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Purpose: Nonstationarity is an important aspect of imaging performance in CT and cone-beam CT
(CBCT), especially for systems employing iterative reconstruction. This work presents a theoretical
framework for both filtered-backprojection (FBP) and penalized-likelihood (PL) reconstruction that
includes explicit descriptions of nonstationary noise, spatial resolution, and task-based detectabil-
ity index. Potential utility of the model was demonstrated in the optimal selection of regularization
parameters in PL reconstruction.
Methods: Analytical models for local modulation transfer function (MTF) and noise-power spec-
trum (NPS) were investigated for both FBP and PL reconstruction, including explicit dependence
on the object and spatial location. For FBP, a cascaded systems analysis framework was adapted to
account for nonstationarity by separately calculating fluence and system gains for each ray passing
through any given voxel. For PL, the point-spread function and covariance were derived using the im-
plicit function theorem and first-order Taylor expansion according to Fessler [“Mean and variance of
implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomog-
raphy,” IEEE Trans. Image Process. 5(3), 493–506 (1996)]. Detectability index was calculated for a
variety of simple tasks. The model for PL was used in selecting the regularization strength param-
eter to optimize task-based performance, with both a constant and a spatially varying regularization
map.
Results: Theoretical models of FBP and PL were validated in 2D simulated fan-beam data and found
to yield accurate predictions of local MTF and NPS as a function of the object and the spatial location.
The NPS for both FBP and PL exhibit similar anisotropic nature depending on the pathlength (and
therefore, the object and spatial location within the object) traversed by each ray, with the PL NPS
experiencing greater smoothing along directions with higher noise. The MTF of FBP is isotropic and
independent of location to a first order approximation, whereas the MTF of PL is anisotropic in a
manner complementary to the NPS. Task-based detectability demonstrates dependence on the task,
object, spatial location, and smoothing parameters. A spatially varying regularization “map” designed
from locally optimal regularization can improve overall detectability beyond that achievable with the
commonly used constant regularization parameter.
Conclusions: Analytical models for task-based FBP and PL reconstruction are predictive of nonsta-
tionary noise and resolution characteristics, providing a valuable framework for understanding and
optimizing system performance in CT and CBCT. © 2014 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4883816]
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1. INTRODUCTION

Accurate description of image quality is integral to system
design, optimization, and assessment. A wealth of literature
has been devoted to studying the noise characteristics of x-
ray computed tomography (CT) in terms of the pixel vari-
ance, spatial domain covariance matrix, or Fourier domain

noise-power spectrum (NPS).1–6 Moreover, it is generally ac-
cepted that image quality should be defined with respect to
the imaging task,7, 8 where detectability is calculated to ac-
count for noise, spatial resolution as well as the task function
and observer model. Such task-based frameworks are increas-
ingly employed in system design, performance assessment,
and optimization.9–11
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An aspect of image quality that is somewhat less fre-
quently reported is the spatially varying, i.e., nonstationary—
characteristics of noise, spatial resolution, and detectability.
In x-ray CT and cone-beam CT (CBCT), nonstationarity
may arise from the discrete nature of reconstructed images,
detector defects and nonlinearity, angular sampling, the
divergent beam, variable fluence transmitted to the detector
at different view angles, and the reconstruction algorithm.
Several researchers have examined nonstationarity in filtered-
backprojection reconstruction (FBP). For example, Pineda
et al.12 calculated the local NPS throughout FBP reconstruc-
tions, showing the variation in NPS associated with variable
fluence transmitted to the detector (and the effect of a bowtie
filter). They furthermore quantified the difference between
the diagonal and off-diagonal elements of the Fourier trans-
form of the covariance matrix as a metric of stationarity.
Baek and Pelc13, 14 studied nonstationary noise in fan-beam
and cone-beam FBP reconstructions as a result of varying
magnification, projection weighting, and cosine weighting,
and quantified the NPS at different spatial locations within
reconstructions of air and a water cylinder. Bartolac et al.15

investigated the nonstationary signal and noise characteristics
in CBCT arising specifically from sampling along a circular
source-detector trajectory (i.e., the spatially varying null cone
associated with violation of Tuy’s condition). Nonstationarity
in relation to task-based performance was investigated by
Brunner et al.,5 who evaluated the location-dependent NPS
and covariance matrix in FBP reconstructions and calculated
Hotelling observer performance for simple tasks. Wunderlich
and Noo16 estimated the covariance in FBP reconstruction
of fan-beam CT data and examined the location-dependent
noise and lesion detectability using a channelized Hotelling
observer. Such work demonstrates the spatially vary-
ing noise characteristics intrinsic to CT and CBCT and
motivated investigation of the corresponding effect on
detectability.

The need for a framework that can describe nonstationary
imaging performance is pronounced in light of growing
interest in statistical reconstruction methods. Compared to
conventional FBP, statistical reconstruction has demonstrated
potential for dose reduction, artifact reduction, and the
incorporation of prior information.17 Such methods also
carry distinct noise and resolution characteristics, as well
as the means to explicitly enforce stationarity, e.g., the
ability to enforce uniformity in the point-spread function
(PSF) throughout the image.18–20 In the past several years,
commercial CT systems with the capability for statistical
reconstruction have emerged in clinical settings, raising the
need to understand the imaging performance associated with
such algorithms for assessment, optimization, and possible
dose reduction. Compared to FBP, image quality assessment
in statistical reconstruction faces the additional challenge that
the nonlinear algorithm itself imparts nonuniform noise and
resolution with explicit dependence on the contrast of the
signal of interest. Image quality in statistical reconstruction
has been evaluated empirically in terms of the variance,
kurtosis, contrast-dependent edge-spread function, and
associated modulation transfer function (MTF).21–24 Efforts

toward task-based assessment and optimization of statistical
reconstruction have mostly been concentrated in emission
tomography.25–37

The work reported below investigates the nonstationary
noise, resolution, and task-based performance in CBCT re-
constructed with both FBP and statistical algorithms. For the
latter, the current analysis pertains to penalized likelihood
(PL) estimation with a quadratic penalty. The FBP model
builds on the cascaded systems model established in previous
work38–40 to account for noise nonstationarity as a result of
variable fluence transmitted to the detector at different views.
Noise and resolution estimation for PL is adapted from work
by Fessler for implicitly defined function estimators.18, 41

Imaging performance is reported in terms of the local MTF,
NPS, and detectability index (d′), analogous to the approach
adopted by Wilson42 in SPECT, where the local MTF and
NPS were used to calculate a local NEQ. Although imaging
performance in both FBP and PL is examined below, the pur-
pose of this work is not to rate the performance of the two
algorithms. In fact, as apparent in the results below, the per-
formance of the two algorithms is highly dependent on the
imaging task, object, spatial location, and imaging conditions,
and it is difficult to reach a fair, general conclusion of the al-
gorithms. Finally, we present a simple task-based method for
optimal selection of the PL regularization strength parame-
ter (β), including spatially varying regularization to improve
detectability.

2. METHODS

2.A. Nonuniform noise and resolution due to variable
fluence to the detector

The main source of nonuniform noise and resolution in-
vestigated in this work is variable fluence transmitted to the
detector at different view angles (and, to a lesser extent, az-
imuthal angles) as illustrated in Fig. 1. For the general case
of a heterogeneous, noncircular object, the line integral of
the ith projection ray passing through a given voxel is de-
pendent on the object and in most cases different for each
view angle. It is also evident that the line integrals are de-
pendent on the location of the voxel within the object. Such
view- and location-dependent fluence (and therefore, noise) is
propagated through the reconstruction process and reflected
in the noise correlation according to the central slice theo-
rem. It is important to note that such a property is intrinsic to
CT and is evident in both linear and nonlinear reconstruction
algorithms.

