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Quantum electromagnetic fluctuations induce forces between
neutral particles, known as the van der Waals and Casimir inter-
actions. These fundamental forces, mediated by virtual photons
from the vacuum, play an important role in basic physics and
chemistry and in emerging technologies involving, e.g., microelec-
tromechanical systems or quantum information processing. Here
we show that these interactions can be enhanced by many orders
of magnitude upon changing the character of the mediating vac-
uummodes. By considering two polarizable particles in the vicinity
of any standard electric transmission line, along which photons
can propagate in one dimension, we find a much stronger and
longer-range interaction than in free space. This enhancement
may have profound implications on many-particle and bulk sys-
tems and impact the quantum technologies mentioned above.
The predicted giant vacuum force is estimated to be measurable
in a coplanar waveguide line.
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The seminal works of London (1), Casimir and Polder (2), and
Casimir (3) identified quantum electromagnetic fluctuations

to be the source of both short-range [van der Waals (vdW)] and
retarded, long-range (Casimir) interactions between polarizable
objects, which may be viewed as an exchange of virtual photons
from the vacuum. Subsequent studies of these interactions
(4–14) revealed their modifications, such as retardation and non-
additivity (15), brought about by the geometry of the polarizable
objects. The ability to design these interactions is important for
their possible use and exploration in emerging quantum tech-
nologies such as microelectromechanical systems (16), quantum
information processing (17, 18), and circuit quantum electrody-
namics, where the dynamical Casimir effect has been recently
demonstrated (19, 20). Here we show that effectively one-dimen-
sional (1D) transmission-line environments can induce strongly
enhanced and longer-range van der Waals and Casimir interactions
compared with free space. Such enhanced interactions may have
profound implications on the quantum technologies mentioned
above and give rise to a variety of new many-body phenomena in-
volving polarizable particles in effectively 1D environments.
A key point in determining how these interactions depend on

distance is the spatial propagation and scattering of the virtual
photon modes that mediate them. Like any other waves, photons
are scattered differently off objects with different geometries.
For example, light is much more effectively scattered off a mirror
than off a point-like atom. This explains the stronger and longer-
range vacuum interaction between mirrors (3), compared with
that between atoms (2). This idea also underlies the dependence
of Casimir forces on the geometrical shape of the interacting
objects. Here, we take a somewhat different approach toward the
geometry dependence of vdW- and Casimir-related phenomena.
Instead of considering the interaction energy of extended objects
with different geometries, we revisit the original Casimir and
Polder (2) configuration of a pair of point-like dipoles while
changing the geometry of their surrounding environment such
that it confines the propagation of virtual photons to a certain
direction. More specifically, we consider the energy of the inter-

action between two dipoles, mediated by vacuum photon modes
along a 1D transmission line (TL). The resulting attractive in-
teraction is found to be much stronger and longer range than its
free-space counterpart. Surprisingly, this interaction scales with
the interdipolar distance r as const. + (r/λ) ln(r/λ) or as 1/r3 for
shorter or longer r than the typical dipolar wavelength λ, respec-
tively, as opposed to the corresponding 1/r6 or 1/r7 scalings in free
space (2, 4). This enhancement implies a drastic modification of
Casimir-related effects for many-body and bulk polarizable sys-
tems in such an effectively 1D geometry.
This article is organized as follows: Analysis Principles presents

the analytical approaches used to obtain the van der Waals and
Casimir interactions in a TL environment, Eqs. 6 and 7. Pre-
dictions reveals the giant enhancement of these interactions by
comparing them to the case of free space (see Fig. 3 C and D),
considering possible experimental realizations and imperfec-
tions. The consequences of this giant interaction to generalized
Casimir effects in 1D is addressed in Prospects: Casimir Physics
in 1D, followed by Conclusions.

