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ABSTRACT

The cycle graph introduced by Bafna and Pevzner is an important tool for evaluating the
distance between two genomes, that is, the minimal number of rearrangements needed to
transform one genome into another. We interpret this distance in topological terms and
relate it to the random matrix theory. Namely, the number of genomes at a given 2-break
distance from a fixed one (the Hultman number) is represented by a coefficient in the genus
expansion of a matrix integral over the space of complex matrices with the Gaussian
measure. We study generating functions for the Hultman numbers and prove that the two-
break distance distribution is asymptotically normal.
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1. INTRODUCTION

In the Bafna and Pevzner (1998) paper on genome comparison and genome rearrangements, the

authors raised the problem of decomposing a permutation into the minimal number of ‘‘transpositions’’

(here a transposition is understood as an exchange of two contiguous intervals of the permutation). An

important tool they introduced to deal with this problem is the cycle graph of a permutation. We recall that the

cycle graph of a permutation p 2 Sn, denoted by G(p), is the directed edge-colored graph with vertices

f0‚ 1‚ . . . ‚ ng and edges of two colors: gray edges going from i - 1 to i and black edges going from pi to

f0‚ 1‚ . . . ‚ ng (throughout this note we assume that p0 = 0 and consider i modulo n + 1). An alternating cycle

in G(p) is a directed cycle with edges of alternate colors. Notice that at every vertex of G(p) there is one

incoming edge and one outgoing edge of each color. This means that there is a unique disjoint decomposition

of the edge set of G(p) into alternating cycles (see Fig. 1).

In a bit more detail, suppose we have two circular genomes A and B built from the same set of genes. We

may assume that the genes in A are numbered f0‚ 1‚ ‚ ng, and the order of genes in B is f0‚ p1‚ ‚ png, where

p 2 Sn. For each pair of genomes A and B one can associate the break-point graph—a graph on the set of

2n + 2 vertices f0‚ 00‚ 1‚ 10‚ . . . ‚ n‚ n0g with edges of two types (gray and black): gray edges connect the

consecutive genes in A (i.e. i0 to i + 1) and black edges connect the consecutive genes in B (i.e. p0i - 1 to pi).

Such a graph splits into a disjoint union of cycles (if A = B, then the breakpoint graph consists of n + 1

cycles of length 2). In terms of the number of cycles in a breakpoint graph, one can evaluate the number of

rearrangements necessary to transform one genome into another. Two genomes B and B0 are related by an
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m-break if after cutting each of them at m places we get two identical sets of chains of genes. Then the

m-break distance between A and B is the minimal number of m-breaks needed to transform A to B. The

most evolutionary relevant rearrangements of genomes are the 2-breaks (reversals, fusions, fissions, and

translocations) and 3-breaks (in particular, transpositions) (cf. Alekseyev, 2008).

Remark 1. We emphasize here that the 2-break distance between two genomes is equal to n + 1 - k,

where k is the number of cycles in the corresponding breakpoint graph (cf. Bafna and Pevzner, 1998). To

see this, we notice that any cycle of length larger than 2 can be split into two cycles by a 2-break; we can

continue doing that as long as the number of cycles is less than n + 1. At the same time, with a 2-break we

cannot increase the number of cycles by more than one. Therefore, the 2-break distance is precisely

n + 1 - k. On the other hand, the 3-break distance between two genomes cannot exceed (n + 1 - k)/2.

Remark 2. The cycle graph and the breakpoint graph are closely related to each other. Indeed, iden-

tifying the vertices i and i0 in the breakpoint graph and choosing proper orientation of the edges we get the

cycle graph.

