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Abstract

Objective—Clinical deep brain stimulation (DBS) systems can be programmed with thousands

of different stimulation parameter combinations (e.g. electrode contact(s), voltage, pulse width,

frequency). Our goal was to develop novel computational tools to characterize the effects of

stimulation parameter adjustment for DBS.

Approach—The volume of tissue activated (VTA) represents a metric used to estimate the

spatial extent of DBS for a given parameter setting. Traditional methods for calculating the VTA

rely on activation function (AF)-based approaches and tend to overestimate the neural response

when stimulation is applied through multiple electrode contacts. Therefore, we created a new

method for VTA calculation that relied on artificial neural networks (ANNs).

Main Results—The ANN-based predictor provides more accurate descriptions of the spatial

spread of activation compared to AF-based approaches for monopolar stimulation. In addition, the

ANN was able to accurately estimate the VTA in response to multi-contact electrode

configurations.

Significance—The ANN-based approach may represent a useful method for fast computation of

the VTA in situations with limited computational resources, such as a clinical DBS programming

application on a tablet computer.
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Introduction

Deep brain stimulation (DBS) is an established clinical treatment for a range of neurological

disorders. Successful application of DBS technology requires the identification of a

therapeutic stimulation parameter setting in each patient (Moro et al., 2006). Clinical DBS

devices enable thousands of different parameter settings to be defined, which provide
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flexibility to customize the stimulation to the patient. However, exploration of this

parameter space is limited by a wide range of variables, such as the clinician’s experience

with DBS technology, and their available time for device programming with the patient.

Therefore, we proposed that patient-specific computational models of stimulation, coupled

with visualization software, could represent useful tools to assist DBS clinicians (McIntyre

et al., 2007). A recent clinical study supported this concept, demonstrating that prospective

definition of DBS parameter settings, via calculations of the volume of tissue activated

(VTA), could generate clinical outcomes that rivaled those of traditional clinical practice

(Frankemolle et al., 2010).

The “gold standard” for computational prediction of neurostimulation is to couple electric

field data to multi-compartment neuron models (McNeal, 1976). Unfortunately, this

McNeal-based prediction method is currently too computationally intensive to be practical

for most clinical applications. Therefore, simplified methods for calculating the spatial

extent of axonal activation have been developed that typically rely on the second spatial

difference of the extracellular voltages generated by the electrode (e.g. Rattay, 1986;

Warman et al., 1992; Moffitt et al., 2004; Butson and McIntyre, 2006). These activating

function (AF) based approaches are relatively accurate predictors for monopolar cathodic

stimulation. However, the increased complexity of the electric fields generated during multi-

contact stimulation limits generalization of the traditional AF-based approach (Peterson et

al., 2011).

Previously, our group has customized AF-based approaches for clinical DBS electrodes (e.g.

McIntyre et al., 2004; Butson and McIntyre, 2006; Butson et al., 2007) to enable calculation

of a VTA. VTA predictor functions have also been used by a range of other groups

investigating DBS (e.g. Yousif et al., 2010; Martens et al., 2011; Schmidt et al., 2013).

However, we have found the performance of AF-based VTA predictor functions to be

unsatisfactory in the context of bipolar or multipolar stimulation conditions. Therefore, the

objective of this study was to develop a new method that improves the accuracy of VTA

predictions for DBS electrodes. We explored the concept of using artificial neural networks

(ANNs) to characterize the spatial extent of axonal activation for a given set of stimulation

parameters. The benefits of ANNs reside in their ability to generalize complex relationships.

Therefore, we hypothesized that ANNs could outperform traditional AF-based approaches

for VTA estimation.

Materials and methods

The goal of this study was to develop a new method for improving the accuracy of VTA

predictions for DBS electrodes. There are multiple options for developing predictor

functions, each having their own advantages and disadvantages. Among the most commonly

used are look-up tables, polynomial fitting, and regression analysis. Look-up tables are the

easiest to implement, but require that each unique stimulation setting be modeled

independently. Polynomial and regression-based predictor functions are effective at

predicting monopolar stimulation; however, separate functions are typically needed for each

electrode design, electrode configuration and pulse width examined (Butson and McIntyre,

2006). In contrast, ANNs are able to characterize complex multi-parameter relationships
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with high accuracy. Furthermore, ANNs allow dynamic changes to the model inputs and

outputs without requiring significant changes to its underlying structure. Additionally, once

trained, ANNs are efficient in making predictions in real-time. As a result, ANNs represent a

potential alternative to AF-based approaches for predicting the spatial extent of neural

activation.