The line integrals, l, can be calculated through a forward
projection matrix, A, according to

l = Aμ, (1)

where μ is the vectorized representation of attenuation co-
efficients in the object and would carry energy dependence
[μ(E), giving rise to l(E)] for a polyenergetic beam model.
Let nvox denote the number of voxels in the voxelized rep-
resentation of the object and ndet the number of detec-
tor measurements over all projection views, the dimension
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FIG. 1. Illustration of line integrals at different view angles transmitting
variable fluence to the detector, thereby imparting nonuniformities in detector
signal and noise which are then propagated to image reconstruction.

of A is ndet × nvox, that of μ is nvox × 1 and l ndet × 1.
The forward projection operator was implemented follow-
ing a separable footprint algorithm43 elaborated in Sec. 2.C.
The detector element (and, therefore, the line integral) as-
sociated with a given voxel was identified through a view-
specific 3 × 4 projection matrix that relates the voxel loca-
tion in the object to the location of its projection on the de-
tector. The line integrals (and, therefore the local signal and
noise characteristics) can then be calculated for any voxel
location.

As illustrated in Fig. 1, the presence of a bowtie filter (or
equivalently, other fluence modulation device, e.g., a dynamic
bow-tie44 or multileaf collimators45) can be readily incorpo-
rated into the model by accounting for attenuation through the
device as part of the object model, μ. A bowtie filter was ex-
cluded in the work below to be consistent with many CBCT
systems (including many breast, C-arm, and image-guided ra-
diotherapy imaging systems) and to better demonstrate the ba-
sic nonstationary noise characteristics.

Additional sources of nonuniform noise and resolution ex-
ist and were not directly investigated in this work. A point
x-ray source was assumed, thereby neglecting spatially-
varying focal spot blur in the system MTF. We also excluded
the heel effect, which would result in decreased fluence at the
anode side of the projection. The spatially varying “null cone”
associated with the cone-beam geometry in a circular source-
detector orbit was ignored. The response of each detector ele-
ment was assumed to be the same, thereby assuming a perfect
correction of gain and offset variations in the detector. Such
effects could potentially be incorporated in the description of
image quality in future work.

2.B. The spatially-varying NPS and MTF for FBP

Previous work has established a cascaded systems anal-
ysis model for signal and noise propagation through dis-
crete stages corresponding to the physical processes of pro-
jection formation and the mathematical processes of FBP
reconstruction.38–40, 46 Each stage may result in one of the
following effects: (1) the amplification (or loss) of signal
through a gain factor ḡi , (2) spatial spreading (deterministic
or stochastic) of signal according to a transfer function Ti,
and (3) sampling characterized by a comb function III. Using
notation consistent with previous work and briefly summa-
rized in Table I, the system MTF and NPS of a 3D CBCT/CT
reconstruction is given by

T (f3D) = T3T5T11T12, (2)

S(f3D)=
[(

SprojT
2

8

)∗∗
III8(

q0a
2
pdg1g2g4

)2 T 2
10T

2
11T

2
12

1

M2
�2

13∗ ∗ ∗III14

]

· T 2
15∗ ∗ ∗III15, (3)

where Sproj denotes the 2D projection NPS,

Sproj(fProj)= q̄0a
4
pd ḡ1ḡ2ḡ4

[
1+ḡ4PKT 2

3

]
T 2

5 ∗∗III6+Sadd.

(4)

TABLE I. Notations used in the cascaded systems analysis consistent with
Ref. 40.

Term Definition

q̄0 Mean fluence incident on the detector per projection
ḡ1 Quantum detection efficiency
ḡ2 Conversion gain from x-rays to secondary quanta (e.g., optical

photons)
Pk Gain and spreading factors associated with K-fluorescence
T3 Transfer function due to stochastic spread of secondary quanta
ḡ4 Coupling efficiency of photodiode
apd Width of (square) photodiode
T5 Transfer function due to photodiode aperture
III6 Detector pixel sampling (2D comb function)
σ add Additive electronics noise
III8 Postreadout projection resampling (optional)
T8 Transfer function due to 2D binning aperture (optional)
T10 Ramp filter
T11 Apodization filter
T12 Interpolation filter
T13 Transfer function associated with backprojection of signal
�13 Transfer function associated with backprojection of noise
III14 3D voxel sampling (3D comb function)
III15 Postreconstruction sampling (optional)
T15 Transfer function due to 3D binning aperture (optional)
m Number of projections acquired across a circular orbit
θ tot Total angular extent of acquisition
M Magnification factor, source-detector distance

(SDD)/source-axis distance (SAD)
FOV Size of the reconstruction field of view
fProj 2D projection frequency domain, (fu, fv)
f3D 3D reconstruction frequency domain, (fx, fy, fz)
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Such work has primarily reported results and validation
pertaining to the center of a uniform cylinder (or averaged
along circular paths concentric with the cylinder), although
calculation of nonstationary noise as a function of spatial lo-
cation can be accommodated within the same framework.

To model the effect of variable fluence to the detector, q̄0

of the ith projection, denoted as q̄i
0 (x-ray quanta/mm2), was

calculated according to Beer’s law using line integrals cal-
culated from Eq. (1). Consequently, any parameters in the
model that are dependent on the spectrum also need to be
calculated separately for each view, including the effective
(energy-averaged) gain factors ḡ1, ḡ2, and Pk. For simplic-
ity, the spatial spreading of optical quanta (T3) and K x-rays
(Tk, absorbed in the Pk term) in the scintillator are assumed
to have negligible dependence on the incident energy. This
assumption could be removed in refinement of the model in
future work. Aperture integration (T5), the ramp filter (T10),
apodization (T11), and interpolation (T12) of the projections
are independent of the incident spectrum.

The NPS of the ith projection is therefore as follows, with
view-dependent terms indicated by the superscript i and nota-
tion otherwise consistent with Eq. (4),

Si
proj(fProj) = q̄i

0a
4
pdḡ

i
1ḡ

i
2ḡ4

(
1 + ḡ4P

i
KT 2

3

)
T 2

5 ∗∗III6 + Sadd.

(5)

The Si
proj term then needs to be individually propagated

through the FBP reconstruction process. The transfer function
associated with the backprojection of each view is given by

T i
13(f3D) = Mπ

m
FOVsinc[FOV(fx cos θi + fy sin θi)],

(6)

where θ i is the view angle and FOV is the reconstruction field
of view. Summing over all projections, the NPS of the 3D
image reconstruction is given by

S(f3D) =
m∑

i=1

[
Si

proj(
q̄i

0a
2
pdḡ

i
1ḡ

i
2ḡ4

)2 T 2
10T

2
11T

2
12

1

M2

1

FOV

· T i2

13∗ ∗ ∗III14

]
T 2

15∗ ∗ ∗III15. (7)

If the noise contribution from each view is equal, e.g.,
at the center of a uniform cylinder, Si

proj, q̄i
0, ḡi

1, and ḡi
2 can

be moved out of the summation, and in the limit of a large
number of projections, the transfer function for Stage 13 can
be simplified to the view-independent form

m∑
i=1

[
T i

13(f3D)
]2

=
m∑

i=1

{
Mπ

m
FOVsinc[FOV(fx cos θi + fy sin θi)]

}2

= FOV
πM2

m

1√
f 2

x + f 2
y

= FOV �2
13,

yielding the familiar form of NPS shown in Eq. (3).

Similarly for the MTF,

T (f3D) =
m∑

i=1

T3T5T10T11T12T
i

13. (8)

Since T i
13 is the only term dependent on view angle, the MTF

reduces to

T (f3D) = T3T5T10T11T12

m∑
i=1

T i
13. (9)

The summation of T i
13 over a large number of projections can-

cels out the ramp filter (T10) and reduces to the same form as
Eq. (2), which is independent of the incident spectrum and
view angle. The system MTF is therefore the same for all
voxel locations.

Various simplifying assumptions are invoked in the cas-
caded systems model. Apart from local linearity and shift-
invariance, the backprojection stage was modeled according
to a parallel beam geometry although line integrals were cal-
culated using a divergent beam geometry. This is reasonable
within a small neighborhood where divergent beam geome-
try can be approximated as parallel. Incorporating divergent
beam geometry and associated weighting in the FDK algo-
rithm is within the capacity of the cascaded systems model
and could be an area of future work.

