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Loss of Cdc42 leads to defects in synaptic 
plasticity and remote memory recall
Il Hwan Kim1†, Hong Wang2†, Scott H Soderling1,2*, Ryohei Yasuda2,3*

1Department of Cell Biology, Duke University Medical School, Durham, United States; 
2Department of Neurobiology, Duke University Medical School, Durham, United 
States; 3Max Planck Florida Institute, Jupiter, United States

Abstract Cdc42 is a signaling protein important for reorganization of actin cytoskeleton and 
morphogenesis of cells. However, the functional role of Cdc42 in synaptic plasticity and in behaviors 
such as learning and memory are not well understood. Here we report that postnatal forebrain 
deletion of Cdc42 leads to deficits in synaptic plasticity and in remote memory recall using 
conditional knockout of Cdc42. We found that deletion of Cdc42 impaired LTP in the Schaffer 
collateral synapses and postsynaptic structural plasticity of dendritic spines in CA1 pyramidal 
neurons in the hippocampus. Additionally, loss of Cdc42 did not affect memory acquisition, but 
instead significantly impaired remote memory recall. Together these results indicate that the 
postnatal functions of Cdc42 may be crucial for the synaptic plasticity in hippocampal neurons, 
which contribute to the capacity for remote memory recall.
DOI: 10.7554/eLife.02839.001

Introduction
The synapse is a highly dynamic structure exhibiting constant turn over and remodeling. This synaptic 
morphoring is driven by fibrous actin (F-actin), which creates the underlying cytoskeletal scaffold 
for neuronal structures (Dillon and Goda, 2005; Korobova and Svitkina, 2010; Koleske, 2013). 
Particularly, the dynamic actin turnover in dendritic spines, the postsynaptic portion of the excitatory 
synapse, produces morphological and functional changes in synapses (Matus, 1999; Star et al., 2002; 
Kim et al., 2013), that are thought to be a fundamental basis of synaptic plasticity underlying learning 
and memory (Kim and Lisman, 1999; Krucker et al., 2000; Fukazawa et al., 2003; Okamoto et al., 
2004; Kim et al., 2013). Within the spine, small GTPases of the Rho family, such as Cdc42, Rac, and 
RhoA exert distinct roles for actin remodeling by regulating actin organization by regulating many 
downstream factors including WAVE, WASP, Arp2/3 and cofilin (Hall, 1998; Jaffe and Hall, 2005; 
Soderling et al., 2007). In vitro studies have shown that both Cdc42 and Rac promote the formation 
and maintenance of dendritic spines, whereas RhoA may negatively regulate spinogenesis (Nakayama 
et al., 2000; Scott et al., 2003; Ahnert-Hilger et al., 2004; Newey et al., 2005). These GTPases are 
regulated by more than 60 activators (guanine nucleotide exchange factors or GEFs) and inactivators 
(GTPase activating proteins or GAPs) (Van Aelst and D'Souza-Schorey, 1997; Saneyoshi et al., 
2010). Previous studies using two-photon fluorescence lifetime imaging microscopy (2pFLIM) have 
demonstrated continuous activation of Cdc42 for more than 30 min within single dendritic spines 
undergoing structural plasticity. This activation is restricted to the stimulated spine heads and shows 
a steep signal gradient of active Cdc42 at the spine necks (Murakoshi et al., 2011; Yasuda and 
Murakoshi, 2011), suggesting that Cdc42 may be intimately involved in long-term maintenance of 
structural spine plasticity during the sustained phase of spine enlargement.

It is generally believed that the Cdc42 pathway plays a key role in neurite outgrowth (Mueller, 
1999; Luo, 2000; Aoki et al., 2004), neuronal polarity (Schwamborn and Puschel, 2004; Garvalov 
et al., 2007), neuronal migration (Wong et al., 2001), and dendritic morphogenesis (Scott et al., 2003) 
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by activating the WASP-family and PAK-family pathways (Kreis and Barnier, 2009) during the devel-
opment of neuronal networks. Little, however, is known about the postnatal roles of Cdc42 in dendritic 
spines under physiological conditions. Additionally, the effects of deletion of Cdc42 on behavioral 
characteristics such as learning and memory have not been examined.

In the present study, by using Cdc42 conditional KO mice, we evaluate how postnatal disruption of 
Cdc42 in excitatory neurons affects structural plasticity of dendritic spines and synaptic plasticity. To 
confirm the consequential effects of the Cdc42 deletion, we further investigate the spine morphology 
of knockout neurons and conduct a variety of behavioral tests with the mutant mice.

Results
Active Cdc42 is decreased in Cdc42f/f: Camk2a-Cre mice
To investigate the neuronal morphology and the behavioral outcomes provoked by postnatal Cdc42 
disruption in cortical excitatory neurons in vivo, we crossed Cdc42f/f mice with the Camk2a-Cre line, 
which drives Cre recombinase within pyramidal neurons of the forebrain including the hippocampus 
and the cerebral cortex by p16-p19 (Tsien et al., 1996). The total amount of Cdc42 protein in the 
hippocampus was markedly decreased in Cdc42f/f: Camk2a-Cre mice (p120) compared to that of 
the control littermates as shown in input lanes (Figure 1A). The CRIB pulldown assay, which was 

eLife digest Neurons communicate with one another at junctions called synapses, which are 
typically formed between the dendrite of one neuron and the axon terminus of another. The 
dendrites are protrusions coming out of the cell body that receive inputs from other cells; the axon 
is a cable-like structure that enables neurons to contact other cells. In excitatory neurons in part of 
the brain called the hippocampus, the dendrites are themselves covered in structures called spines, 
so most synapses are formed between an axon terminus (belonging to the presynaptic cell) and a 
dendritic spine (on the postsynaptic cell). The hippocampus is necessary for the formation of 
long-term memories.

The strength of a synapse can increase or decrease over time—a property that is called synaptic 
plasticity. Changes in the strength of synapses are thought to underlie learning and memory, and 
long-lasting changes in synaptic strength involve increases or decreases in the number and size of 
dendritic spines. Such changes are possible because spines have an internal skeleton that can be 
assembled and disassembled in a matter of minutes. This ‘remodeling’ process is regulated by a 
family of enzymes called small GTPases. One of these, known as Cdc42, has been shown to promote 
the formation and maintenance of spines in cell culture, but its role in synaptic plasticity, learning 
and memory remains unknown.