Analysis Principles
One-Dimensional Photons in Transmission Lines. The ability to
change the geometry of photon vacuum modes is widely used
in quantum optics, e.g., for the enhancement of spontaneous
emission (21, 22) and resonant dipole–dipole interactions (23).
Here, effectively 1D propagation of the virtual photons is attained
in waveguide structures that support transverse-electromagnetic
(TEM) modes, namely, modes whose propagation axis, the electric
and the magnetic fields, are perpendicular to each other. These
are typically the fundamental transverse modes of electric TLs,
i.e., waveguides composed of two conductors as shown in Fig. 1,
which constitute the standard workhorse of electronic signal
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transmission. They possess a dispersion relation ωk = jkjc and
an electric field-mode function (24)

ukjðrÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx; yÞLp eikzej; [1]

where z is the propagation axis, L is its corresponding quantiza-
tion length, A(x, y) is the effective area in the transverse xy plane,
ej=x,y is the polarization unit vector, k and ωk are the wavenumber
in the z direction and the angular frequency, respectively, and
c= 1=

ffiffiffiffiffi
μe

p
is the phase velocity, with μ and « being the effective

permeability and permittivity of the TEM mode, set by the ge-
ometry and materials of the TL.
Unlike modes of other waveguides, such as optical fibers or

hollow metallic waveguides, here the effective area A(x, y) is
independent of frequency. Hence, considering its dispersion re-
lation, the unique feature of the TEM mode is that it forms an
effective plane wave in 1D. This special property enables the
TEM mode to guide or confine virtual photons over much longer
distances than all other higher-order transverse modes supported
by the TL, such as the transverse electric (TE) and transverse
magnetic (TM) modes in a coaxial TL (24). As recently shown by
us for metallic waveguides (25), such modes do not contribute to
the long-range interaction (Materials and Methods).
Having identified the key role of the TEM mode in mediating

vacuum interactions in a TL, we proceed to analytically calculate
the vdW/Casimir interaction between a pair of dipoles mediated
by the TEM mode, using two different methods (Quantum Elec-
trodynamics Perturbation Theory and Scattering of Vacuum Fluctu-
ations), and present the results (Analytical Results).

Quantum Electrodynamics Perturbation Theory. We first adopt the
quantum electrodynamics (QED) perturbative approach of ref.
26 to two identical atomic or molecular dipoles with a ladder of
excited levels {jn〉}, both in their ground state jg〉, which are
coupled to the vacuum of photon modes given by Eq. 1, via the
interaction Hamiltonian

HI =−Z
X2
ν=1

X
nν

X
k;j

ðjnνihgj+ h:c:Þ�igkjνnâkj + h:c:
�
: [2]

Here gkjνn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωk=2eZÞ

p
dnν · ukjðrνÞ is the dipolar coupling be-

tween the dipole ν = 1, 2 and the kj field mode, for the jg〉 to
jnν〉 transition with dipole matrix element dnν , âkj being the low-
ering operator for the kj mode. The vdW energy is then obtained

by perturbation theory as the fourth-order correction to the en-
ergy of the ground state jG〉 = jg1, g2, 0〉, where j0〉 is the vacuum
of the photon modes (26),

U =−
X
I1 ;I2;I3

hGjHI jI3ihI3jHI jI2ihI2jHI jI1ihI1jHI jGi
ðEI1 −EGÞðEI2 −EGÞðEI3 −EGÞ : [3]

Here jIj〉 are intermediate (virtual) states (of the free Hamilto-
nian) and Em is the energy of the state jm〉. The sum in Eq. 3
includes 12 different terms, each corresponding to a different set
of virtual processes and represented by a diagram, e.g., that of
Fig. 2A (26). Each of the 12 terms contains a summation over all
of the dipolar states jn1〉 and jn2〉, and the photonic polarizations
j, j′, and integrations over the wavevectors k and k′. The energy is
then obtained by summing all 12 terms and performing the inte-
grations (Materials and Methods).

Scattering of Vacuum Fluctuations. A more transparent approach is
based on the solution of the 1D electromagnetic wave equation
“driven” by the vacuum field (4). Accordingly, we consider two
point dipoles with polarizabilities α1,2(ω), subject to a fluctuating
(vacuum) field Ê0 (Fig. 2B). The electromagnetic energy of, say,

dipole 2, is given by a sumover all k of−ð1=2Þα2ðωkÞ½Êkðr2ÞÊ†

kðr2Þ+
Ê
†

kðr2ÞÊkðr2Þ�, where Êkðr2Þ is the k mode component of the
electromagnetic field at the location of this dipole. The field at
r2 includes two components: Ê0;kðr2Þ, the external fluctuating

