Robustness

Our model uses a relatively complex set of residualized predictors to parameterize network

properties, for reasons discussed above. Given that the interpretation of results involving

residualized predictors can be quite subtle, it is reasonable to wonder whether the model’s

core results – that three network properties do affect first productions, the directions of their

effects, and how their effects change over time – are artifacts of using this particular set of

residualized predictors, rather than showing that the three unresidualized network properties

of interest (DEGREE, CORENESS, CLUSTERING COEFFICIENT) do affect first productions in the ways predicted

by the model. We address this concern in two ways.

First, to provide a more stringent test that the three network properties each contributed

independently to the model fit, we used likelihood ratio tests to compare a set of nested

models, containing progressively more network properties:
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• Model 1: No network properties (DEGREE’, CLUSTERING COEFFICIENT, CORENESS’) or interactions

with age (fixed- or random-effect terms).

• Model 2: Model 1 + fixed and random-effect terms for DEGREE’ and its interactions

• Model 3.1: Model 2 + fixed and random-effect terms for CLUSTERING COEFFICIENT and its

interactions

• Model 3.2: Model 2 + fixed and random-effect terms for CORENESS’ and its interactions

• Model 4: the full model presented above

Each model contained all other word and child-level predictors and interactions, plus the

associated random-effects terms. These models can be nested either in the order 1 < 2 < 3.1

< 4, or 1 < 2 < 3.2 < 4. Either ordering takes degree to be preliminary in some sense to

coreness and clustering coefficient: we first ask whether adding DEGREE’ to a model with no

network properties improves the model, then whether CLUSTERING COEFFICIENT and CORENESS’ improve

the model on top of DEGREE’, and finally whether adding both CLUSTERING COEFFICIENT and CORENESS’

improve the model over the models with only one or the other. Note that because of how

DEGREE’ AND CORENESS’ are defined, comparing Model 1 with Model 2 corresponds to asking

whether unresidualized DEGREE contributes to model fit (beyond the effect of LENGTH), and

comparing Model 2 with Model 3.1 similarly evaluates the contribution of unresidualized

CORENESS.

Comparing Models 1 and 2 reveals that DEGREE’ contributes significantly to the model fit,

beyond all non-network predictors (χ2(6) = 46.99, p < .001). Adding either CLUSTERING COEFFICIENT

(Model 3.1; χ2(6) = 19.99, p < .01) or CORENESS’ (Model 3.2; χ2(6) = 24.30, p < .001) to Model

2 also yielded significant improvements in model likelihood. Finally, the full model (Model

4) was found to be significantly superior to Model 3.1 (χ2(6) = 15.94, p < .05), and

marginally superior to Model 3.2 (χ2(6) = 11.63, p = .07). The fact that adding CLUSTERING

COEFFICIENT only had a marginal effect in this last comparison is consistent with its effect size

and significance being weaker than that of DEGREE’ and CORENESS’, as seen in Table 4 and Figure

5, and with its absence in Figure 3. Overall, these likelihood ratio tests support the

conclusion that degree and coreness, and to a lesser extent, clustering coefficient, have

independent effects on the hazard of first production in our dataset.

Second, the good match discussed above at each time point between the model’s predictions

(cf. Figure 5), which use residualized network properties, and the observed effects of the

network properties (cf. Figure 3), which do not, offers important reassurance that the

direction of the effects of network properties predicted by our model, as well as how they

change over time, are not artifacts of using residualized predictors.14

Discussion

We set out to explore larger-scale phonological network structure because of its implicit

relevance to specific theoretical ideas concerning lexical and phonological development.

14We also attempted to fit a model using the unresidualized predictors, but the model failed to converge in a reasonable amount of
time, probably due to the much more complex random effect structure necessitated by using unresidualized predictors.
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Using longitudinal samples of child speech to estimate the age of first production for

individual words, we examined two questions: whether and how local and larger-scale

phonological network properties are related to children’s productive vocabulary growth, and

whether these effects change as a function of the child’s age. Concerning the first question,

we found that the timing of words’ entry into children’s productive lexicons is positively

related to degree, the most local phonological network property of words, and negatively

related to two measures of words’ larger scale relationships with the rest of the lexicon,

clustering coefficient and coreness. These results provide clear evidence that larger-scale

network structure is related to vocabulary development. Concerning our second research

question, all of these effects are present at 14 months, the earliest age sampled, and all have

disappeared by age 30 months.