In Hultman (1999), the author attempted to characterize the number H(n, k) of permutations in Sn whose

cycle graph has exactly k alternating cycles. These numbers, now carrying his name have later been studied

by several authors (Bóna and Flynn, 2009; Doignon and Labarre, 2007, to name just few). As shown in

(Bóna and Flynn, 2009), the Hultman numbers are closely related to the (unsigned) Stirling numbers of the

first kind S(n, k) that count permutations in Sn whose disjoint cycle decomposition consists of k cycles:

FIG. 1. The cycle graph G(p) of the permutation p = 1234
2314

� �
, where the gray edges are drawn by dashed arrows and the

black edges are drawn by solid arrows. There are three alternating cycles: 0-1-3-4-1-2-0, 2-3-2, and 4-0-4.
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H(n‚ k) =
2S(n + 2‚ k)

(n + 1)(n + 2) if n - k is odd‚

0 otherwise:

�
(1)

A closed formula for H(n, k) was obtained in (Doignon and Labarre, 2007).

In this note, we give two new interpretations of the Hultman numbers in the spirit of Harer and Zagier

(1986): as numbers of certain polygon gluings and as integrals over the space of complex matrices. We also

give a recursion relation for the Hultman numbers and derive some properties of their generating functions.

2. POLYGON GLUINGS

Consider a 2n-sided polygon, whose boundary consists of n black sides followed by n gray sides; the

black sides are oriented in the counterclockwise direction and the gray sides are oriented in the clockwise

direction (see Fig. 2).

Pairwise gluing of black sides with gray sides (respecting orientation) gives an orientable topological

surface without boundary of topological genus g ‡ 0 (the genus g depends on the gluing). At the same time,

FIG. 2. A 2n-gon (n = 4) with n black sides (solid arrows) and n gray sides (dashed arrows). The pairs of sides that

are glued together by p = 1234
2314

� �
are connected with dotted lines.
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the boundary of the polygon turns into an oriented graph with k ‡ 1 vertices and n edges. The numbers g

and k are related by the Euler characteristic formula 2 - 2g = k - n + 1, so that k = n + 1 - 2g. We denote

by hg(n) the number of genus g such gluings of a 2n-gon.

Remark 3. In terms of the polygon gluings, the 2-break distance between genomes related by the

permutation p is 2g, that is, twice the genus of the surface glued according to p, and the 3-break distance is

not larger than g.

Theorem 1. The Hultman numbers H(n, k) and the numbers hg(n) of genus g gluings of a 2n-gon

described above are related by the following formula:

H(n‚ n + 1 - 2g) = hg(n): (2)

Proof. We start with a slightly different interpretation of the cycle graph G(p). Consider two oriented

cycles (that is, two regular oriented graphs) of length n + 1, one colored in gray and the other colored in

black. The vertex set in both cycles is f0‚ . . . ‚ ng, but in the gray cycle the vertices follow in the clockwise

order, and in the black cycle they follow in the counterclockwise order. We identify the vertex pi of the

gray cycle with the vertex i of the black cycle (we assume p0 = 0). Obviously, the obtained graph coincides

with the cycle graph G(p) (see Fig. 1).

We label the black sides of the polygon by numbers from 1 to n in the counterclockwise order, and the gray

sides by numbers from 1 to n in the clockwise order, both times starting from the initial vertex 0. Clearly, a

gluing of a 2n-gon of the type considered above is uniquely described by a permutation p 2 Sn, where pi is the

number of the gray side identified with the ith black side. Let us cut the polygon along the diagonal (n, 0),

that is, we add one black edge and one gray edge connecting the vertex n to the vertex 0 (see Fig. 2). Now

we have two n-gons, one with black boundary and the other with gray boundary, whose sides are pairwise

identified by means of the permutation p (p0 = 0). These two boundaries glued together give a graph that

we denote by G(p). The construction is quite similar to that of the cycle graph G(p), but instead of gluing

vetices we now glue edges according to the same rule. The graphs G(p) and G(p) are closely related to each

other: it is straightforward to verify that there is a one-to-one correspondence between the alternating cycles

in the cycle graph G(p) and the vertices in the polygon gluing graph G(p). To complete the proof, we recall

that k = n + 1 - 2g, where k is the number of vertices of G(p) and g is the genus of the glued surface.-