Now, Kim, Wang et al. have used genetically modified mice who have had Cdc42 deleted from 
excitatory neurons in their forebrain to examine the functions of this enzyme in living animals. These 
‘knockout’ mice showed a small but statistically significant reduction in the number of dendritic spines 
in the hippocampus. They also showed smaller changes in spine volume and impaired long-term 
synaptic plasticity in the hippocampus.

When the mice performed long-term memory tests where they learnt to associate a specific set 
of visual cues with an impending electric shock, the knockout mice performed well for up to a few 
days. However, when tested again on the same task 45 days later, the knockout mice did not perform 
as well as normal mice. This is surprising, given the presumed role of long-term synaptic plasticity  
in learning and memory, and indicates that Cdc42 is required for ‘remote memory’, the form of 
memory lasting for many days. Similar results were obtained with another memory test using a 
water maze, where the animals have to remember the location of a hidden platform. Normal mice 
remember the location for more than 30 days. In contrast, the knockout mice could only remember 
the location for a few days.

As well as providing the first demonstration of the role of Cdc42 in synaptic plasticity in live animals, 
the work of Kim, Wang et al. has provided new insights into the functions of this enzyme in memory. 
Further work is required to determine how Cdc42 interacts with other proteins present at synapses.
DOI: 10.7554/eLife.02839.002
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performed using with same amounts of hippocampal lysates from p120 mice, clearly displayed a sub-
stantial reduction of GTP-bound, active Cdc42 in the mutant mice, whereas, the total and active form 
levels of Rac1 were similar both in mutants and controls (Figure 1A). Coomassie staining confirmed 
an equal loading of total protein for both groups (Figure 1A). Analyses of band intensities from both 
genotypes revealed that ∼80% of total Cdc42 protein was lost in mutant hippocampi compared to those 
of littermate controls (Figure 1B) (t(1,6) = 13.895, *p<0.0001). Because the Cdc42f/f: Camk2a-Cre mice 
used in this study express Cre recombinase selectively in excitatory neurons, the remaining ∼20% of 
Cdc42 protein detected in mutant hippocampi most likely originates from other cell types such as glia 
or inhibitory interneurons that also express Cdc42 (Etienne-Manneville and Hall, 2001).

We next tested whether the loss of total Cdc42 led to a decrease of the active form of Cdc42 and/or  
a compensatory change in active Rac levels. CRIB pulldown assays revealed an 85% decrease (15% 
remained) of active Cdc42 proteins in mutant animals (Figure 1B) (t(1,6) = 20.725, *p<0.0001). In con-
trast, there were no changes in total Rac1 and active Rac1 proteins in hippocampi of the mutant mice 
(Figure 1C), suggesting a selective alteration of Cdc42 in excitatory neurons of the mutant hippocampus.

Selective decrease in dendritic spine density in the hippocampus 
following postnatal Cdc42 depletion in the forebrain
Cdc42 is known as one of the critical factors regulating dendritic spine morphogenesis in cultured 
neurons at an early development stage (Nakayama et al., 2000). These in vitro observations led us to 
conduct morphological analyses for KO neurons in vivo to determine whether Cdc42 function in the 
post-developmental neuron is critical for spine maintenance under physiological conditions, using the 
Cdc42f/f : Camk2a-Cre mice. To analyze the expression pattern of Cre recombinase in the Camk2-Cre 
mouse at the adult stage (p60), the Camk2a-Cre mouse was crossed with the Rosa26-lox-stop-lox-tdTomato 
reporter mouse (Figure 2A). The cre-induced tdTomato expression was detected in cortical areas 

Figure 1. Loss of hippocampal Cdc42 in Cdc42f/f: Camk2a-Cre mice. (A) Top and middle panels, representative 
western blots of Cdc42 and Rac1 levels for input (left two lanes) and GST-CRIB pulldowns (right two lanes). Bottom 
panel is a representative coomassie stain showing equivalent amounts of total protein (left two lanes) or GST-CRIB 
fusion protein (right two lanes). (B and C) Graphs depicting the quantification of (B) Cdc42 or (C) Rac1 GTPases 
from western blot analysis of GST-CRIB pulldowns from hippocampal lysates. n = 4 for each group. *p<0.0001.
DOI: 10.7554/eLife.02839.003

http://dx.doi.org/10.7554/eLife.02839
http://dx.doi.org/10.7554/eLife.02839.003


Neuroscience

Kim et al. eLife 2014;3:e02839. DOI: 10.7554/eLife.02839	 4 of 16

Research article

Figure 2. Analysis of dendritic spines in Cdc42f/f: Camk2a-Cre mice. (A) Schematic of breeding for the analysis of Camk2a-cre expression analysis in B–D. 
(B–D) Representative images of cre-dependent tdTomato expression in (B) medial pre-frontal cortex (mPFC), (C) anterior cingulate cortex (ACC), and (D) 
Hippocampus (Hip). (E–G) Representative images of golgi stained tissue sections from (E) the mPFC, (F) the ACC, and (G) CA1 hippocampal region. 
(H–J) Representative images of individual dendritic segments from the (H) the mPFC, (I) ACC, or (J) CA1 hippocampal region (top panels) control 
Cdc42f/f or (bottom panels) cKO Cdc42f/f: Camk2a-Cre mice. (K–M) Graphs depicting the quantitative analysis of spines per 100 micron of dendritic 
seqements for each genotype from each region in H–J. n = 5 for each group. *p<0.05.
DOI: 10.7554/eLife.02839.004
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including the medial prefrontal cortex (mPFC) (Figure 2B), anterior cingulate cortex (ACC) (Figure 
2C), and CA1 region of hippocampus (Figure 2D). To ascertain the long-term effects of Cdc42 dele-
tion in vivo, we prepared brains from p120 Cdc42f/f: Camk2a-Cre mice and conducted Goli-Cox stain-
ing (Figure 2E–G). Morphological analysis of neurons in hippocampal CA1 revealed a slight (8%), yet 
statistically significant decrease of spine density in the CA1 pyramidal neurons of Cdc42f/f: Camk2a-
Cre mice (t(1,8) = 2.447, *p<0.05) (Figure 2M). No differences in spine density were found in either the 
mPFC or the ACC (Figure 2H,I,K,L), suggesting that hippocampal neurons are more susceptible to the 
Cdc42 disruption for maintenance of hippocampal spines.

