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Abstract

Intervertebral disc mechanics are affected by both disc shape and disc degeneration, which in turn

each affect the other; disc mechanics additionally have a role in the etiology of disc degeneration.

Finite element analysis (FEA) is a favored tool to investigate these relationships, but limited data

for intervertebral disc 3D shape has forced the use of simplified or single-subject geometries, with

the effect of inter-individual shape variation investigated only in specialized studies. Similarly,

most data on disc shape variation with degeneration is based on 2D mid-sagittal images, which

incompletely define 3D shape changes. Therefore, the objective of this study was to quantify inter-

individual disc shape variation in 3D, classify this variation into independently-occurring modes

using a statistical shape model, and identify correlations between disc shape and degeneration.

Three-dimensional disc shapes were obtained from MRI of 13 human male cadaver L3L4 discs.

An average disc shape and four major modes of shape variation (representing 90% of the variance)

were identified. The first mode represented disc axial area and was significantly correlated to

degeneration (R2 = 0.44), indicating larger axial area in degenerate discs. Disc height variation

occurred in three distinct modes, each also involving non-height variation. The statistical shape

model provides an average L3L4 disc shape for FEA that is fully defined in 3D, and makes it

convenient to generate a set of shapes with which to represent aggregate inter-individual variation.

Degeneration grade-specific shapes can also be generated. To facilitate application, the model is

included in this paper’s supplemental content.
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Introduction

Intervertebral disc shape influences both nutrient transport and spine mechanics (Fujiwara et

al., 2000; Magnier et al., 2009; Meijer et al., 2011; Niemeyer et al., 2012; Niosi and Oxland,

2004), and shape changes are involved in disc degeneration (Berlemann et al., 1998; Pappou

et al., 2007; Pfirrmann et al., 2006; Videman et al., 2008; Videman et al., 2007). The

mechanical consequences of disc degeneration and the treatments meant to address it are

often investigated with finite element analysis (FEA). However, due to lack of multi-subject

3D shape information in the literature, investigators typically use a 3D geometry from on a

single subject (El-Rich et al., 2008; Rundell et al., 2009) or a simplified geometry

extrapolated from vertebral bone morphometry (point-to-point distances) (Kim et al., 2001;

Kim, 2000; Meijer et al., 2011; Meijer et al., 2010; Niemeyer et al., 2012; Panjabi et al.,

1992; Rohlmann et al., 2006; Rundell et al., 2009; Smit, 1996; Yan et al., 2011).

Morphometry of the disc itself is also available, based on 2D mid-sagittal MRI (Boos et al.,

1996; Fujiwara et al., 2000; Kwok et al., 2012) or dissected discs (Beckstein et al., 2008;

Brinckmann and Grootenboer, 1991; Keller et al., 1987; Nachemson et al., 1979; O’Connell

et al., 2007; Porter et al., 1989). These lists are representative, not exhaustive. The common

factor is that all these studies use morphometry, which only defines distances between

specific points. If morphometry is used to construct a 3D shape for FEA, the resulting shape

is underdetermined, and the gaps must be filled in by guesswork. A 3D single-subject image

produces a fully determined shape, but may not be representative. A solution to this

dilemma would be greatly beneficial.

Since variation in intervertebral disc shape causes corresponding variation in spine

mechanics (Campana et al., 2007; Farfan et al., 1972; Galbusera et al., 2011; Keller et al.,

2005; Meijer et al., 2011; Meijer et al., 2010; Niemeyer et al., 2012; Schmidt et al., 2013), it

is important to include inter-individual shape variation in FEA studies of the intervertebral

disc. However, the effort involved in doing so for a morphometry-based geometry relegates

such a task to specialized studies (Meijer et al., 2011; Niemeyer et al., 2012). There is a need

for a parameterization of 3D intervertebral disc shape variation that can be conveniently

incorporated into FEA models.

Relations between degeneration and 3D disc shape are also incompletely examined, as prior

studies of degeneration and disc shape used morphometry, usually with 2D sagittal images

(Battié et al., 2008; Benneker et al., 2005; Berlemann et al., 1998; Luoma et al., 2001;

Pfirrmann et al., 2006; Pfirrmann et al., 2001; Videman et al., 2008; Videman et al., 2006;

Videman et al., 1995). As above, this poses difficulty for FEA of degenerate discs.

