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Abstract

Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key
sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen
species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharma-
cological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several
decades, the majority of the molecular identities that are responsible for these channels/transporters have
remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular
identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial
Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel.
This new information enables us to form detailed molecular and functional characterizations of mitochondrial
ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated
post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms
for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of de-
tailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find
novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial
ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006.

Introduction

Over the years, redox signaling has been recognized as
an important system for cellular functions in all cell

types/tissues (44, 135, 155, 177, 182). Cells maintain redox
balance through generation and breakdown of reactive oxy-
gen species (ROS) and nitrogen species (RNS). High levels of
ROS and RNS are known to promote cell damage and death.
However, recent evidence indicates that the production of low
to moderate levels of ROS/RNS is also critical for proper
regulation of many essential cellular processes (53, 155, 158,
175, 177, 182). Redox signaling has also gained recognition for
its role in mediating diverse tissue-specific cellular functions
across a wide range of cell types. For instance, redox signaling
regulates muscle contraction/relaxation (145, 155, 169, 178),

insulin secretion from pancreatic beta cells (191), metabolic
cycles in liver (137), self-renewal and differentiation in stem
cells (98), and T-cell homeostasis (67, 100, 120).

Since Szent-Gyorgyi first provided the initial concept in
1967 regarding a possible role for electronic mobility in bio-
logical materials as one of the fundamental mechanisms for
cellular signaling (170), and the area of redox biology has
witnessed a burst of major remarkable discoveries. These in-
clude (i) free radical superoxide (O2

- ) production by cellular
enzymes (112), (ii) superoxide dismutase that can catalytically
scavenge O2

- , blunt the cascade of oxidation, and neutralize
oxygen toxicity (113), and (iii) a membrane-bound enzyme
complex, nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase (11). Since free radicals are highly reactive
with cellular lipids, DNA, and proteins and can bring about
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harmful oxidations, research in the early years concentrated
on the chemistry of the individual ROS and the cellular
damage that they bring about.

From the late 1970s to the early 1980s, there were several
milestone discoveries, which brought the new concept that
redox also serves as a signaling molecule to maintain cellular
functions. Oberley and Buettner proposed that lower con-
centrations of O2

- or hydrogen peroxide (H2O2) induce cell
division (125). Mukherjee et al. showed that H2O2 is involved
in the physiological response to insulin in adipocytes (119).
These reports first showed that ROS were not simply involved
in cellular toxicity. Another important finding is nitric oxide
(NO) and its biological action on vascular smooth muscles.
Mittal and Murad’s group found that NO was capable of ac-
tivating guanylate cyclase and generating cyclic GMP (10).
This critical observation was later followed by the important
finding of the identification of endothelial-derived relaxing
factor as NO by Ignarro and Kadowitz’ group (76–78) and
Moncada’s group (133). From these discoveries, redox biology
has finally broadened the field into signal transduction re-
search and has drawn major attention from both general bi-
ologists and the medical research community.

O2
- and NO are the primary ROS and RNS, respectively,

that are produced in cells under physiological and patho-
physiological conditions, which react with other molecules
(and each other) to form a diverse form milieu of additional
ROS and RNS such as H2O2 and peroxynitrite (ONOO - ) (177,
182). Unlike most other endogenous second messengers for
signal transduction, H2O2 and NO are highly active molecules
that readily diffuse across cell membranes and cannot be
stored inside cellular compartments/organelles. Therefore,
their signaling capacity should be tightly controlled at the
levels of their local biosynthesis and availability. Indeed,
subcellular ROS/RNS concentration is regulated by a diverse
subset of enzymes that are localized in each cellular com-
partment which contributes to their local generation and
breakdown. Notably, mitochondria are the most important
cellular compartment/organelle for tuning the cellular ROS/
RNS concentration, as they contain various ROS/RNS gen-
eration systems as well as detoxification enzymes. The elec-
tron transport chain (ETC) located in the inner mitochondrial
membrane (IMM) is the main cellular source of ROS (Fig. 1).
There are a number of studies that suggest the presence of an
NO synthase (NOS) in mitochondria (mtNOS), which pro-
duces NO in mitochondrial matrix (Fig. 1) (58, 194). However,
the existence/function of mtNOS is highly controversial (28,
194) (see Overview: Mitochondrial Ion Channels/Transpor-
ters, ETC, and Mitochondrial Redox Signaling and Regulation
of ETC Activity by Mitochondrial NO Signaling sections).