Structural and functional synaptic plasticity is abolished by Cdc42 
deletion
Spine enlargement is thought to be the structural basis of LTP and learning and memory (Matsuzaki 
et al., 2004; Murakoshi, et al., 2011; Kim et al., 2013). Previously we showed that Cdc42 is required 
for structural and functional plasticity of dendritic spines using shRNA targeted to Cdc42 in rat hippo-
campus (Murakoshi et al., 2011). To further test the roles of Cdc42 in spine plasticity, we transfected 
neurons of Cdc42f/f mice with EGFP-Cre or EGFP (control) together with mCherry as a volume marker 
using ballistic gene transfer, and measured spine volume change induced by glutamate uncaging 
in CA1 pyramidal neurons (Figure 3A–D). In control neurons, stimulated spines showed sustained 
volume change lasted more than 30 min (60 ± 19% at 20–30 min) (Figure 3A,B). However, in neurons 
expressing EGFP-Cre, the volume change was significantly impaired (8 ± 5%, p<0.05). In another set 
of experiments, we expressed mEGFP-Cdc42 together with mCherry and EGFP-Cre. We found that 
structural plasticity in these neurons was similar to those paired neurons in which EGFP and mEGFP 
were expressed instead of EGFP-Cre and mEGFP-Cdc42 (64 ± 20% vs 63 ± 23%) (Figure 3C,D). 
Thus, the impaired structural plasticity in neurons expressing EGFP-Cre was caused by removal of 
Cdc42 and exogenous Cdc42 can rescue the effect. From these experiments, we concluded that 
Cdc42 is necessary for spine structural plasticity, consistent with our previous report (Murakoshi 
et al., 2011).

To further examine whether Cdc42 is necessary for hippocampal LTP, we measured fEPSP in the 
CA1 region of hippocampal slices taken from Cdc42f/f: Camk2a-Cre mice and their litter-mate Cdc42f/f 
mice at P21-P28 (Figure 3E). We found that, while control Cdc42f/f mice displayed a robust LTP in 
response to HFS (49 ± 18% at 30–40 min), LTP induction was significantly impaired in Cdc42f/f: Camk2a-
Cre mice (−2 ± 9%, p<0.05) (Figure 3F). These results indicate that Cdc42 is necessary for hippocampal 
LTP as well as spine structural plasticity.

Working memory, locomotor activities, and anxiety levels are normal in 
Cdc42f/f: Camk2a-Cre mice
Previously we showed that proper regulation of actin cytoskeletal remodeling in the forebrain is critical 
for a variety of behaviors using the Camk2a-Cre line to delete ArpC3 (Kim et al., 2013). Although 
prior work clearly shows that Cdc42 is activated downstream of NMDA receptors during LTP, the 
importance of Cdc42 signaling in postnatal neurons for behavioral responses is unknown. To address 
this, a battery of behavioral tests was conducted to evaluate the Cdc42f/f: Camk2a-Cre mice from the 
age of p120.

We weighed mice at p120 to check for possible gross health impairments during postnatal devel-
opment. Neither weight loss nor gain was noted in Cdc42f/f: Camk2a-Cre mice when compared to their 
littermate controls (Figure 4A), suggesting normal health and development of cKO mice.

Y-maze spontaneous alteration was analyzed to evaluate the role of Cdc42 forebrain signaling in 
working memory. The tests revealed that WT and cKO mice engaged in similar numbers of alternations 
in the 3-way maze, suggesting an intact working memory of Cdc42 cKO (Figure 4B).

Locomotor activities were examined by open field test (OFT). In this test, Cdc42 cKO mice displayed 
normal levels of locomotor (Figure 4C) and repetitive activities (Figure 4D) that were statistically 
indistinguishable from their control littermates, demonstrating that cKO mice do no exhibit locomotor 
behavioral abnormalities. The hippocampus has been reported to play a pivotal role in the processing 
of emotional information through circuitry connections with other brain regions such as the amygdala 
(LeDoux, 2000; Engin and Treit, 2007). Because our Cdc42f/f: Camk2a-Cre mice showed defects in 
the synaptic plasticity and reduction of dendritic spines in the hippocampus, we hypothesized the 
Cdc42 cKO mice might exhibit an anxiety phenotype. Analysis of the OFT data however revealed that 
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WT and cKO mice spent similar amounts of time in the central and marginal areas of the arena com-
pared with their littermate controls, suggesting normal anxiety levels in the cKO mice (Figure 4E).

Anxiety was further evaluated in the elevated zero maze (EZM) test. In this test, cKO mice displayed 
no significant differences in latencies to the open arms (Figure 4F), number of entries to the open 
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Figure 3. Impaired structural and functional synaptic plasticity in Cdc42f/f: Camk2a-Cre mice. (A) Single spine 
volume changes in response to glutamate uncaging for (open circle) WT control Cdc42f/f or (closed circle) cKO 
Cdc42−/− mice. (B) Mean responses for minutes 20–30 between each genotype from (A) showing a significant 
impairment in cKO spines. N = 15 spines/15 slices for each group, *p<0.05. (C) Same as in (A) except the cKO 
neurons are co-transfected with a Cdc42 expression construct (rescue). (D) Mean responses for minutes 20–30 
between WT and cKO Cdc42−/− rescue spines are shown. N = 9 spines/9 slices for each group. (E) Graph depicting 
changes in fEPSP slope in response to high-frequency stimulation (HFS; 100 pulses at 100 Hz; three times with  
20 s intervals) of the SC–CA1 pathway (time zero). (F) Mean fEPSP potentiation for minutes 30–40 was significantly 
reduced in Cdc42−/− hippocampal slices when compared to WT littermates. N = 7 and 8 slices for WT and Cdc42−/−, 
respectively. *p<0.05.
DOI: 10.7554/eLife.02839.005
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Figure 4. Behaviors unaffected by loss of Cdc42. (A) Average body weight of Cdc42f/f (control, open bar) or Cdc42f/f: Camk2a-Cre mice (cKO, black bar). 
(B) Percent alternation in the Y-maze for both genotypes. Dashed line indicates the expected percent correct alternation that would be observed by 
chance. (C–E) Analysis of Open Field exploration behavior for (C) distance traveled, (D) stereotypy, or (E) duration spent in the center of the field.  
(F–H) Analysis of zero maze exploration behavior for (F) latency to enter the open arm, (G) number of entries to both the closed and open arms of the 
maze, and (H) total time spent in each arm. n = 14 for each group.
DOI: 10.7554/eLife.02839.006