Our ANN predictor function was created to estimate neural activation based on results

derived from finite element models (FEM) of the electric fields generated by DBS

electrodes. We evaluated a wide range of stimulation settings and electrode configurations

(Table 1), directly coupling the DBS electric field to multi-compartment cable models of

myelinated axons. The DBS FEM was created with a three-dimensional multi-resolution

mesh using COMSOL 3.4 (Comsol Inc., Burlington, MA). A virtual Medtronic 3389 DBS

electrode (Medtronic, Minneapolis, MN), was centered within the FEM mesh (Fig. 1A). The

model explicitly represented the capacitance and voltage drop at the electrode-electrolyte

interface, as well as an encapsulation layer of tissue surrounding the DBS electrode

(Chaturvedi et al., 2010). The bulk tissue medium was modeled as homogeneous and

isotropic with a conductivity of 2 S/m. The encapsulation layer (0.5 mm thick) was set to

one of three values to represent low (0.680 S/m), medium (0.128 S/m), or high (0.066 S/m)

impedance conditions (Butson et al., 2006). The electrode capacitance was set to 3.3 μF

(Butson and McIntyre, 2005), while the voltage drop at the electrode-tissue interface was set

to 42% (Miocinovic et al., 2009).

To estimate axonal activation from DBS, we used a population of 6803 axon models

positioned adjacent to and perpendicular to the electrode (Fig. 1B). The geometrical and

biophysical parameters of the individual axon models have been previously described

(McIntyre et al., 2002). The position and orientation for the axons were chosen to estimate

the vertical and lateral aspects of the stimulation spread. Volumetric spread was then

estimated by rotating the activation surface about the electrode shaft to create a three-

dimensional VTA. These axons were distributed at 0.25 mm intervals in a region close to the

electrode, and at 0.5 mm intervals further away. The axon population was positioned 1 to 10

mm horizontally from the center of the electrode shaft, and −10 to 18 mm from the bottom

of the electrode shaft (Fig. 1B). The lower resolution axon population continued to

encompass a region 28 mm lateral from the center of the electrode shaft and −19 to 28 mm

in the vertical direction (Fig. 1B). We also varied the axon diameter (2.0, 5.7, 7.3, 8.7, and

10.0 μm) to investigate its effects on neural activation. Each axon model, regardless of

diameter, consisted of 21 nodal compartments, except the 2.0 μm diameter axons that

contained 51 nodal compartments due to its much shorter internodal distance.

Axonal response to DBS

The threshold for action potential initiation of each axon was determined using NEURON

6.2 (Hines and Carnevale, 1997). We calculated the extracellular voltage within the FEM

mesh and interpolated those voltages onto the myelinated axon models using SCIRun

(Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT). The

population of axons that elicited propagating action potentials from the stimulation defined

our McNeal-based “gold standard” of activation for that setting. Monopolar and multi-
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contact settings were evaluated using 4620 unique stimulation configurations for each

population of axons for each axon diameter analyzed.

We grouped and characterized the location of the directly activated axons for each

stimulation parameter setting tested, and for each active contact (cathode or anode) used in

the simulation (Fig. 2A). Adjacent cathodic active regions were merged into a single active

region (Fig. 2B). A constrained optimization algorithm (Boyd and Vandenberghe, 2004) was

used to find the parameters defining a 2D ellipse that best described each active region (Fig.

2C).

ANN-based predictor functions

We used ANNs developed in MATLAB (Mathworks Inc., Natick, MA) to model the spread

of activation for monopolar and two-contact stimulation. Each predictor function used two

feed-forward ANNs to parameterize neural activation. One feed-forward ANN described the

size of each activation region (Table 2). A second ANN determined the placement of each

activation region along the electrode shaft (Table 2).