(vacuum) field, and Ê
ð1Þ
sc;kðr2Þ, the scattered field, which to lowest

order is that scattered from dipole 1, where it is driven by the
vacuum fluctuations Ê0;kðr1Þ at r1. Because the TEM field exhibits
diffractionless propagation in 1D, this scattered field is found by
essentially solving

�
∂2z + k2

�
Ê
ð1Þ
sc;kðzÞ=−μω2

kα
ð1DÞ
1 ðωkÞÊ0;kðz1Þδðz− z1Þ; [4]

where the quantum (vacuum) field in 1D is Ê0;kðzÞ= i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZωk=2eÞ

p
ð1= ffiffiffiffi

L
p Þeikzejâkj and αð1DÞ

ν = αν=Aðxν; yνÞ. The vdW/Casimir en-
ergy is then obtained as the interaction energy between the
dipoles, which to lowest order becomes

U =−2
P
k
αð1DÞ
2 ðωkÞ

× h0j
h
Ê
ð1Þ
sc;kðz2ÞÊ†

0;kðz2Þ+ Ê
0;k
ðz2ÞÊð1Þ†

sc;k ðz2Þ
i
j0i:

[5]

Here we average over the quantized fields in the vacuum state
j0〉 and multiply by 4 to account for both field polarizations j and
the energy at the locations of both dipoles.

Analytical Results. Both calculation methods yield the same result
for the TEM-mediated interaction energy between dipoles with
excited levels {jn〉} (Materials and Methods). In the main text, we
present the resulting energy only for the case where one excited
level je〉 with energy Ee and corresponding wavelength λe = 2πZc/Ee
has a dominant dipole transition, such that all other excited levels
jn ≠ e〉 can be neglected. This yields

UðzÞ=−
π
��d⊥e ��4
2e2Ee

1
A1A2λ

2
e

FðzÞ;

FðzÞ=
�
4π

z
λe
+ i

�
e−i4πðz=λeÞEi

�
i4π

z
λe

�

+   π

�
1+ i4π

z
λe

�
ei4πðz=λeÞ + c:c:;

[6]

where z = jz2 − z1j is the interdipolar distance in the TL prop-
agation direction, Aν = A(xν, yν), d⊥e is the projection of the

A B

Fig. 1. Geometries of transmission-line–mediated vdW and Casimir inter-
actions. (A) Coaxial line: two concentric metallic cylinders, the inner one with
radius a and the outer (hollow) one with radius b. Two dipoles represented
by black circles are placed in between the cylinders, along the wave prop-
agation direction z. They interact via modes of the coaxial line that are in the
vacuum state, giving rise to a vdW-like interaction energy. (B) Coplanar
waveguide: similar to A. Here the central conductor of width 2a is separated
from a pair of ground plane conductors that are 2b apart.
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dipole matrix element de on the transverse xy plane, c.c. stands
for complex-conjugate, and EiðxÞ=−P

R∞
−x dte

−t=t is the expo-
nential integral function. This interaction is attractive and its
dependence on distance z is described by the monotonously
decreasing function F(z), plotted in Fig. 3 A and B. From F(z)
we obtain the energy dependence for small and large z/λe,
respectively,

Fðz � λeÞ≈ π + 16π
z
λe
ln

z
λe
+ 8π

�
2γ − 1+ 2 lnð4πÞ	 z

λe
;

Fðz � λeÞ≈ 1
8π3

λ3e
z3
;

[7]

where γ ≅ 0.577 is Euler’s constant. These expressions for F(z) in
the vdW, z � λe, and Casimir (retarded), z � λe, regimes reveal
a universal scaling with distance z; namely, it does not depend on λe
or any other length scale, but rather on z ln z and 1/z3, respectively.
This scaling is thus independent of the type of dipole involved in
the interaction and is expected to hold for multilevel dipoles as
verified by Eqs. 11 and 13 in Materials and Methods: The level
structure merely affects the prefactor, i.e., the coefficient of
the interaction.

Predictions
The expressions given above for the interaction energy in the
vdW and Casimir regimes suggest the possibility of a much
stronger interaction than its free-space counterpart. In the
nonretarded vdW regime, it decreases very slowly with z com-
pared with the familiar 1/z6 scaling, whereas in the retarded
Casimir regime, it falls off with a power law that is four powers
weaker than its 1/z7 Casimir–Polder counterpart.

