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Guide trees are used to decide the order of sequence alignment in
the progressive multiple sequence alignment heuristic. These
guide trees are often the limiting factor in making large align-
ments, and considerable effort has been expended over the years
in making these quickly or accurately. In this article we show that,
at least for protein families with large numbers of sequences that
can be benchmarked with known structures, simple chained guide
trees give the most accurate alignments. These also happen to be
the fastest and simplest guide trees to construct, computationally.
Such guide trees have a striking effect on the accuracy of align-
ments produced by some of the most widely used alignment
packages. There is a marked increase in accuracy and a marked
decrease in computational time, once the number of sequences
goes much above a few hundred. This is true, even if the order of
sequences in the guide tree is random.

Clustal | Mafft | Muscle | PFAM

he generation of a multiple sequence alignment (MSA) is
standard practice during most comparative analyses of ho-
mologous genes or proteins. Since the mid-1980s, most auto-
mated MSAs have been made using a heuristic approach that
Feng and Doolittle (1) called “progressive alignment.” This
involves clustering the sequences into a tree or dendrogram-like
structure, called a “guide tree” in Higgins et al. (2). This guide
tree is then used to align the sequences into progressively larger
and larger alignments, following the branching order in the tree.
Variations on the method were described by various groups in
the 1980s [e.g., Taylor (3) and Barton and Sternberg (4)], but the
earliest clear description of the approach is from Hogeweg and
Hesper (5). Progressive alignment is a heuristic approach and is
not guaranteed to find the best possible alignment for any given
scoring scheme. It does, however, allow alignments of many
sequences to be made quickly, even on personal computers (6).
The quality of the alignments is good enough for the alignments
to be used automatically in many analysis pipelines.
The computational complexity of the alignment process, once
a guide tree is created, is approximately O(N) for N sequences of
the same length. The creation of the guide tree involves com-
paring all N sequences to each other to generate a distance
matrix, which is clearly going to require O(N?) time and com-
puter memory. Once the distance matrix is made, it will require
a further clustering step that is usually O(N?) but can be more
expensive. For large N, the construction of the guide tree
becomes limiting and prevents the routine alignment of more
than a few thousand sequences. Over the years, various attempts
have been made to get around this problem. One solution is to
quickly make a crude guide tree initially and to iterate that from
an initial MSA. This approach is adopted in the widely used
Muscle (7) and Mafft (8) packages. Barton and Sternberg were
the first authors to use iteration, but they used a simple
“chained” guide tree topology, effectively aligning the sequences
one at a time to a growing MSA. Taylor (9) also used chained
guide trees to make very large alignments of over 6,000
sequences. PartTree (10) groups the sequences quickly into
clusters and then clusters the clusters, allowing very large guide
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trees to be made but at the expense of some accuracy, compared
with the default Mafft program on which it is based. Clustal
Omega (11) uses the mBed algorithm (12) to cluster the se-
quences on the basis of a small number of “seed” sequences. For
N sequences, S seeds are used where § is typically proportional
to log(N). Clustering then takes O(NS) steps, which is equivalent
to O(N log(N)).

Most of these methods rely on the importance of creating
a “good” guide tree with a topology that closely resembles
a phylogenetic tree of the sequences. Few papers, however, have
systematically tested major variations in guide tree topology to
measure the effects on MSA quality. Nelesen et al. (13) looked
at some variations in the algorithm used to generate the tree and
concluded that there was little influence on the final MSA
quality. Wheeler and Kececiogolo (14) compared algorithms and
found a minimum spanning tree to give good results. In the
phylogenetic tree reconstruction literature, there seems to be
a consensus that the guide tree topology should resemble the
true phylogeny of the sequences as much as possible (15).