Additionally, 2D or morphometric analysis may overlook degeneration-related shape

variation outside the imaging plane or away from the morphometric markers.
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This study was designed to improve upon these three issues by (1) quantifying inter-

individual 3D shape variation of the L3L4 disc, (2) parameterizing this variation with a

minimum number of parameters, and (3) identifying relationships between 3D shape and

degeneration. The L3L4 disc was chosen because FEA studies often target it specifically

(Bono et al., 2007; Dahl et al., 2010; Kim and Choi, 2009; Kim, 2000; Lee et al., 2000;

Meijer et al., 2011; Niemeyer et al., 2012; Rohlmann et al., 2006; Rundell et al., 2009). 3D

disc shapes were measured from MRI, the mean shape was computed, and the shape

variation was decomposed and parameterized as independent principal components.

Importantly, this decomposition is made without any a priori assumptions about the kinds of

shape variation in the data. The resulting shape model facilitates examination of

relationships between disc shape and degeneration and provides convenient means to

incorporate inter-individual shape variation in disc FEA studies.

Materials and Methods

Samples

Thirteen fresh-frozen spines were obtained from donor human cadavers via National Disease

Research Interchange. After thawing, the spines were imaged intact by T2-weighted MRI in

order to assign degenerative grades (Pfirrmann scale) (Pfirrmann et al., 2001), which has

been validated as having good inter-rater reliability (Kettler and Wilke, 2006). The grades

were averaged between three graders. Following T2 imaging, L3L4 discs were dissected

(with the surrounding bone attached), vacuum-sealed in plastic, and stored frozen. The

samples remained sealed in plastic throughout the study to avoid swelling or shrinking due

to exposure to water or air. Donors ranged from 50–93 years of age (average 67.5 years) and

were all male. Degenerative grade was 2.3–5.0 (mean 3.3).

Image Segmentation

High-resolution MRI was acquired for shape analysis. In preparation for imaging, the

samples were thawed and surrounded (outside their encasing plastic) with 2% agarose,

which has similar magnetic susceptibility to tissue. Images were acquired using a 7T

Siemens whole-body MRI scanner and a custom transmit/receive RF coil programmed with

a 3D FLASH sequence (TE = 3.7 ms; TR = 9 ms) (Moon et al., 2013). Voxel size was 200

μm isotropic.

Discs were segmented from the high-resolution images using Convert3D and ITK-SNAP

(Yushkevich et al., 2006). Each MR image was preprocessed with N3 intensity

inhomogeneity correction, 2:1 resampling, and Gaussian smoothing (Figure 1). ITK-

SNAP’S active contour tool was used to create an initial automatic segmentation.

Segmentation was completed manually. The segmentations were aligned to a common

anatomical coordinate system using Matlab. Translational alignment was accomplished by

moving the centroid to the origin. For rotational alignment, the major axes were used to

define the aligned coordinate system (algorithm in Supplemental Information) (Gonzalez

and Woods, 2002; Petrou and Petrou, 2010).
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Shape Analysis

A shape model was created from the disc segmentations using principal components

analysis (PCA) according to established methods (Tsai et al., 2003). First, each

segmentation was converted to a signed distance function, which encodes a shape as an

image of distance from the shape boundary. The mean shape Φ0 was obtained by calculating

the mean of the signed distance functions. Subtracting the mean disc shape from each

original shape forms a set of residuals, from which were calculated the principal components

(PCs) of variation Φi. The PCs were ordered by the amount of variance they represent (PC 1

representing the most variance) and normalized by their standard deviations. Each PC

represents an independent mode of disc shape variation. Since the dataset contained 13

discs, the shape model defines 12 PCs and one mean shape. Each PC is orthogonal to all the

others; together they form a basis which spans the same 3D shape space as the original

dataset. Any shape in the original dataset, or any shape in-between, can be represented as the

sum of the mean shape and a weighted linear combination of the PCs: . The

scalar weighting factors wi compactly and completely define the shape. To give the weights

physical meaning, we expressed wi as fractions of the standard deviation σi for each Φi.

To aid in comparison to prior work, morphometric measurements of disc axial area, width,

depth (anterior-posterior distance), and height were made directly from the 3D disc

segmentation. Axial area was measured from the disc’s projection into the anterior-

posterior/left-right plane. Width was measured as the distance between the most extreme

points on the left-right axis. Depth was measured as the anterior-posterior distance at the

mid-sagittal plane. Height was defined as the volume divided by the axial area.