From the resulting NPS and MTF, the noise-equivalent
quanta (NEQ) can also be defined locally

NEQ(f3D) = π

√
f 2

x + f 2
y

T 2(f3D)

S(f3D)
. (10)

Together, Eqs. (7), (9), and (10) demonstrate the capacity
of the cascaded systems framework to describe the spatially
varying signal and noise characteristics in FBP in terms of
local descriptors of MTF, NPS, and NEQ.

It is generally acknowledged that image quality should be
assessed with regard to the imaging task. Imaging tasks in-
vestigated in this work involve the detection of known signal
stimuli. The mathematical description of task, denoted, WTask,
is given by the difference in the Fourier transform of the
“signal-present” and “signal-absent” hypotheses. Task-based
imaging performance was quantified in terms of detectability
index, d′, which relates metrics of MTF, NPS, and NEQ to the
imaging task and the observer model. An observer is the entity
performing the imaging task and governs the decision-making
paradigm. A variety of observer models can be employed in
the calculation of d′, including the basic prewhitening (PW)
form:

d ′2 =
∫ |T (f ) · WTask(f )|2

S(f )
df (11)

and various “anthropomorphic” observer models intending to
better approximate the performance of human observers, such
as the nonprewhitening matched filter observer model with
eye filter and internal noise (NPWEi),

d ′2 =
[∫ |T (f ) · WTask(f )|2|E(f )|2df ]2∫

S(f ) · |T (f ) · WTask(f )|2|E(f )|4 + Ni(f )df
.

(12)
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The subscript of the frequency domain symbol, f, is
dropped to indicate generic descriptions in both 2D and 3D
forms. The NPWEi model has demonstrated good correspon-
dence with human observer performance in previous work
and is therefore the nominal form of observer model em-
ployed below. The eye filter was47

E(f ) = f exp(−cf ), (13)

where c equals 2.2 mm−1 for a typical viewing distance of
50 cm, yielding peak response at 4 cycles/deg. The internal
noise was modeled as uncorrelated white noise according to

Ni = 0.001

(
D

100

)2

Seq(0), (14)

where D is the viewing distance (50 cm), and Seq is the white
NPS equivalent in total power to the image noise. The scale
factor 0.001 was consistent with previous work to yield rea-
sonable agreement with experimental measurements.48 In the
current work, only reconstructions at the central slice were
considered, therefore f in Eqs. (11)–(13) represents (fx, fy).
The effect of out-of-plane (z-direction) beam divergence and
associated cone-beam artifacts were not included. Just as Eqs.
(7), (9), and (10) allow calculation of the NPS, MTF, and NEQ
at any location within the image, Eqs. (11) and (12) allow cal-
culation the spatially varying detectability index, d′(x,y).

2.C. The spatially varying NPS and MTF for iterative
statistical image reconstruction

Iterative statistical reconstruction algorithms seek a recon-
struction estimate, μ̂, that maximizes an objective function,
�(μ; p) relating the measured projections, p, to the object, μ.
This work focuses on the PL family of algorithms where the
objective function includes the likelihood term L(μ; p) and
a penalty function R(μ) scaled by the regularization strength
parameter, β,

μ̂ = arg max �(μ; p) = arg max[log L(μ; p) − βR(μ)].

(15)

The measured projections, p, are assumed for simplicity to
follow a Poisson distribution, with the mean, p̄, related to μ

by the forward model

p̄(μ) = I0e
−l = I0e

−Aμ, (16)

where I0 is the bare-beam fluence (x-ray quanta/pixel), and l
is the line integral following Eq. (1). Consistent with notation
from Sec. 2.A, vectorized representations of p and p̄ have di-
mension ndet × 1. For simplicity, the energy dependence in
μ was dropped. Moreover, the assumption of Poisson noise
is an obvious simplification in light of known complexities
of the image noise distribution, for example, Poisson excess,
blur, and additive noise as described by the cascaded systems
model in Sec. 2.B. Incorporation of such complexities into
model-based statistical reconstruction is an area of ongoing
and future work.49

We consider a quadratic penalty, R(μ), of the form

R(μ) = 1

2
μT Rμ, (17)

where R is a nvox × nvox constant matrix that defines how
voxels are combined and penalized quadratically. It is also
the Hessian of R(μ). In the work below, we used a particu-
lar class of quadratic penalty that penalizes voxel differences
in a first order neighborhood about a voxel location, j, i.e.,
R(μ) = 1

2

∑
j

∑
k

wj,k(μj − μk)2, where wjk = 1 for the near-

est neighbors (4–8 in a 2D axial slice reconstruction, or 6–26
in a 3D reconstruction) and 0 otherwise. The strength of the
penalty is governed by the regularization strength parameter,
β. While normally treated as a constant in most cases, β can
also be implemented as a regularization “map” to impart a
spatially-varying penalty in the reconstruction.18–20

Fessler41 derived the covariance estimate of PL reconstruc-
tions for transmission tomography using the first-order Taylor
expansion and the Implicit Function Theorem. The nvox × 1
column vector, [K{μ̂}]j ·, describing the covariance of voxel j
with every other voxel in the reconstruction is given by

[K{μ̂}]j · ≈ [ATD{p̄( �
μ)}A + βR]−1AT

· cov{p}A[ATD{p̄( �
μ)}A + βR]−1δj , (18)

where the transpose of the forward projection operator, AT, is
the backprojection operator and D{} represents a square di-
agonal matrix with the vector argument corresponding to the
diagonal entries. The nvox × 1 unit vector δj effectively ex-
tracts a column from the full covariance matrix and allows the
calculation of covariance at any arbitrary voxel location (x, y).
The term p̄( �

μ) is the forward projection of the reconstruction
from noiseless data, i.e., �

μ = arg max �(μ; p̄). When μtrue

and �
μ are not available to compute p̄( �

μ) (e.g., when perform-
ing variance estimation for real data), the measured projection
data, p, can be used as a substitution, because both forward-
and backprojection are smoothing operations that reduce the
effect of noise on the resulting estimate. Equation (18) reveals
a dependence of noise on the spatial location and on the ob-
ject itself, but only through the projections (i.e., p̄( �

μ) and p).
Therefore, knowledge of the true object is not required to es-
timate the covariance for PL reconstruction with a quadratic
penalty. Equation (18) can be solved iteratively using the con-
jugate gradient algorithm.41

Assuming the image noise to be slowly varying, a local
stationarity assumption can be invoked, i.e., within a small
neighborhood, N , the covariance of voxel j with every other
voxel in the neighborhood, [K{μ̂}]jN , is the same for all
voxels

[K{μ̂}]jN = [K{μ̂}]kN ,∀j, k ∈ N . (19)

If there are nN voxels in the neighborhood, the dimensions of
[K{μ̂}]jN and [K{μ̂}]kN are both nN × 1. Assuming further
that the two voxels at opposite ends of the ROI have the same
covariance as two adjacent voxels at the center (e.g., digital
wrap-around), which is reasonable if only short-range corre-
lations exist, the local covariance matrix can be approximated
as circulant. For such matrices, the magnitude of the DFT of
a row/column is equal to the diagonal of the DFT of the full
covariance matrix, which is in turn equal to the NPS of the
neighborhood by definition. We can therefore write the local
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NPS in the neighborhood N for quadratic PL image recon-
struction as

NPS = DFT[K{μ̂}j,N ] = diag{DFT[K{μ̂}N ]}. (20)

Here, diag{} denotes the extraction of the diagonal from the
nN × nN square matrix K{μ̂}N [not to be confused with
D{}].