arms (Figure 4G), and duration in the open arms of the maze (Figure 4H) when compared to those of 
WT controls. Together these data confirmed that the Cdc42 cKO mice show normal anxiety levels.

Cdc42f/f: Camk2a-Cre mice are deficient in remote memory recall
Synaptic plasticity and neuronal morphology are intimately related to cognitive function (Martin et al., 
2000; Segal, 2005; Kim et al., 2013). Based on our findings that Cdc42 deletion leads to defects in 
structural/synaptic plasticity and spine loss in hippocampus, we also suspected that the behavioral 
outcomes of Cdc42f/f: Camk2a-Cre mice may be abnormal in certain aspects of hippocampus-
dependent cognitive tasks. To test this hypothesis we conducted a variety of behavioral analyses of 
episodic memory. Contextual memory capability was tested by a fear conditioning paradigm in which 
mice learn to predict aversive events (mild electric shock) (Figure 5A). Following an aversive stimulus 
in a conditioning chamber, control Cdc42f/f and cKO Cdc42f/f: Camk2a-Cre mice showed similar 
freezing rates when placed in the conditioning chamber for the first 4 days (Figure 5B). ANOVA with 
Repeated Measure (RMANOVA) for freezing rates of control Cdc42f/f and cKO Cdc42f/f: Camk2a-Cre 
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mice revealed no effects of test-day or genotype 
and no interaction between test-day and geno-
type. Bonferroni corrected pair-wise comparisons 
revealed no significant differences between both 
genotypes from day 1 trough day 4, suggesting 
that long-term memory retention is not affected 
in the cKO mice. However, a test of remote 
memory, which was conducted at 45 days after 
the conditioning, showed a marked decrease of 
freezing rates when compared to their WT litter-
mates (*p<0.001; Bonferroni corrected pair-wise 
comparisons), even though the Cdc42 cKO mice 
clearly were not impaired in the initial 4 days 
(Figure 5B). These data suggested the Cdc42 cKO 
mice have pronounced deficits in remote memory 
recall. Moreover, the normal anxiety level in the 
cKO mice (Figure 4E–H) support the fear condi-
tioning data in that freezing rate (an indicator 
of memory) was not affected by a difference of 
innate anxiety levels between each genotype.

We also performed the Morris water maze 
task to test the spatial memory of the Cdc42 cKO 
mice (Figure 6A). WT and cKO mice explored a 
similar distance (Figure 6B) and expended a 
similar amount time (data not shown) to find the 
hidden platform during the 8 days of learning 
sessions. RMANOVA for the distances explored 
until reaching the hidden platform for WT and 
cKO mice revealed significant main effects of 
test-day (F(7,112) = 28.858, p<0.0001), indicating 

successful spatial learning (a reduction of swimming distance to reach the hidden platform for each 
subsequent test day) of both genotypes (Figure 6B). However, we found no genotype effect and no 
interaction between test-day and genotype. Bonferroni corrected pair-wise comparisons found no 
significant differences between both genotypes from day 1 through day 8. RMANOVA for the time 
spent to find the hidden platform also revealed a similar result (F(7,112) = 32.793, p<0.0001 [main effect 
of test-day] for duration, no genotype effect and no interaction between test-day and genotype) 
(figure not shown). No difference of swim speed was found between WT and cKO mice throughout the 
acquisition trials (data not shown). These data suggest that cKO mice have normal swimming abilities 
and spatial memory acquisition capabilities when compared to WT controls. Probe trials conducted 
every other day during the learning sessions (day 2, 4, 6, 8) showed similar long-term memory perfor-
mances for both genotypes. ANOVA followed by Bonferroni pair-wise comparisons (among four quad-
rants) for each probe test revealed that both WT and cKO mice traveled a significantly greater distance 
in the target quadrant (NE) compared to other three quadrants from day 4 (Figure 6C,D) (ps < 0.05), 
indicating a normal capability of long-term memory formation in cKO mice.

Next we performed reversal water maze trainings to test how quickly the mice learned the new 
location by relocating the platform to the opposite quadrant of the water tank (SW). In this paradigm, 
cKO mice showed acquisition performances throughout the re-learning sessions (day 9–day 16) that 
were similar to those of WT controls. RMANOVA for the distances explored and for the time spent to 
reach the hidden platform revealed significant main effects of test-day for swim distance (F(7,112) = 
23.612, p<0.0001) (Figure 6E) and for swim duration (F(7,112) = 23.602, p<0.0001) (figure not shown), 
indicating both genotypes successfully re-learned the new location of the hidden platform. There were 
no effects of genotype and no interactions between test-day and genotype either in distance and 
duration, and no significant differences were found between both genotypes as tested by Bonferroni 
corrected pair-wise comparisons, further indicating normal re-learning capabilities of the cKO mice.