In this article, we looked in detail at the effect of guide tree
topology on the quality of protein sequence MSAs, where we can
measure the quality of the alignhments empirically using protein
structure-based benchmarks. We attempted to measure the ac-
tual decrease in performance when using trees with greatly
simplified or even random topologies. What we found was very
surprising in that, for large numbers of sequences (e.g., of the
order of thousands or more), the guide trees that gave the best
alignments had completely chained topologies. These had sig-
nificantly better alignment scores than “balanced” trees, where
the topology was either (i) random, (ii) optimized, or (iii) the
default topology produced by the aligners. Examples of com-
pletely chained, perfectly balanced, partly chained, and a default

Significance

To make sense of protein sequences, they need to be compared
with each other. It is common to make a multiple sequence
alignment where gaps are inserted to line up homologous
residues in columns. Automatic methods such as Clustal, Mus-
cle, or Mafft have been widely used since the 1980s but have
difficulty in making alignments of much more than a few
thousand sequences. This is mainly due to the time required to
calculate what is called the guide tree, a clustering of the
sequences that is used to guide the multiple alignment. We
have discovered that if you use simple chained guide trees, you
can increase the accuracy of alignments and, in principle, make
alignments of any size.
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guide tree are given in Fig. 1. The accuracy was the same, re-
gardless of whether the chained trees were optimized or had
completely random ordering.

This is a remarkable result that turns 30 y of research on
progressive alignment on its head and that has some very clear
and simple implications for the developers of alignment packages
or alignment databases, such as Pfam (16). If you wish to make
alignments of very large numbers of protein sequences using
a progressive alignment method, the ideal algorithm may be to
simply add the sequences one at a time, in any order, to a growing
alignment. Doing this gives a clear and immediate jump in ac-
curacy with Clustal Omega, Muscle, and Mafft alignments of
many sequences. The guide trees are now almost instant to cre-
ate, and no iterations are needed to refine their topology.

Results

This article examines how different guide tree topologies affect
the quality of alignments produced by Clustal Omega, Mafft, and
Muscle. These programs were selected based on their wide-
spread use, their ability to process an externally defined guide
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Fig. 1.

tree, and their ability to align more than a thousand protein
sequences.

Initial Analysis. In an initial exploratory analysis, we used the
Cytochrome P450 protein family as it has a large number of
homologous sequences available in Pfam (Pfam accession no.
PF00067), and there are 12 sequences with known 3D structures.
We used the structure-based alignment of these 12 sequences
from HOMSTRAD as a reference and looked at the effect on
alignment quality of aligning large numbers of Cytochrome P450
sequences from Pfam, when these 12 were included (17). We
measured the proportion of correctly aligned columns out of all
aligned columns in the reference sequences [Total Column (TC)
score] of the 12 sequences, embedded in the larger datasets. This
type of analysis is widely used and is the basis of the HomFam
alignment benchmark system (12).

For the first analysis, we selected random sets of 1012 Cyto-
chrome P450 sequences from the 21,001 available in Pfam;
added them to the 12 with known structures to make up 1,024
sequences, a power of 2 being necessary to create a perfectly
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(A) Default guide tree produced by Clustal Omega for a sample of 16 sequences. (B) Balanced and (C) chained guide trees created by a utility program

for these same sequences. (D) A guide tree with an intermediate level of chaining created by “chaining” four sequences “to the side” of the balanced guide
tree. (E) TC scores for 1,024 Cytochrome P450 sequences with different guide trees, ranging from perfectly balanced to fully chained (all randomly ordered)
Clustal Omega, Mafft (FFT-NS-2 algorithm), and Muscle (two iterations). The TC scores obtained with the default guide trees are shown on the right for

reference (***P < 0.001, 100 samples).
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balanced tree; and shuffled the sequence order. The datasets
were used to create a series of guide trees ranging from perfectly
balanced through increasing levels of chaining to fully chained
guide trees. These trees all have random allocation of sequences
to the tips. The sequences were aligned using these guide trees,
and the quality of the resulting alignments measured using their
BAIISCORE TC score (18). These steps were repeated, and the
results are shown in Fig. 1. There is a clear and simple trend of
increasing accuracy going from the balanced to the completely
chained guide trees. In the case of Clustal Omega, the random
chained trees produce alignments that are slightly worse than
those produced by the default Clustal Omega guide trees. With
Mafft and Muscle, the chained trees are considerably better than
the default ones, but this effect is test case specific, and these
programs normally use iterations to improve the guide tree. It is
not so surprising that a balanced guide tree with randomly placed
sequences will do badly, but it is surprising that equally random
but perfectly chained trees do so well. To test if this effect is
specific to this test case, we repeated this experiment across all of
the BAIIBASE 3 benchmark test set (19).