The facilitatory effect of degree reported here replicates the results of other studies on word

learning under conditions resembling naturalistic contexts (Coady & Aslin, 2003; Demke et

al., 2002; Hollich et al., 2002, Experiments 2 and 3; Merriman & Marazita, 1995; Storkel,

2004, 2009). Inhibitory effects are generally found when multiple novel, highly similar

words are presented at the same time (Hollich et al., 2002, Experiment 1; Stager & Werker,

1997), but this situation may be unlikely in children’s day-to-day experience. A positive

degree effect is also consistent with the results of Storkel and Lee’s (2011) delayed posttest,

which they interpreted to indicate lexical support from phonological neighbors during

configuration and engagement, the later stages of the development of phonological

representations. Since our spontaneous production data are more likely to reflect the later

stages of learning than children’s early encounters with words, our findings offer support for

Storkel and Lee’s interpretation that degree positively affects these later stages by

facilitating lexical processing, particularly working memory,

A positive effect of degree is also commensurable with the notion that sensitivity to

phonological detail in lexical representations is driven by the need to distinguish among

confusable words (Hallé & de Boysson-Bardies, 1996; Metsala & Walley, 1998; R. S.

Newman, 2008; Vihman, 1996; Walley, 1993). While this idea might predict initial

difficulty learning similar words (both in children’s earliest productive vocabulary growth,

and in their initial encounters with particular words), once children gain a foothold, the more

rapid development of detailed representations (Garlock et al., 2001) in dense neighborhoods

may make it easier to add new words to those neighborhoods than to sparser areas of the

lexicon. That is, distinguishing a new target from many close neighbors may be easier if the

child has easy access to the relevant details in her representations of the neighbors. Such a

foothold may be gained by around 14 months, the age at which the present study

commenced (Stager & Werker, 1997; Swingley & Aslin, 2002; Werker, Fennell, Corcoran,

& Stager, 2002; Yoshida et al., 2009).

This interpretation of the facilitatory effect of degree makes intuitive sense, but does not fit

well with the inhibitory effects of clustering coefficient and coreness. In fact, phonological

detail in a new word’s potential neighbors is not a function of the word’s degree, but rather

of the degree of these potential neighbors and the interconnectedness of the surrounding

lexicon. Accelerated development of phonological detail in more interconnected areas would

predict positive effects of clustering coefficient and coreness, not negative.
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The present findings thus do not support an interpretation of phonological similarity effects

based purely on the representational demands of distinguishing among similar words. They

do, however, resonate with recent findings of inhibitory effects of clustering coefficient on

lexical processing in adults (Altieri et al., 2010; Chan & Vitevitch, 2009, 2010; Yates,

2013), together with the well-established finding that degree facilitates word production

(Vitevitch & Sommers, 2003; Vitevitch, 2002). These parallels between our present results

and those of adult lexical processing studies strongly encourage us to consider how

children’s productive vocabulary growth depends on processes associated with working

memory and lexical access.

How might such an explanation work? One suggestion is to extend spreading-activation type

models (Luce & Pisoni, 1998; McClelland & Elman, 1986; Norris, 1994),15 which account

well for the facilitatory effect of degree on production, to account for the inhibitory effects

of clustering coefficient (Chan & Vitevitch, 2009). When activation is allowed to flow not

only between a target and its neighbors, but also between those neighbors and their

neighbors, Chan and Vitevitch propose that high clustering coefficient may cause activation

to pool among the neighbors because competitors pass activation to each other as well as to

the target, increasing competition. When clustering coefficient is low, activation is either

passed back to the target or dissipates to more distant words, decreasing competition.

Network structure is thus one way in which the influence of phonological neighbors may be

modulated by their relative activation compared to the target word (Chen & Mirman, 2012).