Leave-One-Out Analysis

In order to determine if the shape model was stable (not unduly influenced by outlier discs),

a leave-one-out analysis (a type of cross-validation) was performed (Morra et al., 2008; Xie

et al., 2005; Yang, 2004). The PCA procedure was repeated excluding each disc in turn,

creating 13 reduced models. The PCs in each reduced model were compared with the full

model using vector dot products. A dot product of zero indicates maximum change; a dot

product of one indicates no change. If the model is stable, the inclusion or exclusion of any

single disc will have little effect.

Statistics

Relationships between degenerative grade and disc shape, represented by both the shape

model (weights wi) and morphometry (axial area, depth, width, and height), were tested by

Pearson correlation. The significance level (α) was set to 0.05, and the power (β) was 0.8 to

detect Pearson R2 = 0.5, as we did not expect degeneration-related shape changes to be

subtle. Summary statistics are reported as mean ± standard deviation (s.d.).
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Results

Physical Meaning of the Shape Model

The shape model includes a mean shape and encodes shape variability using a set of

principal components (PCs). The observed mean shape was overall qualitatively normal, but

did have a slight asymmetry between the posterolateral margins (Figure 2). Each PC

represents a distinct kind of shape variation. The majority (70%) of shape variation in the

dataset was represented by PC 1 (Figure 3). PCs 1–4 together are sufficient to represent 90%

of the variability in disc shape, and so were selected for analysis.

In terms of geometry, PC 1 represents variability in axial area (R2 = 0.97), but is unrelated to

disc height (R2 = 0.02) (Figure 4). Increased PC 1 indicates increased axial area, a shallower

or nonexistent posterior notch, and rounded sides (Figure 5). PCs 2–4 are all somewhat

related to disc height, as well as more complicated shape variations. Increased PC 2

indicates protrusion of the anterior, left, and posterolateral margins and increased height

(Figures 4 and 5). Increased PC 3 indicates uniform bulging of the left margin and increased

disc height. PC 3 has the strongest relationship to disc height, representing ~40% of the

height variation (Figure 4). Increased PC 4 indicates increased depth, decreased width, and

decreased disc height (Figure 5). The kind of height variability encoded by PC 3 includes

left-right asymmetry, whereas PCs 2 and 4 represent uniform height variation.

Morphometry

Morphometric measurements of each disc were made for comparison with prior work and to

aid in explicating the shape model. Height, depth, width, and axial area are given in Table 1.

Effect of Degeneration

The effect of degeneration on disc shape was identified by correlating the modes of shape

variation with degenerative grade. Of all the modes of shape variation identified by the

shape model, only PC 1 was significantly correlated to degeneration (r = 0.66 (95% CI 0.18,

0.89); intercept = −2.8 ± 1.0, slope = 0.85 ± 0.29) (Figure 6), indicating that degenerate

discs tend to have larger axial area. This result is corroborated by the morphometric

measures (Figure 7)—degenerative grade was correlated with axial area (r = 0.74 (95% CI

0.32, 0.92); intercept = 9.7 ± 3.8 cm2, slope = 4.1 ± 1.1 cm2), width (r = 0.60 (95% CI 0.07,

0.86); intercept = 46.8 ± 6.8 mm, slope = 5.0 ± 2.0 mm), and depth (r = 0.85 (95% CI 0.55,

0.95); intercept = 24.2 ± 3.5 mm, slope = 5.4 ± 1.0 mm).

Degeneration was also correlated with height (r = −0.58 (95% CI −0.86, −0.05); intercept =

14.8 ± 2.0 mm, slope = −1.4 ± 0.6 mm). Note that the Pfirrmann scale does consider height

loss as part of the score, so some correlation with height is expected.

Leave-one-out analysis

A leave-one-out analysis was conducted to check if the shape model was unduly influenced

by outlier discs. Reduced models were created by excluding each disc in turn and repeating

the shape analysis. The boundary of the mean shape moved an average distance of 0.10 mm

(range 0.04–0.12 mm), less than the image resolution. The stability of each mode of shape
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variation was evaluated by its dot products between the full model and reduced models

(Table 2). PC 1 exhibits negligible change with the exclusion of any single disc. The

exclusion of disc #5 or #6 produced large apparent changes in PCs 2 and 3, but this is

actually caused by the two vectors swapping rank. Reversing the swap, the PC 2 dot

products are 0.58 and 0.68 and the PC 3 dot products are 0.90 and 1.00. Still, PC 3 is

sensitive to disc #10, which had an unusually short depth relative to its width. Overall, while

PCs 2–4 may change meaning slightly between datasets (and PCs > 4 may greatly change

meaning) the meaning of the mean shape and PC 1 is consistent.