BAIBASE. The BAIIBASE database consists of a number of ref-
erence sets, each containing a number of test alignments. For
each alignment, randomly ordered balanced and chained guide
trees were created. As most test cases have only a relatively small
number of sequences, it was not feasible to create guide trees
with intermediate levels of chaining. In addition, the balanced
trees were as close to perfectly balanced as possible given the
number of sequences available. The guide trees were again used
to align the sequences and the quality of the alignments mea-
sured using the bali_score program. The mean quality score was
calculated for each family from repeated sampling (the trees
have random orderings and so need sampling), and the results
are shown in Fig. 2. As before, for all reference sets and alignment
programs, chained trees gave significantly higher quality align-
ments than balanced trees. In most scenarios, the default guide
trees gave the best quality alignments. However, the BAIIBASE

families are quite small, with the largest having 142 sequences,
and the effects of chaining only become apparent with larger
numbers of sequences.

Larger Datasets. For the next comparisons, we examined the
effects of guide tree topology on very large alignments. Here we
compared nonrandom (optimized) balanced trees and random
chained trees and also compared the default guide trees from
each aligner. We did this for different numbers of sequences
ranging from 16 up to over 32,000. In a previous paper (20), we
had noticed that alignment quality tends to drop off for all
progressive alignment methods, once the number of sequences
increases much beyond a thousand or so. Given the huge
alignments and the need to make replicates, we used the rela-
tively short short-chain dehydrogenases/reductases sequence
family, which has 13 cases with known 3D structure and over
50,000 sequences in Pfam (Pfam accession no. PF00106). Data-
sets of between 16 and 32,768 sequences were created from the
13 reference sequences of known structure and a random se-
lection from the 50,144 other sequences from Pfam. These
sequences were aligned using the default guide trees, optimized
balanced guide trees, and random chained guide trees. The TC
scores for the different topologies are shown in Fig. 3, and ad-
ditional details are given in Figs. S1-S3 for the short-chain
dehydrogenases/reductases, Cytochrome P450, and zinc finger
(Pfam accession no. PF00096, HOMSTRAD zf-CCHH) families,
respectively. Although the actual TC scores are different in each
set of results, the overall pattern is the same for all aligners and
for the three protein families.

In all cases, the quality scores for the default guide trees fall
off as the number of sequences increases, as was found in ref. 20.
For chained trees, however, the quality scores fall off much more
slowly than for either default or balanced trees. Once you go
above a few hundred sequences, you get much better alignments,
using completely random, simple chained guide trees. These
differences are highly significant when tested statistically, and the
pattern is the same, almost regardless of the alignment program
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Fig. 2. Average TC scores for BAIIBASE reference sets. The alignments were created with randomly ordered balanced and chained guide trees. The red line
indicated the median TC score for Clustal Omega, Mafft (FFT-NS-2 algorithm), and Muscle (two iterations) using default guide trees (***P < 0.001, 100

samples).
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Fig. 3. TC scores for increasing numbers of short-chain dehydrogenases/reductases sequences for Clustal Omega, Mafft (FFT-NS-2 algorithm), and Muscle
(two iterations) with default, optimal balanced, and random chained guide trees, with fitted Loess curves. The order for the balanced guide trees determined
by TSP Minimization, and the chained guide trees were randomly ordered (100 samples per dataset, except 25 samples for the largest Clustal datasets).

used. In the Supporting Information figures, we also include
results for optimized, as well as random, chained trees. With
Clustal Omega, once you go up to 8,000 sequences with the
Cytochrome P450 test case, optimized chained trees give better
alignments than random ones. However, with other alignment
programs, on this test case, and across all test cases, on average,
the pattern holds true.

In a further experiment, shown in Fig. S4, 5% of the sequences
in the datasets were replaced with sequences from a different
family to represent outliers. Although the trends are not as clear
as the results shown above, the effects of chaining are still ap-
parent for larger alignments.