Architecturally, each ANN received 12 inputs describing the stimulation parameters and

electrode configurations (Table 2). After performing a sensitivity analysis on its architecture,

we found that one hidden layer with 20 elements using a sigmoid transfer function and a

linear output layer produced accurate results (i.e., low training and validation RMS errors),

while still being computationally efficient (Lujan and Crago, 2009). Both networks were

trained using the Levenberg-Marquardt algorithm on 70% of the stimulation settings, and

their corresponding ellipse parameters were fit to match the McNeal-based data. The

remaining 30% of the McNeal-based data were used for validation and assessing the

performance of the ANN-based predictor functions. Weights were initialized with random

values. While training, the backpropagation algorithm is presented with training data and

novel validation data, after which the error between the actual and expected results is

calculated (training error and validation error, respectively). Overtraining the neural network

can lead to decreased performance and an inability to generalize the ellipse parameters

accurately. To prevent ANN overtraining, training was terminated if the validation error

became larger than the training error.

Performance evaluation

We evaluated the accuracy of the trained ANN predictor functions by comparing the spatial

spread of their predicted ellipses to the remaining McNeal-based data set, within a single

plane. In addition, we compared the ANN-based predictions to AF-based predictions. We

calculated false-positives (FP, type I errors) and false-negatives (FN, type II errors) in axon

activation for all stimulation settings and electrode configurations (Table 1). A type I error

corresponds to spatial regions where the predicted activation regions overshoots the gold

standard and incorrectly marks axons as being active. A type II error resulted from an

underestimation of neural activation. Total error was defined by the sum of prediction errors

normalized by the number of active axons (AA) in the McNeal-based data set, for the given

stimulation parameter setting being evaluated: Error = (FP + FN) / AA.
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Results

Axon activation prediction errors

ANNs were trained to define the spatial extent of stimulation and the center of activation

along the electrode shaft. These ANN-based predictor functions were created separately for

both the monopolar and two-contact stimulation cases. Two ANNs were used for each

complete predictor function. The first ANN described the size of the ellipse(s), while the

second ANN described center of the ellipse(s). Training of the first ANN yielded a 0.990

and 0.987 coefficients of determination (R2-value) for the monopolar and two-contact cases,

respectively. Training the second ANN had an R2-values of 0.992 (monopolar) and 0.988

(two-contact).

Figure 3 shows the error in prediction of axonal activation for both the ANN-based and AF-

based predictor functions for monopolar cathodic stimulation settings. This stimulation

configuration represents the lowest possible error opportunity for the AF-based predictor

function, as this is the stimulation configuration for which it was designed to operate in. For

fiber diameters greater than 2.0 μm, the ANN-based predictor function has an error of 0.13 ±

0.03 (mean ± std) regardless of the parameter being varied. Neither the ANN nor AF-based

predictors had errors that were affected by increasing the voltage amplitude or impedance.

On the other hand, the error for the AF-based predictor became greater at larger fiber

diameters and longer pulse-widths. The AF-based predictor function had its lowest error

when using 5.7 μm diameter axons, which corresponds to the original axon diameter used to

develop this predictor function (Butson and McIntyre, 2006). To better understand the origin

of the error associated with predictor functions, we examined the individual type I

(overestimation) and type II (underestimation) errors (Fig. 3E). The ANN-based approach

slightly underestimated activation, while the AF-based predictor function overestimated

activation.

When considering stimulation delivered through two contacts on the same electrode (i.e.,

two cathodes or anode/cathode stimulation), the ANN-based prediction errors nearly

doubled (Fig. 4). However, this error was still lower than the AF-based error for monoplar

stimulation, and the AF-based system is only accurate when used in the context of

monopolar cathodic stimulation. In contrast, the ANN-based predictor behavior for two-

contact stimulation was analogous to monopolar stimulation across the entire range of

stimulus amplitudes, pulse widths, electrode impedances, and axon diameters. Similarly,

there were no major differences in prediction error when comparing stimulation through two

cathodes or one anode and one cathode combinations.

The spatial extent of axonal activation is affected by many factors. The ANN-based

predictor function enables comparisons for varying voltage amplitudes, pulse-widths,

impedances, and axon diameters (Fig. 5). As expected, higher stimulation voltages, longer

pulse-widths, and lower impedances increase the spatial spread of activation and the

corresponding VTA (Table 3). More importantly, changes in axon diameter have a large

effect on the VTA (Fig. 5D). When multiple contacts are active, the VTA can take a wide

range of shapes and sizes (Fig. 6). Multiple cathodes can generate large activation volumes
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(Fig. 6A, B), while bipolar stimulation (cathode and anode) substantially decreases the

overall VTA (Fig. 6C, D).