In the reversal probe tests of long-term memory formation, however, Cdc42 cKO mice showed  
a slight delay in long-term memory formation for the new location compared to their littermate 

Figure 5. Cdc42 cKO mice exhibit reduced memory 
recall in the fear conditioning learning and memory 
paradigm. (A) Schematic of the fear conditioning 
protocol in which the mice receive a mild aversive 
foot-shock on day 1 (D1) in a conditioning chamber. 
Freezing upon placement in the chamber (without 
shock) was assessed during acquisition (day 1) or for 
long-term (days 2–4) or remote memory (day 45).  
(B) Graph depicting the average percent time spent 
freezing at each time point for each genotype. n = 14 
for each group. *p<0.001.
DOI: 10.7554/eLife.02839.007

http://dx.doi.org/10.7554/eLife.02839
http://dx.doi.org/10.7554/eLife.02839.007


Neuroscience

Kim et al. eLife 2014;3:e02839. DOI: 10.7554/eLife.02839	 9 of 16

Research article

Figure 6. Cdc42 is essential for normal memory recall in the water maze test. (A) Schematic of the water maze testing schedule showing the acquisition 
phase during days (D) 1–8, platform reversal phase during D9-16, and remote probe trial test on D37. No significant differences were observed between 
control Cdc42f/f and Cdc42f/f: Camk2a-Cre cKO mice during water maze acquisition phase as measured by (B) total swim distance to the platform, or in 
distance moved in the target vs non-target quadrants for (C) control or Cdc42 cKO mice. (E) Swim distances to the platform during acquisition was also 
unaffected in the Cdc42 cKO mice during reversal learning. (F) Control mice spent significantly more time in the target vs non-target quadrants during 
the remote memory probe trial on day 37, however (G) Cdc42 cKO mice did not distinguish between these quadrants. There were significant differences 
between the control and Cdc42 mice in both the (H) distance moved and (I) duration of time spent within the target (SW) quadrant during the remote 
memory probe trial. n = 8 for WT; n = 10 for cKO. *ps < 0.05, # = no significant difference from target quadrant.
DOI: 10.7554/eLife.02839.008

controls (Figure 6F,G). ANOVA followed by pair-wise comparisons using Bonferroni post-hoc analy-
ses for each probe test showed that the WT mice traveled a significantly greater distance in the 
new target quadrant (SW) compared to each of the other three quadrants beginning on day 12 
(Figure 6F) (ps < 0.05). In contrast, the cKO mice did not travel a significantly greater distance in 
the target vs the adjacent SE non-target quadrant on day 12 or day 14 (Figure 6G) (p=0.614 for 
day 12; p=0.236 for day 14). The cKO mice only distinguished the target from each non-target 
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quadrant by day 16, as measured by the distance traveled in the target vs each non-target quadrant 
(ps < 0.05).

Probe trials at 21 days after the last reversal probe test (day 37) were next carried out to evaluate 
the remote memory capability of the cKO mice (bar graphs in right side of each Figure 6F,G). In these 
trials, WT mice traveled more time in target quadrant (SW) compared to other three quadrants. 
ANOVA revealed significant main effects for distance (F(3,28) = 29.437, p<0.0001) (Figure 6F) and dura-
tion (F(3,28) = 34.363, p<0.0001) (figure not shown), suggesting that WT mice successfully recalled the 
location of the platform. Bonferroni post-hoc tests for each comparisons (SW vs NE, NW, and SE) 
found that traveling distances and durations of WT mice in the target quadrant (SW) were significantly 
higher than those of other three quadrants (*ps<0.001 for distance, *ps<0.0001 for duration [figure 
not shown]). By contrast, cKO mice traveled similar distances and durations among the four quadrants. 
ANOVA followed by Bonferroni post-hoc tests revealed no main effects and no individual differences 
among the four quadrants, suggesting a remote memory deficit of cKO mice (Figure 6G). We also 
examined the differences in remote memory between both genotypes. Cdc42 cKO mice traveled 
significantly shorter distances (t(1,16) = 3.238, *p<0.01) (Figure 6H) and spent less time (t(1,16) = 3.208, 
*p<0.01) (Figure 6I) within the target quadrant compared to those of WT controls (independent  
t tests), again supporting a selective deficit in remote memory. Together, both the fear conditioning 
and water maze tests indicate that postnatal deletion of Cdc42 in forebrain excitatory neurons does 
not cause defects in initial memory acquisition or long-term memory retention. Instead the results of 
these tests show that during reversal learning loss of Cdc42 leads to a slight delay in long-term memory 
formation and a pervasive deficit in remote memory recall.

Discussion
In the present study, we analyzed Cdc42 conditional knockout mice using physiological, morpholog-
ical, and behavioral approaches, and demonstrated that the postnatal disruption of Cdc42 in excita-
tory neurons of the forebrain leads to a disruption of structural plasticity of dendritic spines, impaired 
synaptic plasticity, a reduction of the density of dendritic spines in the hippocampus, and a pronounced 
deficit of remote memory performances in the cKO mice.

The effects of postnatal Cdc42 disruption on synaptic plasticity
Actin dynamics are known to subserve the activity-dependent morphological alterations of spines, 
which is necessary for synaptic plasticity (Fukazawa et al., 2003). Cdc42 is one of the small GTPase 
proteins present in the dendritic spine, and is well known for its actin remodeling functions. Because 
our previous study demonstrated an intensive activation of Cdc42 specifically within the spine head 
following single spine glutamate uncaging stimuli (Murakoshi et al., 2011), we expected that Cdc42 
cKO neurons may show specific defects in activity-dependent spine enlargement. In line with this 
hypothesis, glutamate uncaging-induced spine plasticity was markedly disrupted in both the transient 
and sustained phase of spine enlargement upon postnatal deletion of Cdc42. Electrophysiological LTP 
with Cdc42f/f: Camk2a-Cre mice also confirmed a plasticity deficit upon Cdc42 deletion, indicating that 
Cdc42 activation is pivotal for both activity-dependent morphogenesis of spines and in the functional 
synaptic plasticity. These results suggest that Cdc42 exerts its morphing activities not only in the devel-
oping neurons (neuronal migration and establishment of polarity etc) but also in mature neurons.