Small Models. At the other end of the scale from the large
alignments in the previous section, we tested small alignments of
just four sequences. Simple test cases were created with four
randomly selected and ordered Cytochrome P450 reference
sequences with known structure. Randomly ordered balanced
and chained guide trees were created. The sequences were
aligned using these guide trees, and the TC scores calculated for
the resulting alignments. The TC scores are higher with the small
chained trees than with the balanced ones, as shown in Fig. 4.
Although the differences in TC scores are quite small, they are
nonetheless significant when compared pairwise, even with such
small datasets. The only difference between both scenarios is the
number of steps where two unaligned sequences are aligned with
each other. With balanced trees, this happens twice; with chained
ones, only once. These alignments of unaligned sequences are
where alignment errors are most likely to happen, and the chained
trees have fewer of them.

HomFam. Finally, we wished to test whether the effects seen in the
large short-chain dehydrogenases/reductases tests of thousands
of sequences were seen across all HomFam families. These are
the single-domain Pfam families that have at least five members
with known structures in a HOMSTRAD structural alignment.
Given the numbers and size of the families, only random chained
trees were compared with the default guide trees from each
aligner. Datasets were limited to 1,024, 2,048, and 4,096 sequences
per family, and only families with at least 4,096 sequences were
included in the experiment. All reference sequences were included
in a family’s dataset, with the remainder of sequences being se-
lected at random to make up the desired numbers. Each aligner

Boyce et al.

was run using both its default guide tree and a random chained
tree and the TC scores for the alignments produced compared
with a = 0.01. The results are given in Fig. 5.

In general, as the number of sequences increases, there is
a corresponding increase in the number of families where the TC
score obtained with random chained trees is significantly higher
than the default TC scores. Interestingly, even with a relatively low
o of 0.01, the results show few families where there is no dis-
cernible difference between the default and chained guide trees.

Discussion

There are some immediate and surprising side effects from the
discovery that simple guide trees do so well on protein structure-
based benchmarks. The most obvious is the enormous simplify-
ing effect that chained trees have on the performance of some of
the most widely used packages for making large protein align-
ments. The effects on Mafft and Muscle are striking. With chained
trees, you get a large and immediate increase in accuracy. This is
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Fig. 4. TC scores for four randomly selected and ordered Cytochrome P450
reference sequences for Clustal Omega, Mafft (FFT-NS-2 algorithm), and
Muscle (two iterations) with balanced and chained guide trees (***P < 0.001,
100 samples).
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Fig. 5. Comparison of TC scores obtained for Clustal Omega, Mafft (FFT-NS-2 algorithm), and Muscle (two iterations) with default and randomly chained
guide trees for different dataset sizes across all 41 HomFam families that have at least 4,096 sequences. For each family, the TC scores obtained with default
and random chained guide trees were compared (x = 0.01, 50 samples per family).

accompanied by a potentially huge reduction in computational
complexity, especially for large numbers of sequences (see Fig.
S5 for computing times). No iterations are needed, and the initial
trees can be constructed in trivial amounts of time and memory.
The time to make an MSA, once a guide tree is made, is the
same with Muscle, regardless of the tree topology. With Mafft,
chained trees are slower to use than balanced ones, so it is more
of a tradeoff. With Clustal Omega, there is a clear increase in
accuracy but at the cost of a considerable rise in the time to
compute the alignments. The initial guide trees in Clustal Omega
are usually created using mBed, which is very fast and has
O(Nlog(N)) complexity, so the saving in time at the guide tree
construction phase is modest. Once a guide tree is constructed,
the alignment times with chained trees are much longer than
with balanced ones. The increase in complexity comes from the
way Clustal Omega aligns hidden Markov models (HMMs)
during the progressive stage and is something that the developers
of that package will attempt to modify as soon as possible, to
exploit the other benefits of chained guide trees.

We were unable to test these guide tree topology effects on
Kalign (21) due to an inability of Kalign to accept external guide
trees. However, we have noticed that Kalign is one of the few
packages, like the ones tested in this article, that can align very
large numbers of sequences. We also noticed that Kalign does
very well on various benchmark studies that we have run, where
we explicitly test the quality of MSAs of large numbers of protein
sequences. We did a systematic analysis of guide trees used by
Kalign to align the sequences in our HomFam test set (Fig. S6).
These trees range from being moderately to extremely chained in
topology, especially with short sequence lengths. This seems to
derive from the use of the Muth-Manber (22) alignment metric for
quickly measuring the similarity of unaligned sequences. For short
sequences, this gives a score of either 0 or 1 in many cases. A dis-
tance matrix that has mainly Os and 1s will produce highly chained
guide trees. According to our results, this may in fact be one of the
reasons why the alignments from Kalign appear to be so good.