An alternative interpretation is suggested by Gruenenfelder and Pisoni’s (2009) observation

that clustering coefficient reflects the extent to which a word differs from its neighbors at the

same segmental position. Maximum clustering coefficient occurs when a word and its

neighbors all differ at the same position, and minimum clustering coefficient occurs when a

word’s neighbors are most evenly spread across all segmental positions. Altieri, et al. (2010)

used this observation to explain the inhibitory effects of clustering coefficient via feedback

from the lexical to the segmental level.

Whether either of these accounts can explain the relationship between lexical processing and

clustering coefficient is not yet clear, and while coreness can be expected to behave

similarly to clustering coefficient —with activation pooling within more tightly knit

subgroups within the network (Alvarez-Hamelin et al., 2005)—to date there has been no

research into the psycholinguistic effects of coreness. The precise mechanisms underlying

the role of larger-scale phonological network structure in processing will thus require further

study, but under this view, our present data from children’s spontaneous speech do not so

much reflect how children sample words for acquisition from their environment, or even

how they manage to maintain independent long-term memory representations of words in

their growing lexicon. Rather, we may interpret them as reflecting the process of learning to

produce words with which the child already has ample receptive experience (Stokes, 2014).

Children are more likely to produce words for the first time (increased hazard) when their

position in the phonological network facilitates lexical processing for production (i.e. when

degree is high, and clustering coefficient and, tentatively, coreness are low).

15We see no reason why Shortlist-B (Norris & McQueen, 2008), modified to include larger-scale phonological network structure,
should not make similar predictions.
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This raises the question of how to interpret the observed attenuation of these effects during

the third year of life. Attributing the present findings to a processing-based account

motivated by data from adults (Altieri et al., 2010; Chan & Vitevitch, 2009, 2010; Vitevitch

& Sommers, 2003; Vitevitch, 2002; Yates, 2013) would seem to imply that phonological

network effects on lexical production should not disappear, as we find here. While these

effects can be detected experimentally in adults, they may nonetheless weaken with age, and

this question should be explored further. But taking age as a rough proxy for vocabulary size

suggests another possibility: it may simply be that these effects are no longer apparent in

spontaneous speech data, once children have acquired a large enough lexicon. As noted

above, word production for a child with a larger vocabulary likely depends more on what

they need to say than on what they can easily say (Ota & Green, 2013; Rowland et al., 2008;

Tomasello & Stahl, 2004). As a result, at later ages a longer time may elapse between the

child first learning to produce a word and our ability to observe a first production in a

spontaneous speech sample. The present results thus allow us to conclude that there is a

practical attenuation of phonological network effects on words’ first appearances in

children’s speech, but it is unclear whether the mechanism underlying these effects at earlier

ages becomes less sensitive to phonological network structure at later ages. Ease of

processing may yield measurable effects on children’s spontaneous first productions while

their lexicons are small, but more controlled laboratory conditions may reveal continued

effects in older children, as they do in adults.

The results of our inquiry thus make a compelling case that a crucial component of

understanding how children acquire a lexicon needs to include a detailed account of how

children’s lexical processing develops. This must include both children’s word recognition

(Fernald, Swingley, & Pinto, 2001; Garlock et al., 2001; Metsala, Stavrinos, & Walley,

2008; Swingley & Aslin, 2000, 2007), as well as the processes underlying lexical production

(e.g. Edwards, Beckman, & Munson, 2004; Munson, Swenson, & Manthei, 2005; R. S.

Newman & German, 2002; Zamuner, Gerken, & Hammond, 2004). It must also, ultimately,

be integrated with accounts of how children learn to articulate sounds and to associate words

with meanings (Davis & MacNeilage, 1995; de Boysson-Bardies, Sagart, & Durand, 1984;

Oller, Wieman, Doyle, & Ross, 1976; Özçaliskan & Goldin-Meadow, 2005).