Quantitative Comparison with Free-Space Vacuum Forces. Let us
make this comparison more quantitative by considering a general
TL with separation a between its two guiding conductors (Fig. 1).
The effective TEM mode area A(x, y) then scales as a2 (Materials
and Methods). Moreover, assuming the polarizability is isotropic

on average, we can estimate
��d⊥e ��2 = ð2=3Þjdej2. Then, for

ffiffiffiffiffiffiffiffi
A1;2

p
= a

and a=λe ∼ 10−4, typical of the circuit QED realizations con-
sidered below, where a is approximately a few micrometers
and λe is approximately a few centimeters, the ratio between
the TEM-mediated energy and its free-space counterpart is
plotted in Fig. 3 C and D for short and long distances, re-
spectively (26). At distances longer than z = 10−3λe, the TEM-

mediated interaction is enhanced by orders of magnitude com-
pared with free space, and the enhancement factor increases
drastically with z.
At very short distances, however, the free-space vdW inter-

action 1/z6 is stronger. This occurs at z < a, where the dipoles are
close enough so that they do not “sense” the TL structure. The
transition to free-space behavior in this regime can be described
by including higher-order transverse modes. These modes become
significant at such short distances, where their contributions sum
up to give the free-space result (Materials and Methods).

Possible Experimental Realizations. It is important to consider the
possibilities of measuring the predicted effects. Here we focus on
the coplanar waveguide (CPW) TL (Fig. 1B) that is extensively
used in the emerging field of circuit QED (27–29). We consider
the dominant dipole transition between the ground and first ex-
cited states of a pair of superconducting transmons, where other
dipolar transitions from the ground state are indeed negligible
(27) such that the two-level approximation is valid. The transmons,
at distance z, are both capacitively coupled to the CPW. Then,
the TEM-mediated interaction should induce a z-dependent
energy shift on the dipole-transition levels, U(z) as per Eq. 6.
We estimate this energy shift using the parameters of a recent
experiment (28): The dipole frequency is Ee/(2πZ) ∼ 5 GHz
and the dipole coupling to a closed CPW cavity of length λe can
reach g ∼ π × 720 MHz. From the relations g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððEe=ZÞ=2eZÞ
p

ðjdej=
ffiffiffiffiffiffiffi
AL

p Þ and L = λe (28, 29), we can extract the factor
��d⊥e ��= ffiffiffiffi

A
p

for each dipole, obtaining [U(z)/F(z)]/h ∼ 0.84 MHz, where h is
Planck’s constant; e.g., for distances z = 0.001λe or 0.01λe (both
much larger than a of approximately a few micrometers), the
energy shift becomesU(z)/h ∼ 1.8 or 2.47 MHz, respectively, about
twice the dephasing rate of the dipole, 1 MHz (28), that limits the
resolution of the shift. This resolution can be considerably im-
proved, as in ref. 29, where a dephasing time of about 20 μs is
reported. Then, upon taking Ee/h ∼ 2 GHz with the parameters of

A B

Fig. 2. Calculation methods of the interaction energy. (A) QED perturbation
theory: one of 12 possible processes (diagrams) that contribute to the energy
correction of the state jG〉= jg1, g2, 0〉, Eq. 3. Here the intermediate states are
jI1i=

��n1,g2,1kji,   jI2i=
��g1,g2,1kj1k′j′i, and jI3i=

��g1,n2,1k′j′i, where
��1kji=

â†kj j0i. (B) Scattering of vacuum fluctuations: the vacuum field Ê0ðrÞ exists in all
space and interacts with both dipoles at their positions r1 and r2; hence it is

also scattered by the dipoles. The scattered field from dipole 1, Ê
ð1Þ
sc ðrÞ, arrives

at dipole 2, resulting in an interaction interpreted as the vdW/Casimir in-
teraction U.