3. MATRIX INTEGRAL

Denote by M(N) = MatC(N · N) the linear space of complex N · N matrices; the (complex) dimension of

M(N) is N2. The space M(N) has a natural Gaussian probabilistic measure

dlN =
1

2p
ffiffiffiffiffiffiffi
- 1
p

� �N2

e - Tr(XX�)
N̂

i‚ j = 1

dxij ^ d�xij‚ (3)

where X = fxijgN
i‚ j = 1 2 M(N), the asterisk denotes the Hermitian conjugation and Tr is the trace. Note that

the space M(N) equipped with the measure lN is also called the complex Ginibre ensemble.

Theorem 2. Put

pn(N) =
X[n=2]

g = 0

H(n‚ n + 1 - 2g) ‚ Nn - 2g + 1‚ (4)

where H(n, k) are the Hultman numbers. Then

pn(N) =
Z

M(N)

Tr(XnX�n) ‚ dlN : (5)
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Remark 4. More general matrix integrals over the space M(N) are considered in Alexeev et al. (2010).

Remark 5. Below is a list of the first several polynomials pn(N):

p0(N) = N‚

p1(N) = N2‚

p2(N) = N3 + N‚

p3(N) = N4 + 5N2‚

p4(N) = N5 + 15N3 + 8N‚

p5(N) = N6 + 35N4 + 84N2‚

p6(N) = N7 + 70N5 + 469N3 + 180N‚

p7(N) = N8 + 126N6 + 1869N4 + 3044N2‚

p8(N) = N9 + 210N7 + 5985N5 + 26060N3 + 8064N‚

p9(N) = N10 + 330N8 + 16401N6 + 152900N4 + 193248N2:

Proof. It is a fairly standard exercise in t’Hooft graphic calculus to reduce the matrix integral in Equation

(5) to a sum over Feynman diagrams (polygon gluings) (cf., e.g., Mulase, 1998; Zvonkin, 1997). We will

briefly explain how it works. By definition, we have

Tr(XnX�n) =
XN

i1 = 1

. . .
XN

i2n = 1

xi1i2 . . . xinin + 1
�xi1i2n

. . . �xin + 2in + 1
‚

and a simple computation shows thatZ
M(N)

xij�xkldlN = dikdjl‚Z
M(N)

xijxkldlN =
Z

M(N)

�xij�xkldlN = 0:

Applying Wick’s formula (cf. Mulase, 1998; Zvonkin, 1997), we getZ
M(N)

xi1i2 . . . xinin + 1
�xi1i2n

. . . �xin + 2in + 1
dlN

=
X
p2Sn

Z
M(N)

xi1i2 �xia1 + 1ia1
dlN · � � �

� � � ·
Z

M(N)

xinin + 1
�xian + 1ian

dlN

=
X
p2Sn

di1ia1 + 1
di2ia1

� � � dinian + 1
din + 1ian

‚

where aj = 2n + 1 - pj (we assume that i2n + 1 = i1). Therefore,

Z
M(N)

Tr(XnX�n) ‚ dlN =
X
p2Sn

XN

i1 = 1

. . .
XN

i2n = 1

di1ia1 + 1
di2ia1

� � � dinian + 1
din + 1ian

:

We note that the pairs of indices {ikik + 1} correspond to the black edges of the polygon on Figure 2, and the

pairs of indices fiak + 1iak
g correspond to the gray edges, so there is a one-to-one correspondence between

the pairings of indices and polygon gluings. Moreover, it is not hard to see that for a given p 2 SN

XN

i1 = 1

. . .
XN

i2n = 1

di1ia1 + 1
di2ia1

� � � dinian + 1
din + 1ian

= Nn - 2g + 1‚
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where g denotes the genus of the surface glued from the 2n-gon by means of p. This yields

Z
M(N)

Tr(XnX�n) ‚ dlN =
X[n=2]

g = 0

hg(n)Nn - 2g + 1‚

and Equation (5) now follows from Theorem 1. -

4. GENERATING FUNCTIONS AND RECURSIONS

Here we collect some simple facts about the recursive relations and generating functions for the Hultman

numbers that we did not find in the literature.