Considering how children access words in their mental lexicon for comprehension and

production, based on phonological network and other systematic lexical structure, will also

require understanding the dynamic nature of that lexicon. Beyond the simple fact that

children constantly learn new words, future research must also untangle how network

structure changes in response to the gradual nature of word learning. Progressive elaboration

of phonological detail in lexical representations (Metsala & Walley, 1998; Walley, 1993),

the movement of words from receptive to productive vocabulary (Stokes, 2014), and

progress through stages such as triggering, configuration, and engagement (Storkel & Lee,

2011), may all impact how words participate in the phonological network. This points out a

need to evaluate carefully how we select a lexicon in which to calculate phonological

network properties. We have used the pooled caregiver speech samples in the Chicago

corpus, which offers a reasonable approximation of the lexical input available to English-

speaking children in Chicago. However, the processing-based interpretation of our results

requires measuring phonological network properties in children’s own lexicons.
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A practical response to this need is to consider child-directed speech as an approximation of

the child’s receptive lexicon. This is neither a new idea (e.g. Coady & Aslin, 2003) nor an

unreasonable one, because by 14 months children have accumulated many months of

experiencing child-directed speech. While they may not yet reliably comprehend most

words, they are likely to be quite familiar with many, and well on their way to becoming

familiar enough with others. We have attempted to capture some of the variability in

children’s familiarity with specific words by controlling for frequency in our survival model.

Another approach might use children’s prior productions to define a productive lexicon at

each time point. This would enable us to explore whether children are more likely to

produce new words based on their connectivity with other words that the child already

produces (e.g. the analysis of semantic network structure in Hills et al., 2009). However, it is

not clear that the set of “words known to a child” at a given point in time should be

restricted to those words that the child knows how to produce. This restriction could help

determine if the ability to articulate certain words helps children learn to produce similar

words, but this is only one facet of the role that phonological representations play in lexical

development. The theoretical contributions reviewed above (Metsala & Walley, 1998;

Stokes, 2014; Storkel & Lee, 2011; Walley, 1993) point to a more nuanced characterization

of children’s lexicons taking into account children’s varying familiarity with words, from

previously unencountered words, to words that children recognize but do not yet produce, to

words that children produce reliably. We leave this important issue to future work.

One further issue that bears mention is morphology. In the interest of modeling the complete

lexicon of phonological forms we have included inflections as independent nodes in the

network. Morphological relationships among words, of course, may also support word

learning, but in many cases English inflections also differ by only one phoneme (cf. walk,

walks, walked), potentially confounding the influence of phonological and morphological

relationships on first productions. One strategy for separating these variables has been to

exclude inflections, at least after the child has acquired the bare root (e.g. Coady & Aslin,

2003), but taking this approach would necessitate several decisions about the contents of

phonological neighborhoods, e.g. whether to include only neighbors of a single root form, or

to include all neighbors of any member of the inflectional paradigm. However, inflectional

paradigms are small in English, and single-phoneme inflections (primarily plurals and tense

markers) affect mainly nouns and verbs. The inclusion of inflections in the network thus

affects most nouns and verbs in a similar way, such that any confounding of morphological

and phonological network structure is likely to be captured by the inclusion of lexical

category in our analysis.

We close our discussion with a note about individual differences among children. The

survival model revealed systematic effects of the phonological network properties across

children (Table 4, Figure 5), but the estimates for the random-effects terms (Appendix 1)

suggest meaningful differences between children in their sensitivity to phonological network

structure (see also Maekawa & Storkel, 2006; Stokes, 2014; and similar reasoning related to

semantic networks in Beckage, Smith, & Hills, 2011), as well as substantial additional

variance in children’s vocabulary growth that we have not accounted for. Apart from
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including as covariates gender and amount of caregiver input, we leave investigating these

individual differences for future research.

Conclusion

Our survival analysis of words’ first appearances in the spontaneous speech of children aged

14–50 months has allowed us to investigate the role of local and larger-scale phonological

network structure in vocabulary acquisition. We have demonstrated that a word’s degree,

corresponding to the traditional concept of neighborhood density, is positively related to the

likelihood of observing a previously unuttered word in children’s speech, corroborating

prior results (Coady & Aslin, 2003; Storkel, 2009). We have also shown that two larger-

scale network properties that had not previously been examined in child lexical

development, clustering coefficient and coreness, are negatively related to children’s

likelihood of uttering a previously unobserved word, and that the effects of all three

phonological network properties attenuate by age 30 months, at least in spontaneous speech

data. By controlling for a variety of other factors and carefully addressing interrelationships

among the various lexical properties (e.g. residualizing on word length), we have shown that

these network properties contribute to the hazard function above and beyond the other

influences examined.