Spine morphology in Cdc42f/f: Camk2a-Cre mice
Since we found a robust defect of glutamate uncaging-inducing spine enlargement in the Cdc42 cKO 
mice, and because Cdc42 is generally believed to play a key role in the morphogenesis of variety cells 
by regulating actin structure, we expected a substantial effect of Cdc42 deletion on the maintenance 
of spine density following long-term exposure to cre-recombinase within forebrain excitatory neurons. 
However, in contrary to this hypothesis, the spine loss in cKO neurons was very mild: only 8% reduction 
in spine density was found in hippocampal pyramidal neurons. Moreover, there was no detectable 
change in spine density in medial prefrontal cortex or anterior cingulate cortex of the cKO mice. This 
stands in contrast to our prior findings in ArpC3f/f: Camk2a-Cre mice, which exhibit a loss of approximately 
50% of spines in both the hippocampus and medial prefrontal cortex (Kim et al., 2013). Comparing 
these results suggest that although Camk2a-Cre drives the loss of floxed alleles in both regions, Cdc42 
signaling is specifically involved in rapid time-scale spine morphing/maintaining processes during the 
neuronal activation but, unlike Arp2/3, it is not strongly involved in the long-term maintenance of spine 
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morphology in mature neurons. This observation suggests functional characteristics of Cdc42 strongly 
dependent on the developmental status of neuron. During the early developmental stages, Cdc42 is 
reported to be essential for the morphogenesis and polarity establishment of neurons that leads to a 
permanent change of cell shapes and locations (Mueller, 1999; Luo, 2000; Wong et al., 2001; Aoki 
et al., 2004; Schwamborn and Puschel, 2004; Garvalov et al., 2007). However, during the postna-
tal period, Cdc42 activity may be functionally restricted to manage activity-dependent changes of 
actin dynamics that governs aspects of synaptic plasticity rather than gross maintenance of spines.

Behavioral alterations by postnatal Cdc42 deletion
Even though the hippocampi of Cdc42f/f: Camk2a-Cre mice showed robust deficits in both structural 
and functional measurements of synaptic plasticity, the cKO mice surprisingly displayed normal per-
formances in many behavioral tests, including those for working memory and memory acquisition. 
Remote memory as determined by both the fear conditioning and water maze tests, however, was 
significantly diminished in the Cdc42 cKO mice. How does the loss of Cdc42 lead to the deficit in the 
process of remote memory? Two explanations are possible to account for the remote memory defect 
of the cKO mice: a memory storage defect, or a remote memory retention and retrieval problem. 
Normal performances in learning and intact working memory of the cKO mice suggest that memory 
formation and storage processing appears not to be altered by Cdc42 deletion, although it should be 
noted we did observe a slight delay in long-term memory formation that was specific to the water 
maze reversal test. We speculate the retention or the retrieval capacities for the remote memory are 
most likely affected in Cdc42f/f: Camk2a-Cre mice.

Notably, a line of studies have found that hippocampal lesions impair recent memory such as short- 
and long-term memories, whereas the lesions do not affect remote memory (Squire and Alvarez, 
1995; Knowlton and Fanselow, 1998). This ‘graded retrograde amnesia’ supports an idea that 
remote memory retrieval may be independent of hippocampal functions. This finding is opposite 
to the behavioral phenotype observed in Cdc42f/f: Camk2a-Cre mice. However, other studies using 
human patients who have medial temporal lobe (MTL) damages find these patients exhibit a memory 
loss without any temporal gradient (Rosenbaum et al., 2001; Moscovitch et al., 2006; Winocur 
et al., 2010), revealing that the retrograde amnesia is not always graded. Moreover, a recent study 
showed the hippocampus is tightly involved in the retrieval of remote memory. Remote memory recall 
was affected by a temporal and precise optogenetic inhibition of CA1 excitatory neurons in hippo-
campus (Goshen et al., 2011). If Cdc42 is critically involved in the neuronal activation during the 
process of remote memory retrieval, Cdc42 loss may result in a remote memory defect with normal 
learning and working memory.

Rac and Cdc42 share similar downstream pathways: both Rac and Cdc42 can remodel actin via the 
p21 Kinase (PAK) and LIMK pathway to inactivate cofilin-mediated actin severing or by stimulating the 
WAVE1/ N-WASP pathway to activate Arp2/3 dependent actin polymerization. Both pathways are 
implicated in synaptic plasticity and are thought to be critical for processes important for learning and 
memory. Thus it has remained unclear as to whether Rac or Cdc42 can be distinguished from each 
other at the level of behavioral phenotypes in intact animals. It is of interest, therefore, to compare the 
results reported here with the analogous Rac1f/f: CamKllα-Cre mice previously characterized (Haditsch 
et al., 2009). Loss of Rac1 results in impaired hippocampal LTP similar to our findings in the Cdc42 
cKO mice. Surprisingly, however, the behavioral impairments are quite different. Loss of Rac1 results 
in impaired working memory, but has no effect on long-term or remote memory. This is in stark con-
trast to the Cdc42 cKO mice which display normal working memory, but are impaired in remote 
memory. Together, these findings reveal that although the biochemical pathways that modulate actin 
remodeling evoked by synaptic activation of Rac1 and Cdc42 may overlap, their functions during 
learning and memory are clearly distinguishable from the other, with little overlap. Further work will be 
required to define how the physiologic relevance of Rac1 and Cdc42 are functionally segregated 
during these processes despite their similar biochemical pathways.

Materials and methods
Animals
Conditional Cdc42 knockout animals were generously provided by Dr Cord Brakebusch (University of 
Copenhagan). Cdc42 conditional knockout mice (Cdc42f/f) were crossed with the Camk2a-Cre line 
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(stock no. 005359; The Jackson Laboratory; Bar Harbor, ME) for synaptic plasticity studies, biochemical 
assays, Golgi-cox staining, and behavioral tests. To analyze the expression pattern of Cre recombinase, 
the Rosa26-lox-stop-lox-tdTomato reporter line (generously provided by Dr Fan Wang) was crossed 
with the Camk2a-Cre line. Littermate male and female mice from heterozygous pairings were used in 
all experiments. All mice were housed in the Duke University's Division of Laboratory Animal Resources 
facilities and all procedures were conducted as approved by the Duke University Institutional Animal 
Care and Use Committee in accordance with National Institutes of Health guidelines.