Discussion

To achieve the best possible therapeutic outcomes, present-day clinical DBS programming

requires multiple programming sessions to identify a suitable set of stimulation parameters

(Moro et al., 2006). Due to time constraints, only a small subset of the stimulation parameter

space is thoroughly explored during each clinical session, making optimal therapeutic

benefits sometimes difficult to achieve. Recently, computational models have been

introduced to address this limitation and aid in the search for therapeutic stimulation

parameters settings (McIntyre et al., 2007). These models are capable of estimating the

spatial extent of neural activation, or VTA, which has been successfully used clinically to

identify theoretically optimal DBS parameter settings in Parkinson’s disease patients

(Frankemolle et al., 2010). Historically, these VTA models have relied on an AF-based

approach that is only be suitable for monopolar cathodic stimulation predictions (Butson and

McIntyre, 2006). Therefore, we set out to develop a new method for predicting neural

activation that could be used to explore more complex electrode configurations with limited

prediction error.

Predictor evaluation

Artificial neural networks represent a useful tool for predicting the VTA because of their

ability to approximate the non-linear changes in the electric field produced by complex

electrode configurations and stimulation settings. When compared to a typical AF-based

predictor, the ANN-based predictor function was more accurate over the entire range of

stimulation settings (Fig. 3). We noted that the error was highest in both monopolar and two-

contact stimulation cases when activating 2.0 μm diameter axons. Presumably this was the

case because there were fewer 2.0 μm diameter axons directly activated for each stimulation

setting, so even a small number of false-positive or false-negative errors could lead to a

large overall error. More importantly, unlike for the AF-based predictor, the ANN prediction

errors remained relatively consistent across the entire parameter space despite large changes

in voltage amplitudes, pulse-widths, and impedances.

Study limitations

While the ANN-based predictor functions performed well, they lack a first principles

connection to the biophysical interpretation of the method, which does exist for AF-based

predictor functions (Rattay, 1986). In addition, the representation of ANN-based activation

regions did have limitations under some stimulation settings and electrode configurations.

For example, at high voltages (e.g., >3 V) with non-adjacent cathodes, the active regions

were represented by two smaller ellipses that did not entirely capture neural activation at

their overlapping boundaries. However, using higher-order equations and/or combinations of

single equations to define these complex active regions could potentially minimize this type

of error. In addition, similar ANN-based predictor functions could theoretically be created

for any number of active contacts or alternative electrode designs.
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It should also be noted that the VTA prediction used in this study were calculated in the

context of a highly idealized brain tissue environment. For example, straight axons,

orientated perpendicular to the electrode, within the context of an isotropic bulk tissue

medium. The impact of these assumptions has been addressed in numerous studies (e.g.

Chaturvedi et al., 2010; Yousif et al., 2010; Schmidt et al., 2013). However, for all the

shortcomings of simplified VTA predictions, they do appear to represent a viable tool for

clinical DBS parameter selection (Frankemolle et al., 2010).

Conclusions

The use of ANN-based predictor functions provides the flexibility to characterize DBS

axonal activation for a wide range of stimulation settings and contact configurations. The

flexibility of ANNs should also enable customization of the technique to novel electrode

designs and stimulation paradigms. Application of this methodology may someday have

clinical utility by providing fast VTA simulation for visual feedback in clinical software

interfaces designed for customizing patient-specific DBS parameter settings.
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Figure 1.
Electric field and axon models. (A) Finite element model consisting of the Medtronic 3389

DBS electrode lead centered within a multi-resolution FEM mesh. The extracellular voltage

is shown for a −1 V stimulation through contact 0 (red - high voltage; blue - low voltage).