This pattern of results strongly resembles the effects of degree and clustering coefficient (as

well as coreness, which, we argue, can be expected to pattern with clustering coefficient) on

adult speech production, suggesting that learning to produce words is dependent on

processes that underlie lexical access for speech production (Storkel & Lee, 2011).

Therefore, exploring how models of adult lexical processing may be adapted to account for

child data, and understanding how these processes develop, coupled with a robust

understanding of how children deploy these processes under different task conditions

(Werker & Curtin, 2005) will be crucial to advancing our understanding of lexical

development.

Finally, the application of network science to psycholinguistics and language acquisition is

still very young (excepting the long tradition of research on one small aspect of network

structure, neighborhood density). By placing the focus on how network structure modulates

children’s access to words for production, the present results are a strong reminder that our

primary goal is not to understand the structural organization of the mental lexicon—it is to

understand how children come to know and use a lexicon (cf. Stoel-Gammon, 2011). Our

results show how phonological network structure can help us understand the interplay

between phonological form and this process.
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Appendix 1: Random effects

Table A1

Estimated variance (σ̂2) and standard deviation corresponding to each by-child and by-word

random-effect term included in the fitted model. For example, σ̂2=0.62 for the by-child

random intercept, and σ̂2=0.0030 for the by-child random slope for DEGREE’.

Group Variable Est.
variance

Est. SD

Child INTERCEPT 0.62 0.79

AGE1 0.12 0.35

AGE2 1.7 1.3

LENGTH 0.0062 0.079

DEGREE’ 0.0030 0.055

CLUSTERING COEFFICIENT 0.00034 0.019

CORENESS’ 0.0145 0.12

AGE1:LENGTH 0.00070 0.026

AGE2:LENGTH 0.0027 0.052

AGE1:DEGREE’ 6.8e–12 2.6e–06

AGE2:DEGREE’ 0.016 0.012

AGE1:CLUSTERING COEFFICIENT 0 0

AGE2:CLUSTERING COEFFICIENT 0.028 0.017
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Group Variable Est.
variance

Est. SD

AGE1:CORENESS’ 0.00057 0.024

AGE2:CORENESS’ 2.9e–10 0.000017

Word INTERCEPT 0.53 0.73

AGE1 0.17 0.41

AGE2 1.15 1.1

Appendix 2: Word list

again bee break careful crayons duck

all beep bring carry crying ear

already being broke cars cup ears

am better brown cat cut eat

an big bubble catch d eating

and bigger bubbles chair dad egg

any bike bug check daddy eight

are bird build cheese dance else

arm bit bump chicken dark end

around bite bunny circle day every

at black bus clean did eyes

ate block but climb different face

away blocks butt close dirty fall

b blow button cold do falling

babies blue buy color does fast

baby boat by colors dog feel

back boo c come doggie feet

bad book cake comes dogs fell

bag books call coming doing find

ball boom called cookie done fine

balloon boots came cookies door fire

balls both camera cool dora first

bath bottle can couch down fish

be bowl candy could draw fit

bear box cant count drink five

because boy car cow drive fix

bed bread card crayon drop floor

flower green his kids lot moon

fly guess hit kind lots more

flying guy hold kiss loud mouse

food guys hole kitchen love mouth

foot h home kitty lunch move
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for had horse knock ma movie