A B

C D

Fig. 3. The TEM-mode–mediated interaction potential as a function of
interdipolar distance z. (A) Log–log plot of F(z), Eq. 6. For long distances,
z � λe, the linear dependence implies a power-law behavior as in Eq. 7. (B)
F(z) at short distances. (C) Log–log plot of the ratio between the TEM-
mediated energy U(z), Eq. 6, and the free-space vdW energy at short dis-
tances z � λe, UfsðzÞ=−ðjdej4=48π2e2EeÞð1=z6Þ (26), with

��d⊥
e

��2 = ð2=3Þjdej2
and

ffiffiffiffiffiffiffiffiffi
A1;2

p
= a (main text). Here a = 10−4λe, consistent with typical cases

considered in the main text (Predictions), where a equals approximately
a few micrometers and Ee/(2πZ) equals approximately a few gigahertz.
Beyond z ∼ 10−3λe, the huge enhancement of the interaction with respect
to its free-space counterpart is apparent. (D) Same as C, but for long dis-
tances z � λe, where the free-space energy takes the Casimir–Polder form,
UfsðzÞ=−ð23=64π3ÞðZc=e2Þð4=9Þðjdej4=E2

eÞð1=z7Þ (26).
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ref. 28, one can obtain U(z)/h ∼ 28 MHz for z = 0.01λ = 1.5 mm,
which is much larger than the dephasing rate.
Probing the interaction in the retarded regime, where z > λe, is

currently more challenging: For the latter case, with z = 2λe =
30 cm, we obtain U(z)/h ∼ 6.62 kHz, which is currently too small to
be observed. Nevertheless, these results imply the remarkable
possibility to directly observe the vdW and Casimir interaction of
a single pair of point-like dipoles (here the size of the dipoles is
∼1–100 μm � λe) over a wide range of distances where the in-
teraction scales nontrivially according to Eq. 6.
We note that the ratio of the TL-length scale a to λe does not

affect the scaling of the ratio U/Ufs between the TEM-mediated
energy and its free-space counterpart with z (Fig. 3 C and D), but
only its prefactor (Eq. 6). Hence, the same scaling of U/Ufs is
expected for atoms, although their dipolar λe can become much
smaller than that of the superconducting transmon. For instance,
considering the D1 line of Rb87 atoms, where λe ∼ 780 nm, and
keeping the same TL with a ∼ 1 μm, we obtain a/λe > 1 (instead
of a/λe ∼ 10−4 in Fig. 3 C and D). The plots of Fig. 3 C and D then
retain the same slope but are shifted down. Namely, an en-
hancement, U/Ufs > 1, still exists, but at larger distances z, where
the enhanced interaction may be too weak to be observed for
a single pair of atoms. Nevertheless, this enhancement can be
very important for many-atom systems where it would increase
the nonadditivity of their dispersion interactions (Prospects:
Casimir Physics in 1D below).

Imperfections. Let us consider the consequences of possible im-
perfections in the dipoles or the conductors of the TL.
Dipoles. The description of sharp energy levels may fit the case of
atoms but not that of artificial dipolar systems such as transmons
or quantum dots, for which nonradiative dephasing may result in
level widths. This dephasing may give a lower bound for mea-
surable vdW/Casimir interaction-induced shifts, as discussed
above for the circuit QED realization. Another imperfection for
artificial dipoles is their inhomogeneity, e.g., that the dipole
matrix element de and the energy Ee of the dipolar transition in
two different transmons are not identical. This does not change
the scaling of the vdW interaction U(z); however, it requires one
to first measure the transmons’ parameters if one wishes to ob-
tain an exact result for U(z) (Eqs. 11–13 and SI Text).
TLs. The existence of TEM modes as in Eq. 1 is exactly correct for
TLs made from perfect conductors. However, it is also an ex-
cellent approximation to the propagation of fields in finite-con-
ductivity, low-loss TLs that are currently used (24), particularly
in the microwave to gigahertz domain that is relevant in our case.
This supports the validity of our results for TEM-mediated in-
teraction in Eqs. 6 and 7 in realistic circuit QED systems. The
conductors of the TL can also induce a modified Lamb shift on
dipole levels due to the photon modes near a metal surface, the
so-called Casimir–Polder atom–surface interaction (2, 30). This
single-dipole (rather than interaction-related) energy shift is of
no interest here, yet it may change Ee. Whereas for artificial
dipoles Ee is not precisely known anyway due to inhomogeneity,
so that this effect is unimportant, the evaluation of this shift for
atoms is described in SI Text. Surface roughness along the TL
conductors may slightly change the transverse profile of the
TEM mode 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx; yÞp

; however, the 1D-like TEM mode, and
hence the 1D vdW/Casimir interaction discussed above, still
exists. Impurities and sharp edges in the conductors can be
treated as scatterers characterized by a reflectivity or polariz-
ability, whose interaction with the dipoles contributes to the
dipoles’ energy shift.