Under physiological conditions, the balance of mitochon-
drial ROS/RNS homeostasis is under tight control of mito-
chondrial ion channels/transporters that are located in IMM
and outer mitochondrial membrane (OMM) (Fig. 1). In
pathophysiological conditions, intra- or extra-cellular ROS/
RNS stress/signaling is transmitted to mitochondria through
redox-dependent post-translational modification (PTM) of
mitochondrial ion channel/transporters, amplified by mito-
chondrial ROS/RNS generation systems, which subsequently
release excessive ROS/RNS from mitochondria into the cy-
tosol through specific mitochondrial ion channels/transport-
ers such as the mitochondrial permeability transition pore
(mPTP) and the inner membrane anion channel (IMAC),

which triggers ROS-induced ROS release in neighboring mi-
tochondria (26, 197) and finally, activates cell-death signaling
(38) (Fig. 1). Therefore, mitochondrial ion channels/trans-
porters serve as critical sensors and regulators of cellular re-
dox signaling and also in balancing cell survival and death.
Especially, the redox-mediated PTMs of mitochondrial ion
channels/transporters and ETC serve as key mechanisms for
the regulation of mitochondrial ROS/RNS generation (see
Overview: Mitochondrial Ion Channels/Transporters and
Redox-Dependent PTMs section). Although the functional
and pharmacological characteristics of mitochondrial ion
transport mechanisms have been well studied for several
decades, the majority of the molecular identities that are re-
sponsible for the mitochondrial ion channels/transporters
have remained a mystery until very recently, owing to the use
of updated techniques such as whole genome screening,
proteomics, and genetic manipulations (132) These efforts by
many researchers finally reached a diverse array of break-
throughs in identifying the coding genes responsible for mi-
tochondrial ion channels/transporters. These include
mitochondrial Ca2 + uniporter pore (MCU) (15, 46) and its
regulatory proteins (MICU1–3 and MCUR1) (110, 139, 141),
mitochondrial Na + /Ca2 + exchanger (mNCE) (134), mPTP
(24, 61), and mitochondrial ATP-sensitive K + channel (mito-
KATP) (54). This new information enables us to understand
more detailed molecular and functional characterizations of
mitochondrial ion channels/transporters and their roles in
mitochondrial redox signaling.

In this review, we describe the importance of spatiotem-
poral control of ROS/RNS at mitochondrial levels and their
regulation by mitochondrial ion channels/transporters and
ETC, especially focusing on Ca2 + -dependent regulation of
mitochondrial redox signaling and redox-dependent PTMs.
We will introduce recent progress in the molecular identifi-
cation of mitochondrial ion channels/transporters. We will
also discuss the proposed feedback mechanism as to how
redox-dependent PTMs of mitochondrial ion channels/
transporters and ETC can fine-tune mitochondrial redox sig-
naling.

Overview: Mitochondrial Ion Channels/Transporters,
ETC, and Mitochondrial Redox Signaling

As originally proposed by Mitchell and Molye, mitochon-
dria have been well studied as cellular ‘‘powerhouse’’ or-
ganelles for producing ATP (92), but recently, they have been
recognized as important regulators for multiple signal trans-
duction pathways, including redox signaling. The majority of
mitochondrial ATP is produced by oxidative phosphorylation
(OXPHOS) through the ETC, which is a concerted series of
redox reactions catalyzed by multi-subunit enzymes that are
embedded in the IMM (Figs. 1 and 2). Through the slippage
of an electron from the ETC to molecular oxygen during
OXPHOS, O2

- is continuously produced as a primary oxygen-
free radical in mitochondria (Figs. 1 and 2). This ‘‘constitutive’’
O2