Spine structural plasticity
Glutamate uncaging was performed as described (Murakoshi et al., 2011). P6 Cdc42f/f pups were 
deeply anesthetized with isoflurane and decapitated; the hippocampus was rapidly dissected into 
medium containing (mM): HEPES 25, NaHCO3 2, Sucrose 248, glucose 10, KCl 4, MgCl2 5, CaCl2 1. 
Then, 350 µm slices were cut with a tissue chopper (Ted Pella, Inc.; Redding, CA) and transferred to 
the surface of membrane inserts (EMD Millipore; Darmstadt, Germany), and placed in culture media 
containing (mM): L-glutamine 1, CaCl2 1, MgSO4 2, D-glucose 12.9, NaHCO3 5.2, Na-HEPES 30, 
insulin 0.001, Ascorbic acid 0.53, 20% heat-inactivated horse serum, 80% HEPES-based MEM 8.4 g/l 
(pH 7.35, 320 Osm). Slice-containing plates were maintained in a 37°C incubator with 5% CO2. 5–10 
days after incubation, cultures were transfected biolistically with a gene gun. To make bullets, 40–50 µg 
DNA were mixed with 8–12 mg 1.6 µm gold particles (Bio-Rad; Hercules, CA). Amount of DNA used 
was: 20 µg EGFP + 20 µg mCherry (Control); 20 µg EGFP-Cre + 20 µg mCherry (Cdc42 knockout); 
20 µg EGFP + 20 µg mCherry + 10 µg monomeric EGFP (mEGF) (Control for rescue); 20 µg EGFP-
Cre + 20 µg mCherry + 10 µg mEGFP-Cdc42 (rescue). Uncaging experiments were performed 3–4 days 
after transfection.

A Ti:Sapphire laser was tuned to 720 nm to uncage the caged glutamate in artificial cerebral spinal 
fluid (ACSF) that contained (mM): NaCl 130.0, KCl 2.5, NaHCO3 2,0, NaH2PO4 1.25, glucose 25.0, 
CaCl2 4.0, tetrodotoxin 0.001 and MNI-caged L-glutamate 2.0 at 25–27°C. Structural plasticity associ-
ated with LTP was induced by 4–7 ms, 5–8 mW uncaging pulses applied at 0.5 Hz for 30 pulses. Spines 
of neurons expressing mCherry and EGFP were imaged with a 1030 nm ytterbium-doped laser 
(Amplitude). EGFP-Cre expression was confirmed with the presence of strong fluorescence in the nu-
cleus. Volume change was monitored by measuring the change in the intensity of EGFP or mCherry 
fluorescence over time.

LTP
Hippocampal slices, 400 µm thick, were prepared from Cdc42f/f: Camk2a-Cre mice and their litter-mate 
control Cdc42f/f mice (P21-P28). Field EPSP (fEPSP) was measured with a pipette filled with 1 M NaCl 
located at the dendritic level (∼100 µm away from the somatic layer), while stimulating axons with a 
bipolar tungsten electrode located at striatum radiatum (single pulses, 50–100 µs, 30 s intervals). 
Stimulation strength was adjusted so that fEPSP amplitude is less than 50% saturation. LTP was induced 
with three sets of high frequency stimulation (HFS; 100 Hz, 1 s, 20 s intervals). The experiments were 
performed in artificial CSF (ACSF) containing 2 mM MgCl2 and 2 mM CaCl2 at room temperature. 
Persons who performed experiments and analyses were blinded from genotypes until the whole 
experiments and analyses are finished and statistical significance was calculated.

Golgi-Cox staining
Golgi-Cox staining procedures were performed as described (Kim et al., 2013). Mice were deeply 
anesthetized with isoflurane and then transcardially perfused with 4% PFA. Brains were removed and 
treated with solutions A and B from the FD Rapid GolgiStain Kit (FD Neuro Technologies, Columbia, 
MD) for 2 weeks, and then treated with solution C for 7 days. Sections (100 μm thick) were cut by cry-
ostat and transferred to solution C and incubated for 24 hr at 4°C. After brief rinsing with distilled 
water, floating sections were stained consecutively with solutions D and E for 30 min and then trans-
ferred to a 0.05% gelatin solution. Sections were mounted on glass slides, dehydrated through a 
graded series of ethanol concentrations, and then mounted with Permount. Images were collected by 
a MicroPublisher 5.0 MP color camera (QImaging; Surrey, BC, Canada) on a Zeiss Axio Imager micro-
scope under a 100 × oil-immersion objective using MetaMorph 7.6.5 software. For quantification, 
spine density from segments of secondary or tertiary branches of CA1 pyramidal neurons in the stratum 
radiatum of the hippocampus were measured.
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Cdc42 activity assay and western blotting
Cdc42 activity was measured using glutathione S-transferase (GST)-Cdc42 and Rac1 interactive binding 
domain (CRIB) binding assay as described (Kim et al., 2009). Cdc42f/f: Camk2a-Cre and control Cdc42f/f 
mice were deeply anesthetized with isoflurane and hippocampi were rapidly removed, homogenized 
with 15 strokes using a Teflon-glass homogenizer in ice-cold lysis buffer (mM): NaCl 150, HEPES 25 
(pH 7.4), EDTA 1, EGTA 0.5, 0.5% NP-40 that contained, protease/phosphatase inhibitors and then 
sonicated. The homogenate was centrifuged at 10000×g for 5 min at 4°C and then the supernatant was 
collected. The protein concentration was determined with the Bradford protein assay (Bio-Rad).

For GST-CRIB binding assay, GST protein fused to CRIB domain from human PAK1B was expressed 
in E.coli BL-21 cells and used for the assay. Identical amounts of purified GST-CRIB proteins were pre-
incubated with 20 µl of glutathione-Sepharose beads (4 Fast Flow; Amersham Biosciences; Pittsburgh, 
PA) in NETN buffer (20 mM Tris–HCl, pH 8.0; 100 mM NaCl, 1 mM EDTA, 0.5% NP-40), then washed 
twice each with 600 μl of NETN and 600 μl of lysis buffer. The hippocampal lysates were incubated with 
the GST-CRIB protein-bound glutathione-Sepharose beads for 2 hr at 4°C on a rotator (15 rpm). The 
beads were collected by centrifugation (1500×g/1 min), and the supernatant was removed and the 
pellet was rinsed with lysis buffer. The bound proteins were eluted from the beads by boiling the 
samples in SDS loading buffer (1 M Tris–HCl [pH 6.8], 10% [vol/vol] SDS, 50% [vol/vol] glycerol, 5% [vol/
vol] 2-mercaptoethanol, and 1% [vol/vol] bromophenol blue).