Prospects: Casimir Physics in 1D
The vacuum force between two point dipoles underlies other
vdW- or Casimir-related phenomena. Hence, the giant en-
hancement and nontrivial scaling of these forces with distance

found here may open the door to unexplored Casimir-related
effects in 1D, upon extending the present results to either mul-
tiple point-like dipoles or extended (bulk) objects, as detailed in
what follows.

Many-Particle Systems. Because the open geometry of the CPW
allows for the coupling of the TEM mode to clouds of trapped
atoms above its surface (31), the predicted long-range inter-
action may be explored in a many-body setting. This may entail
a modification of the nonadditivity of the vdW and Casimir
interactions, which currently attracts considerable interest (15).
In free space, the vdW energy of a gas is approximately additive;
namely, it can be obtained by pairwise summation of the vdW
energies of all pairs, as long as α/r3 is small, r being a typical
interdipolar separation (4). This scaling is, however, a direct
consequence of dipole–dipole interactions in free space and is
expected to change when atomic dipoles interact via the TEM
mode of the CPW, for the same reasons that the 1/r6 scaling was
shown here to change. Such atomic clouds are anticipated to exhibit
nonadditive effects at smaller densities than usual, which in turn
may influence their dielectric properties, which may deviate from
those obtained by the Clausius–Mossotti equation (32). Fur-
thermore, it would be interesting to consider how the enhanced
interaction we predict is modified at finite temperatures or out of
equilibrium (33–35).
From a more applied point of view, the van der Waals energy

shift between (out-of-equilibrium) Rydberg atoms, which under-
lies the blockade mechanism used to design quantum gates (17),
may be enhanced when the atoms are coupled to a TL. For
Rydberg atoms (λe ∼ 1 cm) in free space, blockade distances of
∼10 μm have already been observed (18), and the long-range
scaling expected for their TL-mediated interaction may lead to
the extension of the blockade distance even further.

Extended (Bulk) Objects. Another direction to explore is the
modification of the Casimir interaction involving bulk objects in
a TL environment and its possible relevance for actuation of
microelectromechanical systems (16). For example, one could
consider the interaction energy between a dipole and a mirror (2,
4), where the role of the mirror may be played by a short circuit
at one of the ends of the TL. A mirror, whose reflection is not
necessarily perfect, could be realized by an impedance charac-
terized by capacitance and inductance.
In fact, in 1D there is no difference between a point dipole and

an imperfect mirror. As shown above, for distances z > a between
the interacting objects, the TEM mode is dominant and a TL
environment is effectively 1D. Hence, the theory of the Casimir
interaction between mirrors in 1D (36) finds a realistic context in
TL environments. It is therefore interesting to compare its results
to ours. The Casimir force between two mirrors in 1D, with fre-
quency-dependent reflection coefficients r1,2(k) (ω = kc), is (36)

f ðzÞ=
Z∞

0

dk
2π

Zck
−r1ðkÞr2ðkÞei2kz
1− r1ðkÞr2ðkÞei2kz + c:c: [8]

For the case of dipoles, which we assume to be weak scatterers,
we take r1r2 � 1. The integral for the energy U =−

R
dz  f ðzÞ over

imaginary frequencies k = iu (Wick rotation) (Materials and
Methods) then becomes

UðzÞ≈ Zc
2π

Z∞

0

dur1ðiuÞr2ðiuÞe−2uz: [9]