The Pfam database (16) consists of collections of protein se-
quence domains, arranged into protein families, with accompa-
nying HMMs and MSAs. It was never a stated aim of the
developers of Pfam to produce high-quality alignments. What
were assumed to be low-quality MSAs seemed able to produce
HMMs for sequence searching that were just as useful as ones
from more involved alignments (23). The large alignments in
Pfam are therefore produced by a method that is intended to
be simple and effective rather than intensive. This includes,
effectively, building up the HMMs using chained guide trees.
Sequences are added to a growing alignment by aligning them in
turn to an HMM derived from a core “seed alignment.” We have
tested the large full alignments in some Pfam families using

10560 | www.pnas.org/cgi/doi/10.1073/pnas.1405628111

a benchmark based on protein structures and have found the
alignments to be remarkably good. It is quite possible that the
supposedly simplistic algorithm that is used to create the large
Pfam alignments is the optimal way to do this, given the time
constraints involved in doing this for all protein domains.

A key question remains as to why chained trees do so well with
large numbers of sequences. The simple four-sequence example
in Fig. 4 gives a possible clue. Here, there is a tiny but significant
improvement in accuracy using chained versus balanced trees.
When scaled up to hundreds of sequences, this effect is amplified.
Completely chained guide trees mean you only align a pair of
unaligned sequences once. These are potentially the least accu-
rate alignments in the entire procedure, especially if the pair of
sequences cluster deep in the tree. All of the other alignments
involve aligning a sequence against a profile of already aligned
sequences. These latter alignments are potentially more accurate.

We have found completely chained guide trees to work very
well for making large alignments of single domain proteins, when
we can benchmark these using protein structure based align-
ments. We do realize that this result may not hold up when
viewed from a strictly phylogenetic perspective or if the main aim
is to infer the precise positions of gaps in the alignment (24).
There is a problem in the field when trying to reconcile the
apparently conflicting results that you get from benchmarks
based on evolutionary models and simulations versus those based
on 3D structures of proteins (25). This can only be resolved by
further work and by further use of a variety of realistic test sys-
tems and benchmarks for sequence alignments.

Materials and Methods

The default versions of all three aligners were used, with runtime parameters
limited to those required to specify the input guide trees. For Mafft, the FFT-
NS-2 algorithm was used for all datasets. This is the method used by the
controlling MAFFT program when the auto flag is not used. The latter is used
to choose automatically between a standard progressive or consistency-based
aligner based on the number and length of the sequences—the FFT-NS-2
progressive alignment algorithm is the default when no alignment flag is
specified. The newick2mafft.rb ruby script, available from the Mafft website,
was used to convert all externally generated guide trees into Mafft format.
With Muscle, the number of iterations was limited to two rather than the
default of 16. This is the number of iterations recommended by the authors,
with large datasets. Attempts at running Muscle with the default number of
16 iterations resulted in prohibitive run times and had to be abandoned.

Balanced, chained, and guide trees with intermediate levels of chaining,
examples of which are given in Fig. 1, were created using a separate utility
program. Branch lengths are ignored in Clustal Omega and Muscle, and the
—unweight option is used in Mafft.

The program versions and runtime arguments used are as follows: Clustal
Omega (v1.2.0), —guidetree-in=...; Mafft (v7.029b), —anysymbol —treein ...
—unweight; Muscle (v3.8.31), -usetree_nowarn ... -maxiter 2; and Kalign
(v2.04): -printtree ... -q.
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A package of utility programs (including those used to create the guide
trees), data files, and scripts is available for download from www.bioinf.ucd.
ie/download/PNAS2014ChainedTrees.tar.gz.

The following different sequence orders/optimizations were used.

Random. Sequences were selected at random from the HomFam family,
combined with the reference sequences, and the full set of sequences
randomly shuffled.

TSP Minimum. The standard Traveling Salesman Problem (TSP) algorithm
using simulated annealing, excluding the distance from the last point back to
the starting position, was used to produce an ordered list of sequences with
a global minimum distance between the sequences. The distances are
obtained from the full distance matrix produced by Clustal Omega.
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