Discussion

Shape and degeneration

This study quantified intervertebral disc shape variation from 3D MRI of a set of human

L3L4 discs. The most significant finding was that degeneration is associated with greater

disc axial area. Variation in axial area (PC 1) accounts for most (70%) of the overall

variation in disc shape (Figure 3). The correlation between disc area and degeneration (R2 =

0.44) therefore accounts for a large part (~30%) of disc shape variation. This correlation was

confirmed, independent of the shape model, by basic morphometry. The use of 3D images

was advantageous in this respect, as in 2D it is ambiguous whether a bulge is local or global

(Kalichman, 2010; Milette et al., 1999; Videman et al., 2008). This correlation between

degeneration and axial area could be explained as either degeneration causing whole-disc

bulging or larger discs being more prone to degeneration (Brinckmann and Grootenboer,

1991; Milette et al., 1999; Videman et al., 2007; Yates et al., 2010).

Although disc height is typically regarded as a single parameter (Berlemann et al., 1998;

Pfirrmann et al., 2006), the shape model identified three distinct height-related modes of

shape variation. Only PCs 2 (uniform height change) and 4 (altered axial aspect ratio plus

uniform height change) had an indication (trend) of being related to degeneration (r ≈ 0.4, p

≈ 0.1 for both). PC 3 (left-right wedging), despite having the strongest relationship to height

(Figure 4), had no significant correlation with degenerative grade. Height changes may be

more pronounced for the L4L5 disc (Battié et al., 2004). The existence of multiple types of

height-related variation should be considered in future investigations of disc biomechanics

and classification of degeneration phenotype, as these modes of height loss would affect

spine mechanics in dissimilar ways.

Model consistency and limitations

The morphometric measurements from this study are consistent with previous work (Table

1), with differences in reported height attributable to procedure (caliper measurement of

whole motion segments in (Nachemson et al., 1979) and lateral radiography in (Amonoo-

Kuofi, 1991)). The lesser disc area in (Nachemson et al., 1979) may be due to including

female discs in the average. The CT-derived vertebral body measurements from Panjabi et

al. (1992) are much smaller than measurements of the disc, which may have implications for

spine FEA based on these measurements (Meijer et al., 2011; Meijer et al., 2010; Niemeyer

et al., 2012). We recommend using both disc- and vertebral body-specific measurements
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when possible. The remaining disc-specific studies are consistent with the present study and

each other.

As demonstrated by the leave-one-out analysis, the current sample size is sufficient to

clearly establish the definition of the mean shape and PC 1 and that multiple modes of

height-related variation (PCs 2–4) exist. The statistical power was sufficient to identify a

correlation between PC 1 and degeneration.

The primary limitation of this study is the subpopulation used (aged, male, L3L4, and

moderately to severely degenerate). However, the use of consistent gender and level

eliminated these factors as sources of variation, maximizing statistical power to detect

degeneration effects. The use of cadaver discs is also a limitation, as the fluid within the disc

redistributes after death (Johnstone et al., 1992). It is possible that this redistribution affects

disc shape, though this effect remains unquantified. A further limitation is the use of

Pfirrmann grading to quantify disc degeneration. Pfirrmann grading mixes several possibly-

independent degenerative changes (reduced nucleus image intensity, loss of contrast

between nucleus and annulus, and decreased height). However, it is validated, and there is

no better alternative (Kettler and Wilke, 2006). The shape model also does not include the

internal structures of the disc, such as the nucleus. The success of the shape model in the

present context justifies future studies extending it to a broader population and other

anatomical targets.

Application to computer simulations

The 3D statistical shape modeling approach used in this study has three important

advantages that make it ideal for use in finite element analysis (FEA), which is an important

tool to explore the biomechanical (Fagan et al., 2002; Goto et al., 2002; Natarajan et al.,

2006; Schmidt et al., 2013; Schroeder et al., 2010; Schroeder et al., 2007; Schroeder et al.,

2006) or biological (Magnier et al., 2009; Malandrino et al., 2011; Soukane et al., 2007; Zhu

et al., 2012) aspects of disc degeneration. First, it provides an average L3L4 disc shape, with

a complete 3D definition, that represents multiple people (Figure 8a). This is a major

advance in improving the representativeness of computer simulations.