For Western blotting, 10 μg of samples were electrophoresed through 12% SDS-PAGE (Bio-Rad) 
and transferred onto a nitrocellulose membrane (Whatman; Pittsburgh, PA), and nonspecific sites were 
blocked with 5% nonfat dry milk in TRIS-buffered saline (TBS; pH 7.4) containing 0.05% Tween-20. For 
detection, the membranes were probed with rabbit anti-Cdc42 polyclonal antibody (Santa Cruz; 
Dallas, TX) and mouse anti-Rac1 monoclonal antibody (BD; San Jose, CA) for 24 hr at 4°C. After 
washing, the membranes were incubated with horseradish peroxidase-conjugated secondary anti-
bodies (GE Healthcare Life Sciences; Pittsburgh, PA) for 2 hr, washed, and then developed using the 
ECL system (Thermo Scientific; Waltham, MA). Membranes were then exposed to autoradiography 
films (Genesee Scientific; San Diego, CA).

Contextual fear conditioning
Fear conditioning was conducted as described (Porton et al., 2010). Med-Associates mouse fear 
conditioning chambers were used for conditioning and testing. The tests consist of three sessions: 
conditioning (day 1), long-term fear memory tests (day 2-day 5), and remote fear memory test (day 45). 
Following a 2 min acclimation in the conditioning chamber, mice received a 0.4 mA scrambled foot 
shock for 2 s. Each mouse remained in the chamber for an additional 30 s before being placed into its 
home cage. Fear memory testing was conducted daily for 4 days by placing the mice in the condi-
tioning chamber for 5 min in the absence of foot shock. The remote memory was tested at 45 days 
after the conditioning. Freezing rate was analyzed by trained observers who were blind to the genotypes 
of mice using Noldus Observer (Noldus Information Technology; Wageningen, Netherlands) software. 
Freezing was defined by criteria previously described for mice as the absence of all visible movement 
except that required for respiration (Anagnostaras et al., 2000).

Morris water maze
Morris water maze task was conducted as described (Porton et al., 2010). A 120 cm diameter water 
tank was used. Opaque water in the tank was maintained at 25°C. The water pool was divided into four 
quadrants (NE, NW, SE, and SW). A 12 cm diameter round platform was submerged 1 cm below the 
water surface and 20 cm apart from the wall of the water tank at the NE quadrant. Testing consisted 
of three sessions: acquisition and probe trials (day 1-day 8), reversal acquisition and reversal probe 
trials (day 9-day 16), and remote probe trials (day 37). 1 week prior to testing, all mice were handled 
daily for 5 min and then were placed in a pan of shallow water (1 cm) for 30 s to acclimate them to 
water. On the seventh day after handling, each mouse was placed onto the hidden platform in the NE 
quadrant for 20 s and then allowed to swim freely for 60 s before being returned to the platform for 
15 s. Acquisition testing consisted of 32 trials given across 8 days with four trials administered per day. 
Trials were run in pairs, with each pair separated by 60 min. Probe trials were conducted without plat-
form at the end of days 2, 4, 6 and 8. Reversal acquisition and reversal probe tests were conducted 
same way as the acquisition/probe tests described above, but the platform location was moved from 
NE to SW. Remote test was conducted at day 37. For each trial, the release point for the animals was 
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randomized across seven equally spaced points along the perimeter of the maze. All test trials were 
1 min in duration. The swim distance, swim time were determined by Noldus Ethovision (Noldus 
Information Technology).

Y-maze
Y-maze test was performed as described (Kim et al., 2013). Spontaneous alternation in a Y-maze was 
conducted under indirect illumination (80–90 lux) in a 3-arm Y-maze. The mouse was placed into the 
center arm of the maze and permitted free exploration for 5 min. Entry into an arm was defined as the 
mouse being more than 1 body length into that arm, with both hind-paws past the entrance to that 
arm. An arm alternation was defined as three successive entries into each of the different arms. 
Alternation, calculated as the total number of alternations divided by the total number of arm entries 
minus 2, was expressed as a percentage.

Open field test (OFT)
OFT was performed as described (Kim et al., 2013). Mice were placed into an open field (AccuScan 
Instruments) and their activities were monitored over 1 hr under 350 lux illumination using VersaMax 
software (AccuScan Instruments; Columbus, OH). Locomotor (distance traveled), rearing (vertical 
beam-breaks), stereotypical activities (repetitive beam-breaks <1 s), and anxiety level (duration in center 
area of arena) were measured in 5-min time-bins.

Elevated zero maze (EZM)
EZM was performed as described (Pogorelov et al., 2005). The zero maze is a 5.5 cm-wide circular 
running platform elevated 43 cm from the floor. The inside diameter of the maze is 34 cm with two 
opposite quadrants were enclosed by 11 cm-high walls. Mice were placed into a closed quadrant and 
permitted to investigate the maze for 5 min under 50–60 lux illumination. The behaviors were recorded 
and analyzed by Noldus Observer (Noldus Information Technology). The scored behaviors included 
percent of time spent in open quadrants and total number of transitions between quadrants, and 
latency to enter the open quadrants.

Statistical analyses
All data are expressed as means ± SEM and all statistics were analyzed using SPSS software (SPSS 20). 
Independent t tests were used for analysis of differences between two groups. When comparing more 
than two groups, ANOVA followed by Bonferroni post-hoc analyses was used. To monitor changes 
over time, repeated-measures ANOVA (RMANOVA) were run followed by Bonferroni corrected pair-wise 
comparisons. A p<0.05 was considered statistically significant.
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