Consider the generating functions

F(x‚ N) =
X1
g = 0

X1
n = 2g

H(n‚ n + 1 - 2g)Nn - 2g + 1 xn

n!
(6)

and

Hg(x) =
X1
n = 2g

H(n‚ n + 1 - 2g)xn: (7)

Theorem 3. We have

(i)

F(x‚ N) =
1

x2

1

(1 - x)N
- (1 + x)N

� �
;

(ii) H(n, n + 1 - 2g) = hg(n) satisfy the recursion

(n + 2)hg(n) = (2n + 1)hg(n - 1) - (n - 1)hg(n - 2) + n2(n - 1)hg - 1(n - 2);

(iii) the polynomials pn(N) defined by Equation (4) satisfy the recursion

(n + 2)pn(N) = (2n + 1)Npn - 1(N) + (n - 1)(n2 - N2)pn - 2(N)

with p0 = N, p1 = N2;

(iv)

H0(x) =
1

1 - x
‚ Hg(x) =

Pg(x)

(1 - x)1 + 4g
‚ gq1‚

where Pg(x) =
P4g - 2

i = 2g ag‚ ix
i is a polynomial with integer coefficients, ag‚ 2g = (2g)!

g + 1
‚ ag‚ 4g - 2 = 1, and

Pg(1) = (4g - 1)!!
2g + 1

.

Remark 6. Several first polynomials Pg(x) are listed below:

P0(x) = 1‚

P1(x) = x2‚

P2(x) = x4(8 + 12x + x2)‚

P3(x) = x6(180 + 704x + 528x2 + 72x3 + x4)‚

P4(x) = x8(8064 + 56160x + 98124x2 + 53792x3 + 8760x4 + 324x5 + x6)‚

P5(x) = x10(604800 + 6356160x + 19083456x2

+ 21676144x3 + 9936360x4 + 1759520x5

+ 103040x6 + 1344x7 + x8):
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Remarkably, all polynomials Pg(x) have positive integer coefficients. Moreover, the integers Pg(1) are

well known—they enumerate genus g orientable gluings of a 4g-gon (cf. Harer and Zagier, 1986), or the

permutations in S4g - 1 whose cycle graph alternating cycles are all of length 4 (cf. Doignon and Labarre,

2007).

Proof. Part (i) follows from Equation (1) and the fact that

(1 + x)N =
X1
n = 0

Xn

k = 0

( - 1)n + kS(n‚ k)Nk xn

n!
‚

where S(n, k) are the Stirling numbers of the first kind. Similarly, the recursion S(n + 1, k) = S(n, k - 1) +
nS(n, k) for the Stirling numbers immediately implies (ii). Part (iii) is a direct consequence of (ii). The proof

of (iv) is by induction on g and follows the proof of Theorem 1 in Andersen et al. (2013). The cases g = 0, 1

being easy, assume that the statements of part (iv) of the theorem hold for g - 1, g ‡ 2. Put ~Hg(x) = x2Hg(x),
then the recursion (ii) is equivalent to the ordinary differential equation (ODE)

(1 - x)2 ~H0g(x) + (1 - x) ~Hg(x) = x4 ~H000g - 1(x) + 2x3 ~H00g - 1(x)

with initial condition ~Hg(0) = 0. Therefore, we have

~Hg(x) = (1 - x)

Z x

0

t4 ~H000g - 1(t) + 2t3 ~H00g - 1(t)

(1 - t)3
dt: (8)

The elementary formula

xa

(1 - x)b

� �0
=

axa - 1 + (b - a)xa

(1 - x)b + 1
(9)

immediately yields

x4 xa

(1 - x)b

� �000
+ 2x3 xa

(1 - x)b

� �00
=

a2(a - 1)xa + 1 + . . . + (b - a)2(b - a + 1)xa + 4

(1 - x)b + 3
: (10)