found hair hot know mad much

four hand house last made my

friend hands how later make name

friends happened hug lay makes need

from happy hurt leave making needs

fun hard hurts left mama never

funny has ice leg man new

game hat if legs many next

games have ill let maybe nice

gave having in lets me night

get he into letter mean nine

gets head is light mess noise

getting hear it like middle nose

girl heart its likes might not

give heavy job lion milk now

go help juice little mine number

goes her jump live miss of

going here jumping long mom off

gone hide just look mommy old

good hiding keep looking money on

got high key looks monkey one

grandma him kick lost monster ones

only play sad sitting stuff these

open playing said six sun they

or pop same sleep supposed thing

other potty sandwich sleeping sure things

our press save slide swing think

out pretty
saw small t this

over pull

own puppy say snack table those

page purple says so tail though

paint push scared sock take thought

pants put scary some taking three

papa putting school song talk through

paper puzzle seat sorry talking throw

park rain see spider tape tickle

part reach
set spoon taste tiger

party read

people ready seven square teeth time

phone real she stand tell tired

pick really shirt star ten to

picture red shoe start than today
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pictures remember shoes stay thank toe

piece ride should step that told

pieces right show stick the tomorrow

pig rock side sticker their too

pillow roll silly still them took

pink room sing stop then top

place
run sit stuck there touch

plate

towel wants with

tower was wont

toy wash work

toys watch working

train watching works

tree water would

truck way write

try we wrong

trying wear yellow

tummy went yet

turn were you

turned wet your

turtle what yours

two whats yucky

um when yum

under where yummy

up which

us white

use who

very whole

wait why

wake will

walk win

walking window

want wipe
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Highlights: How children explore the phonological network in child-
directed speech: A survival analysis of children's first word productions

• Phonological network structure influences toddlers’ productive vocabulary

growth.

• High-degree words (many local neighbors) are more likely to be added at a

given age.

• Words with high clustering coefficient and coreness are less likely to be added.

• Phonological network effects attenuate during third year of life.

• Favored words have network properties that support lexical processing.
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Figure 1.
Left: a fragment of the English phonological network. Each node represents an orthographic

word; edges (solid lines) connect words which are phonological neighbors. Dashed lines

show the k-core decomposition of the fragment. Right: values of phonological network

properties investigated in this study (degree, clustering coefficient, coreness), for a subset of

words in this network. Clustering coefficient is undefined for nodes with degree < 2, such as

sicker, because there are no possible triangles including these nodes.
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Figure 2.
Left: observed hazard of acquisition at each time point. Middle: same, with hazard expressed

in log-odds (logit scale). Right: survival rate up to each time point, calculated using the

observed hazard. (See text)
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Figure 3.
Coefficients for degree, clustering coefficient, and coreness in logistic regressions of their

joint effect (with word length) on the hazard of first production, carried out at each child

age. (See text)
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Figure 4.
Predicted overall hazard function, shown in logit space (left) and probability space (right).

Solid line and shading are the predicted hazard (with all predictors besides child age held at

their mean values), and its 95% confidence interval.
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Figure 5.
Predicted effect over time on log-odds of the hazard probability of each network property

(DEGREE’, CLUSTERING COEFFICIENT, CORENESS’), as well as LENGTH. (Note that DEGREE’ and CORENESS’ have been

residualized on other variables, as described in Table 3.) The effects of all predictors have

been standardized, so the y-axis corresponds to the predicted change in log-odds of hazard

when the predictor is changed by one standard deviation. Solid lines and shading correspond

to the predicted effect and its 95% confidence interval. Dotted lines indicate y=0 (no effect),

for clarity.

Carlson et al. Page 40

J Mem Lang. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Carlson et al. Page 41

Table 1

Size measures of the Chicago corpus (up to and including the 50 month samples)

Corpus Word tokens Utterances Word types

Child speech 815,139 320,053 8,366

Child-directed speech 1,954,556 573,379 14,890
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Table 2

Descriptive statistics of word properties analyzed in the survival model. All properties are calculated based on

the caregiver lexicon used in the phonological network. Frequency was measured using the caregiver portion

of the Chicago corpus (n =1,954,556 tokens), from which the present data are taken.