Second, the shape model provides a single parameter (PC 1) that can represent 70% of the

inter-individual variation from this average shape. An investigator running a simulation of

the disc could thus run analysis for the mean shape ± 1 s.d. PC 1 to obtain an estimate of

how the result of the simulation would vary between individuals. Other PCs could be also

used to obtain a more precise result. Since the PCs are ranked according to their variance

(Figure 3) and have clear physical meaning (Figure 5), it is easy to select the appropriate

number of PCs for the application. Each PC can be varied independently or together,

depending on the desired complexity.

Third, the model can be used to construct shapes representing specific degeneration grades

by adding the appropriate weight of PC 1 (Figure 8b); using the correlation in Figure 6, we

represented grade 2 discs as Φ0 − 1.13σ1Φ1, grade 3 as Φ0 − 0.28σ1Φ1, and grade 4 as Φ0 +

0.56σ1Φ1.
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In conclusion, the shape model offers a convenient and powerful option for incorporating

shape variation in future disc FEA studies. Without using the shape model, incorporating

inter-individual shape variation in a simulation study requires constructing many subject-

specific models, running the simulation on each, and calculating summary statistics on the

simulation results. This process is extremely laborious. Consequently, shape variation has

only been included in a few studies, and then only in terms of simplified CAD-like geometry

with assumed independence between geometric measures (Meijer et al., 2011; Meijer et al.,

2010; Niemeyer et al., 2012). The shape model vastly reduces the time required to simulate

inter-individual variation; additionally, it represents the 3D disc anatomy without any

simplification, and the independence between PCs reflects actual independence in the

dataset. The necessary data to use the shape model is provided in the supplemental digital

content for this paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Mid-sagittal slice of a 3D disc MRI, illustrating image processing steps. The initial image

(a) was bias corrected and smoothed (b). An automatic segmentation was generated in ITK-

SNAP (c), then manually corrected (d).
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Figure 2.
The mean disc shape displayed the expected kidney-bean shape of an intervertebral disc.

The shape was nearly symmetric, with a slight protrusion at the inferior posterolateral

margin (arrow).
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Figure 3.
Cumulative shape variance represented by the principal components. The first four principal

components represented ~90% of the total variance of intervertebral disc shape. PC 1 alone

accounted for ~70% of the variance.

Peloquin et al. Page 14

J Biomech. Author manuscript; available in PMC 2015 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Correlation between shape model PCs and disc morphometry. PC 1 was strongly related to

axial area, width, and anterior-posterior depth. PC 3 had the strongest relationship to disc

height, with PCs 2 and 4 somewhat related to disc height.
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Figure 5.
Each principal component encodes a different kind of shape variation, illustrated here by

adding ± 2 s.d. of PCs 1–4 to the mean shape. PC 1 encodes variation in axial area. PCs 2–4

each encode a different form of disc height variation, mixed with other kinds of variation.
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Figure 6.
PC 1 is moderately correlated (R2 = 0.44) with degenerative grade.
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Figure 7.
Intervertebral disc morphometry was correlated with degeneration, (a) Axial area increased

with degeneration (r = 0.74 (95% CI 0.32, 0.92)). (b) Height decreased with degeneration (r

= −0.58 (95% CI −0.86, −0.05)).
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Figure 8.
The shape model can be used to generate physiologically representative meshes for finite

element analysis. (A) The mean shape, shown here as an example mesh, is the simplest

representative shape. The nucleus pulposus, in blue, is defined using data from O’Connell et

al. (2007). (B) Since PC 1 is correlated with degeneration, PC 1 can be scaled and summed

with the mean shape to create representative shapes for specific degeneration grades. Other

linear combinations of principal components can also be used, depending on the application.

All shapes in this figure are plotted using the same scale.
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Table 2

Dot products between full and reduced model PCs. PC 1 does not change between the full and reduced

models, indicating that PC 1’s definition is not distorted by any outlier disc shapes. The remaining PCs are

somewhat sensitive to the influence of particular discs.

Excluded Disc PC 1 PC 2 PC 3 PC 4

1 1.00 1.00 0.99 0.72

2 1.00 0.95 0.83 0.87

3 1.00 1.00 1.00 0.99

4 1.00 1.00 1.00 0.99

5 0.98 0.41 0.42 0.71

6 1.00 0.07 0.05 0.73

7 1.00 0.96 0.87 0.94

8 1.00 0.99 0.99 0.90

9 1.00 1.00 1.00 1.00

10 1.00 0.98 0.32 0.36

11 1.00 1.00 0.96 0.93

12 1.00 1.00 0.99 0.99

13 1.00 0.99 0.99 0.93

mean 1.00 0.87 0.80 0.85

s.d. 0.01 0.29 0.32 0.18
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