The point spread function (PSF) for PL reconstruction was
derived using similar principles as the covariance18

[PSF{μ}]j ≈ [ATD{p̄( �
μ)}A + βR]−1ATD{p̄}Aδj . (21)

The equation reveals a dependence of spatial resolution on
the spatial location and on the object itself (again, through the
projection data). This finding is in contrast to FBP reconstruc-
tion which carries uniform spatial resolution to the extent de-
scribed by Eq. (9), recognizing the potential for nonuniform
spatial resolution associated with sampling13, 14 and modified
FDK algorithms with shift-variant filters.50

The PSF at each voxel in a neighborhood N is as-
sumed to be the same, or equivalently, the system is locally
shift-invariant. The first-order Taylor expansion used in the
derivation of Eqs. (18) and (21) amounts to a local linearity
approximation.18 Therefore, the system is locally linear and
shift-invariant, and the MTF can be calculated as the magni-
tude of the DFT of the PSF normalized at zero frequency

MTF = |H (f )|/H (0), where H(f ) = DFT[PSF{μ}j,N ].

(22)

The above relation can also be derived in a manner similar
to the covariance case, where the system matrix is circulant
with shifted copies of the PSF as its column entries.5 The lo-
cal NPS and MTF can then be related to task-based imaging
performance via Eqs. (11) and (12).

2.D. Digital phantoms and image simulation

To validate theoretical predictions of noise and spatial res-
olution in FBP and PL, model calculations of NPS and MTF
were compared with measurements in simulated data. Three
digital phantoms of increasing complexity were investigated
in this study as illustrated in Fig. 2: (1) a uniform Circu-
lar disk phantom of radius 9 cm with attenuation coefficient
0.02 mm−1; (2) an Elliptical phantom with major axis of
24 cm and minor axis of 16 cm. The background of the el-
lipse was uniform with attenuation coefficient 0.0164 mm−1

(corresponding to water in a 90 kV beam filtered with 2 mm
Al and 0.4 mm Cu), with two circular inserts of 7.75 cm di-
ameter and attenuation coefficients 0.0211 and 0.0144 mm−1

corresponding to acetal and polypropylene, respectively; (3)
an anthropomorphic Thorax constructed from a slice through
a phantom imaged on a clinical CT scanner. For simplicity,
the soft tissue (skin, muscle, fat, and heart) was assigned
a uniform attenuation coefficient 0.0203 mm−1, and bones
(ribs and spine) 0.0432 mm−1. Attenuation values for the
lung tissue were preserved from the CT reconstruction, with
an approximate mean value of 0.0074 mm−1. For the mo-
noenergetic (57 keV) simulations considered in this work, the
attenuation coefficient of each component was a scalar. The
phantoms can be adapted to polyenergetic simulations in fu-
ture studies by using an energy-dependent attenuation coeffi-
cient [μ(E)] for each tissue component.

The monoenergetic x-ray source was simulated with bare-
beam fluence, I0, equal to 2.1 × 105 x-ray quanta/pixel, cor-
responding to a 90 kV beam at 1 mAs with an exposure of
0.70 mR to the detector. Using a monoenergetic beam implies
that the energy dependence in the cascaded systems analy-
sis model was dropped, and the only view dependent term
was q̄i

0. System geometry was simulated at SAD = 120 cm
and SDD = 150 cm. For simplicity and to focus on the
intrinsic nonstationarities associated with FBP and PL re-
construction methods, an ideal detector model was consid-
ered, i.e., there was no detector blur beyond that of the pixel
aperture, and Poisson-distributed quantum noise constituted
the only noise source. Detector pixel pitch was simulated at
0.834 mm, and reconstructions were performed at a voxel size
of 0.667 mm. Poisson noise was added independently to the
projection data according to Ref. 51. Note that although sim-
ulations were performed for a single-row detector, and only
the central axial slice was reconstructed in order to save com-
putation time associated with the large number of PL recon-
structions required to validate covariance and NPS estimation,
the theoretical methods are applicable to 3D CBCT and mul-
tidetector CT (MDCT) data. The notation associated with the
simulated data is therefore presented in a 2D form.

Both FBP and PL reconstruction algorithms were imple-
mented in MATLAB with external calls to a custom C++ li-
brary to perform forward- and backprojection operations on
GPU. Projection data were generated with a separable foot-
print projector.43 For FBP, the FDK algorithm for cone-beam
reconstruction was used,52 recognizing that for a single-row

FIG. 2. Three digital phantoms investigated in this work. (a) A uniform circular disk phantom. (b) An elliptical object composed of three materials approximat-
ing water, bone, and fat. (c) A thorax approximating a realistic distribution of tissue heterogeneities. The numeric symbols (1–4) mark four locations at which
the local MTF, NPS, NEQ, and detectability index were analyzed.
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FIG. 3. Vertical and horizontal line-pair patterns and associated task functions.

detector at the central plane (as in the simulation studies),
the FDK algorithm amounts to fan-beam reconstruction.53

For PL, image updates were performed using a paraboloidal
surrogate approach.54 Ordered-subset subiterations55 were
adopted to speed convergence, where the number of subsets
decreased from an initial value of 60 in increments of −5
at every 50 iterations. An additional 200 iterations were per-
formed after the number of subsets decreased to 1 in order for
the algorithm to converge, giving a total of 800 iterations for
each PL reconstruction. A sufficiently converged solution was
confirmed by examining the image difference between recon-
structions at 800 iterations from those at 2000 iterations, with
a maximum image difference on the order of 10−4 mm−1. Re-
constructions were performed for different values of smooth-
ing parameters for each algorithm. For PL, the regularization
parameter, β, spanned 4 orders of magnitude from 104.7 to
108.5. For FBP, variable smoothing was achieved through the
apodization filter, T11,

T11 =
{

hwin + (1 − hwin) cos
(

2π
uf

f0/fNyq

)
f ≤ f0

0 f > f0

, (23)

where the apodization window, hwin, was varied from 0.5 to
1.0, and the ratio of the cutoff frequency to the Nyquist fre-
quency, f0/fNqy, was varied from 0.1 to 1.0.

For the purpose of initial qualitative validation of the
model, two low-contrast line-pair detection tasks were imple-
mented. Figure 3(a) shows a “vertical” line-pair detection task
consisting of 5 lines of 1 × 10 voxels, each separated from its
neighbor by 2 voxels. The contrast of the lines from the back-
ground was +0.0010 mm−1, and the voxels between the lines
were assigned a contrast of −0.0005 mm−1 from the back-
ground (note the positive and negative contrast). The contrast
was simulated such that the average contrast of the lines is
equal to the attenuation of the background. The imaging task
therefore represents a simple binary hypothesis of: (i) detec-
tion of the oscillations associated with the line pair pattern;
versus (ii) a uniform background. The task function is shown
in Fig. 3(b), exhibiting signal power concentrated in two re-
gions along the fx axis (corresponding to “vertical” striations
in the spatial domain). The second task was a “horizontal”
line-pair detection task, constructed from the same line-pair
rotated 90◦, with the majority of signal power concentrated
along the fy axis.

Two additional imaging tasks were defined directly in the
Fourier domain to investigate the more general dependence
of d′ on contrast and frequency content: (1) a radially sym-
metric midfrequency task defined as the difference between 2
Gaussians of different widths,

WTask = C

[
exp

(
−f 2

x + f 2
y

2σ 2
1

)
− exp

(
−f 2

x + f 2
y

2σ 2
2

)]
,

(24)

where C = 0.04, σ 1 = 0.05, and σ 2 = 0.02 mm−1; and
(2) an all-frequency task (constant in the Fourier domain)
corresponding to a delta function detection task of contrast
0.02 mm−1.

2.E. Analysis of noise and spatial resolution

Conventional NPS measurements frequently involve com-
puting the NPS over multiple regions-of-interest (ROIs) [or
volumes-of-interest (VOIs)] within an image and averaging
the outcome (the Bartlett method for nonoverlapping ROIs
or the Welch method for overlapping ROIs). This method in-
vokes stationarity assumptions both locally within the ROI
(intrinsic to the Fourier transform) and globally over the en-
semble of ROIs contributing to the NPS estimate (by way of
the averaging operation). In CBCT, for example, ROIs are of-
ten selected at a fixed distance from the center of the recon-
struction of a uniform cylinder under the assumption that the
NPS is invariant within such an annulus.