Predictor Mean Median SD Range

Word length 3.46 3 0.964 (1.5, 7)

log(word length) 0.930 0.811 0.373 (−0.288, 1.83)

Phonotactic probability 0.0202 6.89·10−5 0.0693 (1.41·10−13, 0.446)

log(phonotactic probability) −20.9 −19.9 11.3 (−61.6, −1.68)

Frequency 2.82·103 7.26·102 7.73·103 (91, 1.13·105)

log(frequency) 6.68 6.47 1.42 (2.25, 11.64)

Degree 18.7 15 14.7 (2, 75)

log(degree) 2.40 2.60 1.10 (−0.693, 4.30)

Clustering coefficient 0.34 0.31 0.18 (0, 1)

log(clustering coefficient) −1.13 −1.07 0.642 (−3.40, 0.0328)

Coreness 11.13 9 9.17 (1, 47)

log(coreness) 2.03 2.14 0.878 (−0.693, 3.839)
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Table 3

Summary of predictors included in the analysis. “Type” describes the type of predictor (‘cat’: categorical;

‘cont’ continuous), along with the number of fixed-effect coefficients associated with it. Predictors which are

residualized on others are indicated with a prime (e.g. DEGREE’). Centering, scaling (for continuous

predictors) and contrast coding (for categorical predictors) are described in the text.

Term Description Type

1. Time

AGE Child age: second-order polynomial (two components) cont(2)

2. Child-level variables

FEMALE CHILD Child is female cat(1)

CAREGIVER LEXICAL RICHNESS Mean word types per session produced by the caregiver in child-directed speech cont(1)

3. Word-level variables

Network-theoretic properties

DEGREE’ Log of degree, residualized on log(length) cont(1)

CLUSTERING COEFFICIENT log of local clustering coefficient cont(1)

CORENESS’ log of coreness, residualized on log(length) and log(degree) cont(1)

Other properties

LENGTH log length in phonemes cont(1)

FREQUENCY log frequency in child-directed speech cont(1)

PHON. PROBABILITY’ log of word’s phonotactic probability, residualized on log(length) cont(1)

PART OF SPEECH part of speech (levels: noun, verb, modifier, closed class) cat(4)

4. Interactions

AGE:LENGTH Interactions of word-level predictors with both components of AGE cont(2)

AGE:DEGREE’ cont(2)

AGE:CLUSTERING COEFFICIENT cont(2)

AGE:CORENESS’ cont(2)
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Table 4

Summary of fixed effects for the model: coefficient estimates (β̂), standard errors, associated Wald z-scores,

and significances (from a Wald test). Significances smaller than 0.01 are bolded. Predictors are grouped as in

Table 3.

Predictor β̂ SE(β̂) z p

Intercept −2.96 0.11 −27.28 < 0.0001

1. Time

AGE1 (component 1) 1.08 0.051 21.32 < 0.0001

AGE2 (component 2) 4.52 0.19 23.83 < 0.0001

2. Child-level variables

FEMALE CHILD 0.26 0.11 2.44 0.015

CAREGIVER VOCAB. SIZE 0.34 0.11 3.11 0.0019

3. Word-level variables

Network-theoretic properties

DEGREE’ 0.22 0.051 4.25 < 0.0001

CLUSTERING COEFFICIENT −0.059 0.043 −1.36 0.17

CORENESS’ −0.38 0.14 −2.73 0.0063

Other properties

LENGTH −0.20 0.051 −3.88 0.00011

FREQUENCY 0.90 0.041 22.29 < 0.0001

PHON. PROBABILITY’ 0.0094 0.010 0.92 0.36

PART OF SPEECH = noun vs. mean 0.38 0.058 6.49 < 0.0001

= verb vs. mean −0.20 0.060 −3.29 0.0010

= modifier vs. mean 0.051 0.064 0.80 0.43

4. Interactions

AGE1:LENGTH −0.042 0.028 −1.50 0.13

AGE2:LENGTH −0.097 0.10 −0.97 0.33

AGE1:DEGREE’ −0.15 0.029 −5.18 < 0.0001

AGE2:DEGREE’ −0.46 0.11 −4.37 < 0.0001

AGE1:CLUSTERING COEFFICIENT 0.054 0.024 2.20 0.028

AGE2:CLUSTERING COEFFICIENT 0.19 0.093 2.09 0.037

AGE1:CORENESS’ 0.22 0.081 2.72 0.0065

AGE2:CORENESS’ 0.34 0.29 1.18 0.24
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