(B) Points represent the axon model distribution. The axons have straight trajectories that

project along the y-axis. (C) Voltage distribution interpolated from the FEM mesh to each

axon model.
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Figure 2.
Definition of active region(s). (A) monopolar stimulation. (B) two-contact stimulation with

two adjacent cathodes. (C) two-contact stimulation with one cathode and one anode. The

boundary of all active regions are shown in red. Horizontal and vertical arrows describe the

horizontal (a) and vertical (c) spreads of activation, respectively. The dot(s) represents the

center (z) of the active region(s).
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Figure 3.
Activation error comparisons between the ANN-based predictor function (solid line) and the

AF-based predictor function (dashed line) for monopolar stimulation as a function of (A)

axon diameter, (B) voltage, (C) pulse-width, and (D) clinical impedance. (E) Predictor

function errors, false-positives (FP, type I errors) and false-negatives (FN, type II errors), for

monopolar stimulation are also compared.
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Figure 4.
ANN-based prediction error for all two-contact stimulation (solid line) as a function of (A)

axon diameter, (B) voltage, (C) pulse-width, and (D) clinical impedance. This error was also

analyzed for two cathodes only (dashed line), as well as traditional “bipolar” one cathode /

one anode (dotted line) only.
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Figure 5.
Volumes of tissue activated when a monopolar cathode at contact 0, with (A) varying

voltages, (B) pulse-widths, (C) impedances, and (D) axon diameters.
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Figure 6.
Volumes of tissue activated during two-contact stimulation for (A) adjacent cathodes, (B)

farthest away cathodes, (C) adjacent cathode / anode, and (D) distant cathode / anode.
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Table 1

Range of stimulation settings and electrode configurations used in this study.

electrode: Medtronic 3389

frequency: 130 Hz

pulse-widths: 60, 90, 120, 150, 180, 210, 450 μs

amplitudes: −1, −2, −3, −4, −5, −6, −7, −8, −9, −10 V

impedances: low (0-749), medium (750-1250), high (1251+) Ω

contact configurations: 4 monopolar, 18 two-contact
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Table 2

Inputs and outputs for each of the two artificial neural networks used to create each novel predictor function,

one for monopolar and another for two-contact.

inputs outputs

ANN 1 ANN 2

fiber diameter (□) - (μm) horizontal spreads activation centers

pulse-width (pw) - (μs)  (a0,a1,a2,a3,) - (mm)  (z0,z1,z2,Z3,) - (mm)

voltage (V) - (volts) vertical spread

impedance (Z) - (Ω)  (c0,c1,c2,c3,) - (mm)

contact 0 configuration (cc0 )*

contact 1 configuration (cc1 )*

contact 2 configuration (cc2 )*

contact 3 configuration (cc3 )*

ellipse 0(e0 )
D

ellipse 1 (e1)
D

ellipse 2 (e2)
D

ellipse 3 (e3)
D

*
−1 (cathode), 0 (dormant), +1 (anode)

D
(active region, ellipse present), 0 (inactive)
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Table 3

Quantifying the impact of these various parameters on the spatial spread of activation and the volume of tissue

activated (V - voltage, pw - pulse-width, Z - impedance, [c0, c1, c2, c3] - contact configurations, a - horizontal

spread of activation, c - vertical spread of activation).

Stimulation configuration spread (mm) volume (mm3)

V (V) Pw (μs) Z (Ω) φ(μm) [C
0, C1, C2, C3] a c

−1 90 1000 5.7 [−1000] 1.97 1.81 29

−3 90 1000 5.7 [−1000] 3.32 3.21 148

−5 90 1000 5.7 [−1000] 4.27 4.18 318

−3 60 1000 5.7 [−1000] 2.86 2.72 93

−3 120 1000 5.7 [−1000] 3.63 3.53 195

−3 450 1000 5.7 [−1000] 4.73 4.61 432

−3 90 500 5.7 [−1000] 3.83 4.67 287

−3 90 1000 5.7 [−1000] 3.32 3.21 148

−3 90 1500 5.7 [−1000] 2.83 2.51 84

−3 90 1000 2.0 [−1000] 1.32 1.17 9

−3 90 1000 5.7 [−1000] 3.32 3.21 148

−3 90 1000 10.0 [−1000] 4.9 4.80 482

−3 90 1000 5.7 [−1 −1 0 0] 3.69 3.95 225

−3 90 1000 5.7 [−1 0 0−1] 3.32 2.81 130

3.44 2.81 139

−3 90 1000 5.7 [−1 1 0 0] 1.93 1.50 23

1.63 1.20 13

−3 90 1000 5.7 [−1001] 2.29 2.02 45

1.82 1.50 21
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