In the Casimir–Polder limit of large separations z, upon taking
ω → 0 (4, 26) and hence replacing r1,2(iu) with r1,2(0), we obtain
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U ∝ −r1(0)r1(0)/z. The 1/z dependence is shown in ref. 36 to be
universal and holds for any magnitude of the reflectivity r1,2.
This is in contrast to our U ∝ −1/z3 scaling (Eq. 7). The latter
can be recovered from [9] upon taking the limit ω → 0 more
carefully: From the Helmholtz Eq. 4 we obtain that the reflection

coefficient of the dipole, defined by Ê
ð1Þ
sc;k = r1ðωkÞÊ0k, becomes

r1,2(ω) ∝ ωα1(ω). Our results are then retrieved from the in-
tegral in [9] (Eq. 15). In particular, taking the Casimir–Polder limit
r1,2(ω→ 0) ∝ ωα1,2(0) in [9], we obtain U ∝ −1/z3 as in Eq. 7. This
shows that the scaling of the energy U with distance z strongly
depends on the frequency dependence of the reflectivities near
ω → 0; e.g., for r1,2(ω → 0) ∝ ωp, we obtain in the retarded
Casimir–Polder limit U ∝ −1/z2p+1.

Conclusions
We have studied how TL structures, typically used to transmit
electromagnetic signals in electronic devices, can effectively
transmit vacuum fluctuations between dipoles and drastically
enhance their dispersion forces. This comes about because of
the unique nondiffractive 1D character of virtual-photon
propagation via the TEM mode in TLs. We have shown how
the resulting vdW and Casimir–Polder interactions can be-
come longer range and larger by orders of magnitude than
their free-space counterparts. To this end, we have analyti-
cally found, by two independent methods, an expression (Eq.
6) for the dominant TEM-mediated interaction at all inter-
dipolar distances and described how the free-space result is
restored at very short distances, by including higher-order
modes in the calculations. Although our approach assumes
that the TL is composed of perfect conductors at zero tem-
perature, it remains accurate for a realistic superconducting
coplanar waverguide, for which we have estimated that the
enhanced interaction may be directly measured for a single
pair of superconducting transmons.
We stress the uniqueness of the vdW/Casimir force mediated

by a TL compared with that of other waveguides. The fact that
any waveguide allows waves to propagate only in one direction
does not guarantee its support of 1D long-range vacuum forces;
such modified 1D-like forces are mediated only by the TEM
mode that has no cutoff and exists only in TLs. For example, in
a hollow metal waveguide, where all transverse modes possess
a cutoff, the vdW energy between a pair of dipoles can become
extremely short ranged (25). In a fiber, the fundamental HE11
mode might give rise to a more extended vacuum interaction, but
because its effective area, unlike that of the 1D-like TEM mode,
depends on frequency (37), it is diffractive and does not give rise
to the 1D interaction found here.
Our result may pave the way toward the exploration of more

complex Casimir phenomena than the simple dipole–dipole
nonretarded vdW interaction due to two major effects: re-
tardation and nonadditivity (15). As discussed above, both of
these may be drastically modified in a 1D geometry, namely, by
the presence of a transmission line. Finally, the predicted mod-
ification of the basic interaction between dipoles may prove
relevant to diverse areas of applied and basic research: circuit
QED, where it can provide a fundamental demonstration of the
1D vacuum effect enabled by such systems; quantum in-
formation, where Rydberg-blockade–based quantum gates may
be enhanced; and classical electromagnetism, where the macro-
scopic dielectric properties of a gas have to be revisited.

Materials and Methods
QED Perturbation Theory. The sum in Eq. 3 includes 12 different terms, each
corresponding to a different set of intermediate states and represented
by a diagram (26); e.g., the term corresponding to the diagram in Fig. 2A is
given by

−
Z2c2

16π2e2A1A2

X
n1 ,n2



d⊥
n1

·d⊥
n2

�2
Z∞

−∞

dk
Z∞

−∞

dk′

×

��k����k′��eikzeik′z
ðEn1

+ ZcjkjÞ�Zcjkj+ Zc
��k′����En1

+ Zc
��k′���:

[10]

Summing all 12 terms and then performing the integration over k′, we arrive at

U=−
π

2e2A1A2

X
n1 ,n2



d⊥
n1

·d⊥
n2

�2

λ2n1
En1

Fn1 n2
ðzÞ,

Fn1 n2
=

Z∞

0

dk sinð2kzÞ −2λn1
k2ðk+ kn1

+ kn2
Þ

πðkn1
+ kn2

Þðk+kn1
Þðk+ kn2

Þ,

[11]

where kn = En/(Zc) = 2π/λn. The integration over k is performed by regula-
rization, yielding