Since, by assumption,

~Hg - 1(x) =
x2Pg - 1(x)

(1 - x)4g - 3
=
P4g - 6

i = 2g - 2 ag - 1‚ ix
i + 2

(1 - x)4g - 3
‚

applying Equation (10) we get that

x4 ~H000g - 1(x) + 2x3 ~H00g - 1(x)

(1 - x)3
=

Qg(x)

(1 - x)4g + 3
‚ (11)

where Qg(x) =
P4g

i = 2g + 1 qg‚ ix
i is a polynomial with integer coefficients,

qg‚ 2g + 1 = (2g)2(2g - 1)ag - 1‚ 2g - 2 = 2(2g)!‚

qg‚ 4g = 2ag - 1‚ 4g - 6 = 2:

Consider the Laurent expansion

Qg(x)

(1 - x)4g + 3
=
X4g + 3

i = 3

rg‚ i

(1 - x)i
‚ (12)

then we have

~Hg(x)

1 - x
=
X4g + 2

i = 2

rg‚ i + 1

i(1 - x)i
+ C‚
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where the initial condition ~Hg(0) = 0 implies that

C = -
X4g + 2

i = 2

rg‚ i + 1

i
:

Now put

~Pg(z) =
X4g + 2

i = 2

rg‚ i + 1

i
(1 - x)4g + 2 - i - (1 - x)4g + 2
� �

=
X4g + 2

i = 0

pg‚ ix
i: (13)

By construction, we have pg,0 = 0, therefore ~Hg(x) = ~Pg(x)=(1 - x)4g + 1 since they both satisfy the same first

order ordinary differential equation with the same initial condition. Moreover, since hg(1) = . . . =
hg(2g - 1) = 0, we also have pg‚ 1 = . . . = pg‚ 2g + 1 = 0. Inverting (9), we see that

ag‚ 2g = pg‚ 2g + 2 = qg‚ 2g + 1=(2g + 2) = (2g)!=(g + 1)‚

ag‚ 4g - 2 = pg‚ 4g = qg‚ 4g=2 = 1

as claimed. Clearly, Pg(x) = ~Pg(x)=x2 = (1 - x)4g + 1Hg(x) must have integral coefficients because Hg(x) does.

To complete the proof it is sufficient to show that

Pg(1) =
(4g - 1)(4g - 3)(2g - 1)

2g + 1
Pg - 1(1)

[note that P0(1) = P1(1) = 1]. We have

~H0g - 1(x) =
(1 - x) ~P0g - 1(x) + (4g - 3) ~Pg - 1(x)

(1 - x)4g - 2
=

Pg‚ 1(x)

(1 - x)4g - 2
‚

~H00g - 1(x) =
(1 - x)P0g‚ 1(x) + (4g - 2)Pg‚ 1(x)

(1 - x)4g - 1
=

Pg‚ 2(x)

(1 - x)4g - 1
‚

~H000g - 1(x) =
(1 - x)P0g‚ 2(x) + (4g - 1)Pg‚ 2(x)

(1 - x)4g
‚

and from Equation (11) it then follows that

Qg(x) = (1 - x) x4P0g‚ 2(x) + 2x3Pg‚ 2(x)
� 	

+ (4g - 1)x4Pg‚ 2(x):

From here we easily get

Pg‚ 1(1) = (4g - 3)Pg - 1(1)‚

Pg‚ 2(1) = (4g - 2)Pg‚ 1(1) = (4g - 2)(4g - 3)Pg - 1(1)‚

Qg‚ 1(1) = (4g - 1)Pg‚ 2(1) = (4g - 1)(4g - 2)(4g - 3)Pg - 1(1):

Clearly, Qg,1(1) = rg,4g + 3 in the Laurent expansion (12), and from Equation (13) we obtain

Pg(1) = 1
4g + 2

Qg‚ 1(1) = (4g - 1)(4g - 2)(4g - 3)
4g + 2

Pg - 1(1) as claimed. -

5. ASYMPTOTIC DISTRIBUTION OF GENOMIC DISTANCE

Consider the symmetric group Sn equipped with the uniform measure. Then the number of alternating

cycles in the cycle graph of a random permutation is a random variable that we denote by Kn. Here we

study the asymptotic distribution of the random variable Kn as n / N.