An alternative method to compute noise that does not in-
voke the stationarity assumption involves calculating the full
covariance matrix. For an n × n ROI, the covariance matrix
is n2 × n2, with the entry on the jth row and kth column,
[K{μ̂}]jk , calculated as

[K{μ̂}]jk = 〈(μ̂j − E[μ̂j ])(μ̂k − E[μ̂k])〉. (25)

The diagonal of the DFT of the covariance matrix corresponds
to the NPS, i.e., the NPS describes the variance of the Fourier
components of the noise. As mentioned in Sec. 2.C, if noise
is stationary and correlations are short-ranged, the covariance
is a circulant matrix diagonalizable by the DFT. In this case,
the NPS captures the full noise characteristics. If noise is not
stationary, the NPS ignores the off-diagonal elements in the
DFT of the covariance matrix, the magnitude of which has
been shown to the small (∼2 orders of magnitude smaller)
compared to the main diagonal at different locations within a
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16 cm uniform water cylinder.12 Empirical determination of
the full covariance matrix requires a large number of noisy
realizations to achieve reasonable accuracy. As a rule of
thumb,5, 6 the number of reconstructions required is at least 10
times the number of samples, i.e., 10 × n2. This is challeng-
ing even in simulated data, although efforts have been made
to improve estimation accuracy using fewer data sets with as-
sumptions on the correlation length in linear reconstruction
algorithms (e.g., FBP).56

In this work, noise measurements were performed under
the assumption of local stationarity (i.e., within the ROI itself,
but not necessarily throughout the image) just as in the theo-
retical methods detailed in Secs. 2.B–2.C. Noise was char-
acterized by the local NPS within a ROI at a fixed location,
i.e., instead of marching the ROI through the image, NPS was
measured at the same location in a large ensemble of recon-
structions and then averaged. The method for NPS measure-
ment is otherwise consistent with previous work.57 For each
phantom (the Circular disk, the Elliptical phantom, and the
Thorax), reconstruction algorithm (FBP and PL), and choice
of smoothing parameter (hwin, f0/fNqy, and β), 1000 recon-
structions were simulated. Each image was subtracted from
the next to form 999 difference images. The subtraction pro-
cess eliminated anatomical structures, leaving only quantum
noise in the difference image (scaling the NPS by a factor of
2 from image subtraction). In physical (nonsimulated) data,
subtraction of two images also helps to minimize determinis-
tic image artifacts, e.g., shading. The NPS was measured as
the sample average of the square of the Fourier transform of a
fixed ROI in all difference images according to

NPS(fx, fy) = 1

2

axay

nxny

〈|DFT[
ROI(x, y)]|2〉, (26)

where n is the number of voxels along each direction of the
ROI (n = 49 in this case) and a is the voxel size. Note that
the NPS considered here is a simple 2D form (with units
[(mm−1)2mm2]) appropriate to simulation of a 2D slice.

Spatial resolution at a given location in the image can be
measured as the local impulse response,18, 58 calculated by in-
jecting a small impulse of magnitude ∂ into at voxel j of the
true object μtrue. No noise was added to the simulated pro-
jection following the forward model. The resulting noiseless
reconstruction subtracted from the noiseless unperturbed im-
age was divided by the magnitude of the impulse to yield the
local impulse response. At voxel j, the PSF is therefore given
by

[PSF{μ̂}]j = μ̂(p̄(μtrue + ∂δj )) − μ̂(p̄(μtrue))

∂
. (27)

The MTF was computed as the modulus of the Fourier
transform of the PSF within a 49 × 49 voxel neighborhood
following Eq. (22) with the same assumption of linearity and
shift-invariance within the local extent of the ROI.

To reduce the MTF to a simple scalar metric of spatial res-
olution, the value denoted f50 was analyzed as the frequency
at which the MTF drops to a value of 0.5. Since the MTF in
PL reconstruction is often anisotropic, we analyzed the radial
average f50 from 49 evenly distributed spokes through the ori-

gin of the MTF, recognizing that this is still a fairly coarse
representation of spatial resolution.

2.F. Optimization of reconstruction parameters in PL

Just as cascaded systems analysis has been applied in pre-
vious work11, 59, 60 to optimize various aspects of the CBCT
imaging chain using FBP reconstruction, the image quality
analysis described above for quadratic PL estimation can be
used to optimize aspects of the iterative image reconstruc-
tion process. In particular, optimizing the PL reconstruction
algorithm holds enormous promise due to the freedom in de-
signing custom, spatially-varying smoothing in the image do-
main (by way of the β map, the penalty function, or both).
Sections 2.F.1–2.F.3 show how the task-based framework can
be applied in selecting the regularization parameter in three
scenarios.

2.F.1. Choosing a constant β to maximize local d ′

Optimizing detectability in a local ROI amounts simply to
computing the local d′ for a range of constant β values and
picking the β that gives the maximum d′. A preliminary study
(not shown) demonstrated that β values at locations far from
the ROI have negligible effects on the noise and resolution
characteristics within the ROI if the reconstruction is fully
sampled without long-range correlations. Example applica-
tions can be found in image-guided interventions where the
location of interest in the patient is known.

2.F.2. Choosing a constant β to maximize global d ′

When the location of the signal is unknown, we may aim
to optimize d′ over the entire image. A simple model involves
the global average detectability, denoted 〈d′〉, defined as the
average d′ over the entire object, or over multiple ROIs (e.g.,
in the left and right lungs in a thorax image). More generally,
〈d′〉 can be calculated as a weighted average of local d′, where
the weights could be assigned to areas of the image based
on their importance or disease prevalence (e.g., d′ in the air
region assigned a weight of 0). Note that although this model
of d′ optimizes performance over the entire image, it does not
describe the process associated with search.

The local detectability index was calculated throughout the
image in 49 × 49 voxel ROIs across a rectangular grid with
neighboring ROIs separated by 25 voxels. The calculation
was performed for PL reconstructions using a range of con-
stant β values, and the value that maximized 〈d′〉 was identi-
fied as the optimum.

2.F.3. Choosing a spatially varying β to improve
global d′ beyond scenario 2

The value of β that maximizes local d′ varies throughout
the image due to the nonuniform noise and resolution charac-
teristics in PL reconstruction. A simple extension of the previ-
ous method is to identify the optimal local β value at each grid
point and interpolate the results across the image, yielding a
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FIG. 4. Variance maps, σ 2(x,y), calculated from multiple realizations of FBP (top) and PL (bottom) reconstructions of the three phantoms shown in Fig. 2.

spatially varying β map that could potentially improve perfor-
mance beyond that achievable with a constant β. The interpo-
lation assumes the local optimal β to be smoothly varying,
which is reasonable given that noise and resolution in the im-
age are also smoothly varying. Interpolation was performed
using radial basis functions61 to produce a smooth β map,
β(x, y). The performance achieved with the spatially varying
β map (scenario 3) was compared to that achieved with a con-
stant β (scenario 2) in terms of the global average 〈d′〉.

3. RESULTS

3.A. Spatially varying NPS and MTF

Figure 4 illustrates the variance at each voxel (i.e., “vari-
ance map”) computed from 1000 FBP and PL reconstructions
for each of the three phantoms. In each case, reconstruction
parameters (indicated on the respective variance maps) were
chosen to match the radial average f50 at the center of the
phantom, yielding a reasonably fair comparison of noise at
“matched” resolution, recognizing the previously mentioned
challenges in this respect. The variance maps for FBP show a
greater degree of spatial variation than PL in all phantoms.
The highest variance is observed at regions through which
rays traverse with the longest path lengths–namely, the cen-
ter of the Circular disk phantom, the high density insert of
the Elliptical phantom, and the spine and heart of the Tho-
rax. The variance map for PL reconstructions is considerably
more uniform in each case, demonstrating lower noise than
FBP in highly attenuating regions (e.g., the dense insert of the
Elliptical phantom and the spine of the Thorax) and higher
noise in less attenuating regions. The PL variance map also
shows a sharp drop at the boundary of the object due to the
non-negativity constraint.