Fn1 n2
ðξ,bÞ= 2b

b2 − 1
f−2Cið4πξÞsinð4πξÞ+ 2bCið4bπξÞsinð4bπξÞ

        −   cosð4πξÞ½π − 2Sið4πξÞ�+b cosð4bπξÞ½π − 2Sið4bπξÞ�g,
[12]

where Ci(x) and Si(x) are the cosine and sine integral functions, respectively.
Here Fn1n2 ðξ,bÞ is the dimensionless vdW/Casimir energy contributed by the
interaction between the dipolar transition jg〉 → jn1〉 of the first dipole and
the jg〉 → jn2〉 transition of the second dipole, where ξ= z=λn1 , and b= En2=En1

represents the asymmetry between the two transitions. Eq. 11 then reveals
that the total vdW/Casimir energy is given by a sum over all such possible
interactions between dipolar transitions of the two dipoles. In the vdW and
Casimir limits, ξ � 1 and ξ � 1, respectively, we obtain

Fn1 n2
ðξ �1,bÞ≈ 2bπ

1+b
+

16bπ

1−b2 ξ
�
lnð4πξÞ−b2 lnð4bπξÞ	,

Fn1 n2
ðξ �1,bÞ≈ 1

8bπ3
1

ξ3
:

[13]

Expressions [13] yield the same universal scalings as those of Eq. 7 for the
two-level dipole case, which is recovered by appropriately taking the
limit b → 1. Alternatively, by directly performing the integration over k
in Eq. 11 for a single excited level je〉 in each dipole, we obtain Eq. 6 in
the main text.

Scattering of Vacuum Fluctuations. The scattered field is proportional to
the Green’s function of the Helmholtz equation in 1D, Eq. 4, which is found to
be ði=2jkjÞeijkjjz−z1 j. Then, inserting this field into the energy Eq. 5, we arrive at

U=
Zc

2πe2A1A2

Z∞

0

dkα1ðkÞα2ðkÞk2 sinð2kzÞ: [14]

Taking the integration on the imaginary axis k = iu in a complex k plane
[Wick rotation, assuming the poles of α1,2(k) have some width, i.e., pushing
them slightly below the real axis], we obtain

U=
−Zc

2πe2A1A2

Z∞

0

duα1ðiuÞα2ðiuÞu2e−2uz: [15]

Upon taking the polarizabilities α1,2 of a system with a discrete set of
transitions as in an atom, αðkÞ= ð2=3ÞPnðEnjdnj2=ðE2

n − Z2c2k2ÞÞ (26), the in-
tegration can be performed. The resulting energy U, described by special
functions, is equivalent to that of Eq. 11 when

��d⊥
e

��2 = ð2=3Þjdej2 is assumed.
Specifically, for the vdW and Casimir limits, we obtain exactly the same
analytical expressions of Eqs. 13 and 7.

Contribution of Higher-Order Transverse Modes. In SI Text we calculate,
for a coaxial TL, the interaction energy due to the TE and TM modes. We
find that the energy contribution of the TElm and TMlm modes with
cutoff frequency cklm scales like K0(klmz) and e−klmz, respectively, where
K0(x) is the modified Bessel function. Because klm > π/a, at long distances
z > a both decay exponentially and are negligible with respect to the
TEM mode energy. However, at short distances z � a, we numerically
verify that the dominant TM modes sum up to give exactly the free-space
interaction. This was also recently shown for the dispersion interaction in
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a metallic waveguide (25), and we expect it to hold for all TLs. Namely,
for distances z � a we can indeed consider only the TEM mode, whereas
the free-space result is recovered for z � a, owing to the role of other
transverse modes.

Scaling of A(x, y) with a. Considering a coaxial line for example (Fig. 1A), upon
normalizing the electric field of the TEM mode, we find

ffiffiffiffi
A

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π lnðb=aÞp

ρ,

with ρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
(24). Because a < ρ < b, taking, e.g., b = 2a and ρ = a we

obtain
ffiffiffiffi
A

p
≈ 2:1a, such that A ∼ a2.
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