Theorem 4. The number Kn of alternating cycles in the cycle graph of a random permutation of length

n has the expectation and the variance of order ln n. The variable Kn - ln nffiffiffiffiffi
ln n
p weakly converges to the standard

Gaussian random variable.

Proof. The probability P{Kn = k} is equal to H(n; k)
n! . Therefore, by Equation (6) and Theorem 3, (i) the

coefficient of F(x, N) at xn is the expectation of NKn , and
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ENKn =
N + n + 1

n + 2

� �
-

N

n + 2

� �
:

Clearly, we have

EKn =
q(ENKn )

qN






N = 1

‚

EKn(Kn - 1) =
q2(ENKn )

qN2






N = 1

:

A standard computation shows that

qE(NKn )

qN
=
Xn + 2

j = 1

1

j

Y
l 6¼j

N - 1 + l

l
-
Xn + 2

j = 1

1

j

Y
l 6¼j

N + 1 - l

l
‚

q2E(NKn )

qN2
=
Xn + 2

i = 1

Xn + 2

j = 1
j 6¼i

1

ij

Y
l 6¼j
l 6¼i

N - 1 + l

l
-
Xn + 2

i = 1

Xn + 2

j = 1
j 6¼i

1

ij

Y
l 6¼j
l 6¼i

N + 1 - l

l
:

Hence,

EKn =
Xn + 2

j = 1

1

j
-

( - 1)nn!

(n + 2)!

and

EKn(Kn - 1) =
Xn + 2

j = 1

1

j

 !2

-
Xn + 2

j = 1

1

j2
-

( - 1)nn!

(n + 2)!

Xn

j = 1

1

j
:

From here it is easy to see that for the mean value and variance of Kn we have

EKn = ln n + c + o(1)

and

E(Kn - EKn)2 = ln n + c -
p2

6
+ o(1)

as n / N, where c is the Euler-Mascheroni constant. This proves the first statement of the theorem. To

prove the second statement, consider the Laplace transform of the random variable Kn - ln nffiffiffiffiffi
ln n
p

EN
Kn - ln (n)ffiffiffiffiffiffi

ln (n)
p

= N -
ffiffiffiffiffi
ln n
p N1=

ffiffiffiffiffi
ln n
p

+ n + 1

n + 2

 !
-

N1=
ffiffiffiffiffi
ln n
p

n + 2

 ! !

~N -
ffiffiffiffiffi
ln n
p Yn + 2

j = 1

N1=
ffiffiffiffiffi
ln n
p

- 1 + j

j

~N -
ffiffiffiffiffi
ln n
p

exp
Xn + 2

j = 1

ln 1 +
N1=

ffiffiffiffiffi
ln n
p

- 1

j

 !

~ exp N1=
ffiffiffiffiffi
ln n
p

- 1
� 	Xn

j = 1

1

j
-
ffiffiffiffiffiffiffi
ln n
p

ln N

 !

~ exp ln n
ln Nffiffiffiffiffiffiffi

ln n
p +

1

2

ln2 N

ln n

� �
-
ffiffiffiffiffiffiffi
ln n
p

ln N

� �
! eln2 N=2:

The function eln2 N=2 is the Laplace transform of the standard Gaussian random variable. -
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Remark 7. In terms of genome rearrangements Theorem 4 claims that the 2-break distance between two

genomes randomly built from the same set of n genes has the mean value of order n - ln n and is

asymptotically Gaussian as n / N.
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