Figures 5–7 illustrate the NPS and MTF evaluated at four
locations in the three phantoms of Fig. 2 reconstructed with
FBP and PL. Reconstruction parameters were the same as in
Fig. 4. In each plot, the left half shows theoretical predic-
tion [Eqs. (7), (9), (20), and (22)], and the right half shows
the measurement from 999 simulated difference images, sep-
arated by a vertical dotted line. Such presentation results in no
loss of information due to the radial symmetry of the Fourier
transform.

The NPS for both FBP and PL is anisotropic and depen-
dent on both the object and the location within the object. As
illustrated in Fig. 1, such characteristics are due to variable
fluence transmitted to the detector at different view angles,
a property intrinsic to x-ray tomography and is independent
of the reconstruction algorithm; therefore, the NPS at cor-
responding locations in FBP and PL reconstructions exhibit
similar anisotropic nature. For example, at the center of the
Elliptical phantom, rays traversing the major axis (sampling
along the fy axis) are attenuated more strongly and therefore
carry higher noise than rays traversing the minor axis (the fx
axis). Due to the presence of the higher density insert (re-
sulting in longer line integrals), the NPS at location 1 has a
broader extent compared to that at location 3 (the low density
insert). By comparison, all rays through the center of the Cir-
cular disk phantom have the same pathlength and therefore
carry the same noise, giving the familiar “doughnut” shaped
NPS reported in previous work. In the Thorax, the NPS is
highly anisotropic with noisy rays associated with attenuation
through the ribs, spine (location 3), and heart (location 4).

The MTF in FBP is isotropic and shift-invariant within
first-order approximation as shown for the Circular disk phan-
tom in Fig. 5. Similar results were found for the Elliptical
and Thorax phantom but are not shown for brevity. The MTF
in PL reconstructions, however, is anisotropic and exhibits
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FIG. 5. Measured and theoretical NPS and MTF at four locations within the uniform Circular disk phantom, illustrating the nonstationary, anisotropic char-
acteristics of each for FBP and PL. Reconstruction parameters were chosen to “match” spatial resolution (in terms of the radial average f50) in FBP and PL at
the center of the image. In each plot, the left half shows theoretical prediction, and the right half shows measurement from simulated images, with excellent
agreement between the two. The anisotropic nature of the NPS is similar in both FBP and PL and is consistent with attenuation of rays traversing different
pathlengths through the phantom. The MTF of FBP is isotropic and independent of locations, whereas that of PL is anisotropic and roughly “complementary”
to the shape of the NPS at the corresponding location.

dependence on both the object and spatial location. As evi-
dent from Eq. (21), spatial resolution in PL is affected by the
amount of noise in the projection data—even when β is held
constant. When the projection data are noisy, the algorithm
places higher weights on the penalty term which results in
greater smoothing.18 Therefore, the radial frequencies sam-
pled by noisier projections will be smoother compared to the
less noisy views. This is evident in that the shape of the MTF
is roughly complementary to that of the NPS, e.g., lower MTF
along ∼−45◦ at locations 3 and 4 in the Thorax, correspond-
ing to noisy rays through the heart and spine. Note that even
though greater smoothing is applied to the noisier rays, the

noise carried by those rays is still higher than the less noisy
rays.

Excellent agreement is observed between the measured
and theoretical NPS and MTF for all three phantoms for both
the FBP and PL reconstructions. The NPS for the Thorax
shows a slight discrepancy likely due to the violation of the
local stationarity assumption for an object containing highly
heterogeneous structure (e.g., ribs, spine, lung parenchyma,
and muscle). This discrepancy highlights the subtle differ-
ence in the interpretation of theoretical and measured NPS.
The theoretical method computes the noise characteristics as-
sociated with one particular voxel, i.e., one row from the full
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FIG. 6. The same as Fig. 5 but for the Elliptical phantom. Regions of higher noise in the NPS correspond to rays traversing the major axis of the ellipse
(locations 1, 2, and 3) and the high-density insert (location 4). The MTF for FBP is the same as in Fig. 5 and is not shown for brevity.

covariance matrix which is then assumed to be circulant and
consist of shifted versions of that row. The NPS calculated as
such should be interpreted as the NPS of a hypothetical ROI
within which all other voxels have the same first and second
order statistics as the given voxel. The measured NPS, on the
other hand, amounts to calculating the DFT of the full co-
variance matrix of the ROI and extracting the diagonal. The
difference between theory and measurement is indicative of
the degree of local stationarity and shift-invariance within the
ROI. Furthermore, a rigorous assessment of the spatial local-
ity assumption is presented in the Appendix.

3.B. Optimization of reconstruction parameters

Detectability index for the vertical line pair (top) and hor-
izontal line pair (bottom) detection tasks in PL reconstruc-
tions is plotted in Fig. 8 as a function of β at three locations
in the Ellipse. Corresponding images (37 × 37 voxels about
the line-pair pattern) are shown at example values of β. For
the vertical line pairs, detectability exhibits an optimum at β

∼105.4 in coarse qualitative agreement with the example im-
ages. Furthermore, although the line-pair task is fairly con-
spicuous in each case, detectability is the highest at location
3 since the noise power (see NPS in Fig. 6) associated with

the vertical line-pair task (along the fx axis as in Fig. 3) is the
lowest.

Detectability for the horizontal line-pair detection task is
much lower than for the vertical line pair detection task at
locations 1 and 3. This presents a clear example of noise
“masquerading” as signal, where the middle and high fre-
quency components of the NPS at locations 1 and 3 coin-
cide closely with the spatial frequencies of the task func-
tion along the fy axis. Detectability is the highest at location
4, in qualitative agreement with the example image. Results
for FBP reconstruction (not included for reasons of brevity)
showed similar trends as in Fig. 8 with regard to location and
smoothing parameters with approximately the same level of
detectability.

Figure 9 plots the detectability index for the midfrequency
and all-frequency task defined in Sec. 2.D as a function of
smoothing parameters in FBP and PL reconstructions of the
Elliptical phantom. The plots show calculations at locations 1,
3, and 4 as well as the global average 〈d′〉 within the phantom.
The magnitude of the optimal global average 〈d′〉 in FBP is
comparable to that in PL for all tasks considered, demonstrat-
ing that PL with a quadratic penalty achieves approximately
the same performance as FBP, consistent with experimental
observations in other work.62
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FIG. 7. The same as Fig. 5 but for the Thorax phantom. Slight discrepancies between theory and measurement is likely associated with violation of the local
stationarity assumption in regions of strongly heterogeneous structures. The MTF for FBP is the same as in Fig. 5 and is not shown for brevity.

For the midfrequency task in Fig. 9, an optimal choice of
smoothing parameter is observed for both FBP and PL, illus-
trating the familiar noise-resolution tradeoff: toward the left
of the curves, the images are over-smoothed, and task per-
formance is impeded by a lack of spatial resolution; toward
the right of the curves, the images are sharper, but task per-
formance is impeded by image noise. For the all-frequency
task, maximum detectability occurs at parameter settings as-
sociated with higher spatial resolution, shifting the optimum
to sharper kernels for FBP (a pure ramp filter or even sharper)
and weaker regularization for PL.

The detectability map, d′(x,y), for the midfrequency task
is shown in Fig. 10 for both FBP and PL reconstructions of
the Circular disk, Elliptical, and Thorax phantoms. The ob-
ject boundaries (black dotted line) demark the region for com-
puting the global average 〈d′〉. Smoothing parameters were
chosen to give the best global average 〈d′〉 within the ob-
ject and are indicated on each plot. Overall, the magnitude
of d′ is comparable in FBP and PL, though the latter ex-
hibits a somewhat greater range of spatial variability. In the
Circular disk phantom, for example, PL exhibits a slightly
greater reduction in d′ at the center. Similarly for the Ellip-
tical phantom—a slightly greater reduction in the vicinity of
the high-density insert. The greater degree of spatial variabil-

ity in d′ for PL presents an interesting counterpoint to the vari-
ance maps shown in Fig. 4 (where the noise for PL was shown
to be more spatially uniform than the FBP case): specifically,
whereas the MTF of FBP is shift-invariant to a first-order ap-
proximation, the MTF of PL reconstruction not only varies
spatially, but does so in a way that may be disadvantageous to
the task. For example, comparing the high- and low-density
regions in the Elliptical phantom, the difference in d′ in FBP
results solely from the difference in noise; however, in PL,
not only is the NPS higher in the high density region, but
the MTF is reduced, resulting in a stronger decrease in de-
tectability. This effect is more pronounced for tasks involving
mid- to high-frequencies due to a greater sensitivity to spatial
resolution.

3.C. Design of an “optimal” regularization map

Looking closely Fig. 9, one notes that the optimal smooth-
ing parameter for PL reconstruction is different among
the various locations, suggesting location-dependent noise-
resolution tradeoffs. The effect is less pronounced for FBP,
since the spatial resolution for FBP is less spatially variant as
discussed above. The location-dependent optimal β motivates
the design of a spatially varying β map that could potentially
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FIG. 8. Detectability index at locations 1, 3, and 4 in the Elliptical phantom (Fig. 2) as a function of regularization parameter β for the vertical line pair
detection (top) and horizontal line pair detection tasks (bottom). Example ROIs in reconstructions at select values of β are shown on the right. Both the trends
and magnitude in d′ agree qualitatively with visual assessment of the images.

improve performance overall. As described in Sec. 2.E, the
spatially varying β map [denoted β∗(x,y)] constructed from
local optimal β values is shown in Fig. 11: (a) the Elliptical
phantom and the vertical line-pair task; (b) the Elliptical phan-
tom and the midfrequency task; and (c) the Thorax phantom
and the midfrequency task. The resulting detectability map is
shown in Figs. 11(d)–11(f). The global average 〈d′〉 result-

ing from the spatially varying β map is compared to that for
a constant β in Figs. 11(g)–11(i). Figures 11(j)–11(l) show
the ratio of d′(x,y) from using the spatially varying β map
[Fig. 11(d)–11(f)] to the corresponding d′ map from the op-
timal constant β that gives the maximum 〈d′〉 in Fig. 11(g)–
11(i). A fairly modest improvement up to ∼10% in detectabil-
ity is achieved with the spatially varying β map.

FIG. 9. Detectability index computed as a function of smoothing parameters for FBP [(a) and (c)] and PL [(b) and (d)] reconstructions for the midfrequency
task [(a) and (b)] and the all-frequency task [(c) and (d)] defined in Sec. 2.D. The optimal smoothing required for PL is dependent on the location within the
reconstruction, while the difference is considerably smaller in FBP.
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FIG. 10. Detectability maps, d′(x, y), computed for FBP and PL reconstructions in each phantom for the midfrequency task. Reconstruction parameters were
chosen to maximize the global average 〈d′〉.

FIG. 11. Spatially varying regularization. (a)–(c) Spatially varying β maps designed to maximize d′ at each point in the image. (d)–(f) The resulting detectability
maps. (g)–(i) Comparison of the global average 〈d′〉 resulting from the spatially varying β map (straight horizontal line) plotted in comparison to 〈d′〉 achieved
with a constant value of β (plotted as a function of β). A slight improvement in detectability is achieved with the spatially varying β map. (j)–(l) Ratio of
detectability index achieved with the spatially varying and the optimal constant β, showing improvement up to ∼10%, particularly in more heavily attenuating
regions of the phantom.
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4. DISCUSSION AND CONCLUSIONS

This work investigated the nonuniform noise and resolu-
tion characteristics of FBP and PL reconstruction and related
the findings to task-based imaging performance. The work
yielded at least three advances: explicit extension of cascaded
systems to describe the spatially varying (i.e., nonstationary)
NPS and detectability index in FBP; extension of task-based
imaging performance analysis to penalized likelihood image
reconstruction; and a method for designing spatially varying
regularization maps in iterative image reconstruction to im-
prove task-based performance.

As illustrated in Fig. 1, the presence of a bowtie filter or
other more complex fluence modulation device could be in-
corporated in the modeling for both FBP and PL. Such de-
vices have been shown to produce more stationary noise and
detectability in a water cylinder.16 However, some level of
nonstationarity will persist even for well matched bowties or
other fluence modulation devices in the presence of objects
with complex shapes and heterogeneous structure. The cur-
rent work did not include a bowtie—consistent with many
CBCT imaging systems and to better illustrate the fundamen-
tal nonuniform noise and resolution characteristics for pur-
poses of initial investigation.

The cascaded systems analysis model for FBP has been
validated extensively in terms of NPS, MTF, and d′ in
previous studies.40, 59, 63 For PL, the work presented above
validated theoretical predictions of NPS and MTF in com-
parison to measurements in simulated data in a variety of
phantoms of increasing complexity. Future work will validate
such theoretical predictions in comparison to real data,
requiring a more realistic forward model accounting for non-
idealities in detector response (e.g., blur and additive noise)
and a polyenergetic x-ray beam.64 An additional challenge
with experimental validation is anticipated to be the large
number of acquisitions required for accurate noise estima-
tion. Validation with simulated data was sufficient for initial
investigation and offered the advantage of isolating image
quality dependence on the object and the reconstruction algo-
rithms apart from other complications that could also cause
nonuniform noise and resolution as mentioned in Sec. 2.A.

Although image quality was examined in both FBP and
PL, this work did not intend a strict comparison between the
two algorithms. As evident in Figs. 5–7, a fair “matching” of
spatial resolution and/or noise in FBP and PL is challenging
due to their highly anisotropic nature. Comparison of task-
based performance in FBP versus PL should therefore be con-
sidered carefully. In volumetric reconstructions especially, the
mismatch between the typical axial plane filtering in FDK and
the fully 3D regularization in PL should be resolved for fair
comparison at matched 3D spatial resolution (e.g., by apply-
ing an additional Hann window the z direction in FDK). For
the imaging conditions, imaging tasks, and observer models
considered in this work, the results suggest comparable task
performance between FBP and quadratic PL, which is con-
sistent with experimental observations in other work.62 The
advantages of penalized likelihood reconstruction were found
to be more apparent in nonquadratic penalties.62 Noise and

resolution descriptions for nonquadratic penalties are more
challenging due to their image dependence (in contrast to
the quadratic case where R is independent of the image).
Extension of the theoretical model to such algorithms has
been proposed for emission tomography.65 Adaptation of such
models to transmission tomography and evaluation in rela-
tion to task-based performance is the subject of future work.
Other iterative algorithms (e.g., those present on commercial
scanners) may also offer superior image quality compared to
FBP. The evaluation of such algorithms is a subject of active
research.

The assumption of “locality” encompasses a multitude of
implications. First, the use of Fourier metrics assumes “spa-
tial locality” within a small neighborhood where the noise
is wide-sense stationary, and the system can be assumed to
be linear and shift-invariant. The extent over which the lo-
cality assumption holds is expected to depend on various
factors including the size of the ROI, heterogeneity within
the ROI, the object, and the smoothing parameter. An as-
sessment of the degree of spatial locality and its impact on
task-based detectability is provided in the Appendix. Sec-
ond, with respect to detectability index, the locality assump-
tion further implies that the perturbation associated with
the signal (stimulus) is small and does not change the lo-
cal noise and resolution characteristics—analogous to the
classic “small signal difference” common to image qual-
ity and perception analysis. Third, in the derivation of PSF
and covariance in PL reconstruction, the system is locally
linearizable.

Optimizing the regularization parameter in statistical
reconstruction has been investigated in emission tomography.
Fessler proposed a spatially varying β map to enforce more
uniform spatial resolution throughout the image.18 Qi et al.36

proposed a method for selecting regularization to optimize
the contrast-to-noise ratio. Yendiki and Fessler66, 67 further
examined the effect of β on detectability in both location-
known and location-unknown tasks. The work shown above
proposed a simple method for selecting both a constant β

and a spatially-varying β map to improve task-based perfor-
mance. Optimization of PL reconstruction holds particular
promise. First, compared to hardware-based fluence modu-
lation, only one set of projections needs to be acquired, and
the regularization parameters can then be changed to produce
different reconstructions suitable for different tasks. Second,
regularization in PL is applied in the reconstruction domain,
which imparts greater freedom in differential smoothing
within different parts of the image that is not achievable
with conventional FBP. One can extend this further to a
scenario in which different parts of the image could be
optimized to accommodate different tasks. For example, in
imaging the thorax, one could design a regularization map
that optimizes for low-frequency, low-contrast soft-tissue
tumor detection in the mediastinum, and optimizes for high-
frequency, high-contrast detection in the lung parenchyma.
By further example, in imaging the head, one could design
a regularization map that optimizes for low-frequency,
low-contrast detection of blood in the brain, while optimizing
for high-frequency, high-contrast detection of fracture in the
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FIG. 12. Detectability index for the vertical and horizontal line-pair tasks
computed as a function of β for the PW and NPWEi observer models. Each
case corresponds to Location 1 in the Elliptical phantom. The PW model
suggests a much higher level of performance and a lack of optimum, whereas
the NPWEi model suggests a stronger dependence of detectability on β, in
qualitative agreement with Fig. 8.

surrounding cranium. Finally, within the general context of
“ROI imaging,” one can design a regularization map that
optimizes task-based detectability within a specific ROI
without regard for the consequences in surrounding regions.
For efficient implementation of β map design in practical
situations, noise and resolution of PL reconstructions can be
estimated using Fourier approximations instead of iterative
solutions.68

Calculation of task-based detectability in this work used
the anthropomorphic NPWEi model, though many observer
models could be considered within the analytical framework.
Figure 12, for example, illustrates the dependence of d′ on
β for the vertical and horizontal line pair detection tasks at
location 1 of the Elliptical phantom using the PW observer
model [Eq. (11)] in comparison to the NPWEi model. The PW
model suggests significantly higher d′ than the NPWEi model,
and shows minimal dependence on β, consistent with findings
by Yendiki.66, 67 The PW model represents the ideal observer
for a signal-known exactly, background-known-exactly task,
therefore yielding d′ considerably higher than what one might
expect from visual inspection of the images in Fig. 9. Such
observer models may be useful for optimization when the im-
ages are to be analyzed by a computer program which can
potentially make use of image information not appreciable
by humans. Another popular observer model, the channel-
ized Hotelling observer, has also been shown to exhibit op-
tima dependent on different implementations of channels in
emission tomography.66, 67, 69 The question of which observer
model to use for optimization is the subject of ongoing re-
search. In the current work, the NPWEi model demonstrated
qualitative agreement with observations in terms of the opti-
mal β, recognizing that more rigorous observer studies are
required in future work to validate the model with human
performance.
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APPENDIX: ASSESSMENT OF SPATIAL LOCALITY

The use of Fourier metrics assumes that within the local
region of analysis, the noise is wide-sense stationary (WSS),
and the system is linear and shift-invariant (LSI). The ex-
tent to which the locality assumption holds is expected to de-
pend on various factors including the acquisition technique
(e.g., mA modulation), the nature of the object (e.g., size,
shape, heterogeneity), reconstruction method, and, of course,
the size of the ROI. A simple check on the validity of such
assumption is to assess the uniformity of noise and resolution
at various locations within the ROI. To directly evaluate the
effect of the locality assumption on task-based performance,
detectability index calculated using the Fourier domain met-
rics can be compared with that computed using their spatial
domain counterparts (viz., system matrix and covariance ma-
trix instead of MTF and NPS) which do not necessarily in-
voke the LSI or WSS assumptions. The spatial domain d′ for
a prewhitening observer model can be calculated according
to70, 71

d ′2 = (Hw̄Task)T K−1(Hw̄Task), (A1)

where H is the nvox × nvox system matrix mapping a vox-
elized representation of an object to its reconstruction, w̄Task

is the spatial domain task function defined as the mean differ-
ence between the two hypotheses, and K−1 is the inverse of
the n2

vox × n2
vox covariance matrix. Note that the resolution of

the voxelized object may be higher than that of the reconstruc-
tion, which is important in avoiding nonlinear partial volume
effects for small objects. The mean signal, Hw̄Task, was es-
timated as the difference of the noiseless reconstructions of
the object with and without the imaging task inserted at the
locations of interest. For FBP reconstruction, the covariance
matrix was estimated according to Eq. (22) from a total of
30 000 simulated images. For PL reconstruction, the covari-
ance matrix was calculated according to Eq. (18). The term
K−1(Hw̄Task) was solved iteratively70, 71 using the conjugate
gradient method.

The detectability index calculated using the Fourier and
spatial domain methods was compared for four imaging tasks
emphasizing different frequency content: (1) a low frequency
3 mm sphere detection task; (2) a low-mid frequency 0.5 mm
sphere detection task; (3) an all-frequency delta function
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FIG. 13. Percentage difference between the Fourier and spatial domain cal-
culations of detectability index using the prewhitening observer model (each
computed from 30 000 realizations). Each plot shows the mean and range in
percent difference calculated over the four locations in each of the phantoms
in Fig. 2. Four imaging tasks were selected to exercise different regions of
frequency response. The level of agreement between Fourier and spatial do-
main detectability calculations depend somewhat on the imaging task, and a
higher level of disagreement was observed in FBP than PL, consistent with
the higher degree of stationarity in the latter.

detection task; and (4) a high frequency 45◦ line pair detection
task. Imaging tasks were inserted at four locations in the three
digital phantoms of Fig. 2, and detectability index was cal-
culated for the prewhitening observer model. For each phan-
tom, the mean [as well as range bars spanning the best-case
(min) and worst-case (max)] percent difference in d′ between
the two methods over all four locations is summarized in
Fig. 13. The smoothing parameters for FBP reconstruction is
set to hwin = 0.5 and f0/fNqy = 0.8; the regularization param-
eter, β, for PL reconstruction is 106. The difference shows
a dependence on the imaging task, and the level of agree-
ment between the two methods is typically better in PL re-
constructions (mean discrepancy of 5.6%) compared to FBP
reconstruction (mean discrepancy of 9.5%). Perhaps surpris-
ingly, the dependence on the shape and heterogeneity of the
object was fairly weak, showing a similar level of agreement
between spatial and Fourier domain estimates for the Circu-
lar, Elliptical, and Thorax phantoms. For all cases considered,
the spatial and Fourier domain calculations of d′ agreed to
∼5%–10%. The largest difference observed was 19.5%, and
the smallest difference was 0.1%. The advantages and limi-
tations of each approach have been investigated in previous
studies.5, 70, 72 Both can provide meaningful metrics for sys-
tem performance if applied with recognition of underlying
assumptions. Ongoing developments in the spatial domain
methods include means of reducing the bias in estimates of d′

when the sample size is small.73–75 In various previous stud-
ies aimed at system development and optimization (including
this work),76–79 the Fourier approach has been employed for
reasons of practicality, computational speed, and the ability to
estimate the MTF, NPS, and d′ with a small sample of real-
izations. The performance of the Fourier approach was found
to be reasonable when only a small sample size is available,
for example, d′ calculated from 10 samples (in a 49 × 49

ROI) was within 12.0% of that calculated using 30 000 sam-
ples (0.5 cm sphere detection task in location 1 of the Thorax
phantom). Increasing the sample size to 50 and 100 samples
reduced the difference to 2.0% and 0.1%, respectively. Eval-
uation for other tasks and locations in each phantom yielded
similar results.
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