- generation brings mitochondria to the center stage for
cellular redox regulation in all cell types/tissues. The ETC
also functions as a proton (H + ) pump to shuttle electrons
within the mitochondrial intermembrane space (IMS) to
build up the mitochondrial membrane potential (DJm). Un-
like other organelles, mitochondria possess unique double-
membrane structures with distinct phospholipids and protein
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compositions, which enable mitochondria membranes to
maintain DJm (39, 92). Generally, to minimize the energy loss,
the ion permeability of the IMM is kept low, but the IMM
contains a variety of ion channels/transporters (128, 129, 132,
138) that regulate the efficiency of redox reactions at the ETC
(29, 129). As summarized in Figure 1, mitochondrial ion
channels/transporters receive cell signaling information from
the cytosolic side through (i) cytosolic Ca2 + elevation, (ii)
phosphorylation by Ca2 + - and/or redox-dependent kinases,
and (iii) cytosolic ROS/RNS-dependent PTMs (see also
Overview: Mitochondrial Ion Channels/Transporters and
Redox-Dependent PTMs section) (Fig. 1). These three ele-
ments can receive extracellular signals such as plasma mem-
brane receptor stimulation, extracellular Ca2 + , and/or ROS/
RNS elevation and amplify them through cross-talk between
themselves (29, 51). Next, these signal transduction pathways
transmit into mitochondrial matrix by changing the function

of mitochondrial ion channels/transporters, especially by
changing the activities of Ca2 + -influx mechanisms at the IMM
(Figs. 1 and 2). Ca2 + accumulation into mitochondrial matrix
through Ca2 + channels/transporters at the IMM affects the
efficiency of electron flow, ATP production, and O2

- gener-
ation at the ETC either directly (e.g., by changing complex V
activity) (174) or indirectly (through changing tricarboxylic
acid [TCA] cycle activity and DJm) (63) (Fig. 2). Thus, mito-
chondrial ion channels/transporters that are responsible for
Ca2 + influx and H + pumps (ETC) at the IMM are important
regulators for mitochondrial redox signaling (Figs. 1 and 2). In
ETC and Mitochondrial ROS Generation section, we describe
the interaction between mitochondrial ROS generation and
ETC function. We show the detailed mechanism of how the
ETC regulates mitochondrial ROS generation and also of how
ROS itself affects ETC function. Next, we summarize updated
information of how the mitochondrial Ca2 + influx mechanism

FIG. 1. Overview of mitochondrial ion channels/transporters and redox signaling. Under physiological conditions, the
balance of mitochondrial ROS/RNS is tightly controlled by multiple mitochondrial ion channels/transporters that are located at
the IMM and the OMM (OMM structure is abbreviated in this figure). In pathophysiological conditions, plasma membrane
receptor (orange) stimulation, extracellular Ca2 + elevation, and/or exogenous ROS/RNS elevation (pink burst) trigger cellular
signal transduction via kinase cascades, cytosolic Ca2 + elevation, and cytosolic ROS/RNS generation. These are amplified through
reciprocal action (pink triangle) and transmit into mitochondria through redox-dependent PTMs of mitochondrial ion channels/
transporters, especially Ca2 + channels at the IMM (blue). Mitochondrial Ca2 + efflux is mainly regulated by an mNCE. The PTM s of
mitochondrial ion channels/transporters change the activity of the Ca2 + influx mechanism at IMM and induce Ca2 + accumulation
into the mitochondrial matrix, which affects the efficiency of electron flow, ATP production, and O2

- generation at ETC. The
produced O2

- reacts with other molecules (also each other) and forms additional ROS. The existence of mtNOS and the production
of NO in matrix are still controversial. The excessive ROS/RNS in mitochondria are released into the cytosol through specific
mitochondrial ion channels/transporters such as the mPTP (green) and the IMAC (not shown in the figure). IMM, inner mito-
chondrial membrane; OMM, outer mitochondrial membrane; mNCE, mitochondrial Na+ /Ca2 + exchanger; mPTP, mitochondrial
permeability transition pore; IMAC, inner membrane anion channel; ETC, electron transport chain; mtNOS, mitochondrial nitric
oxide synthase; O2

- , superoxide; PTM, post-translational modification; ROS, reactive oxygen species; RNS, reactive nitrogen
species. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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regulates mitochondrial ROS generation (see Mitochondrial
Ca2 + Influx Mechanism and Mitochondrial ROS Generation
section). Here, we also discuss the possibility of whether ROS
signaling itself can modulate mitochondrial Ca2 + channels/
transporters through redox-dependent PTMs.

As briefly mentioned in the Introduction section, not only
ROS but also RNS exerts a broad spectrum of functions in
mitochondria (28, 29, 33, 58, 195). Compared to O2

- , NO has
more low reactivity and hydrophobicity, which enables NO to
diffuse large distances both within and between cells (176).
Therefore, the importance of spatiotemporal control of NO
production is highlighted by the localization of NOS isoforms
and their subcellular localization-dependent activities (58,
118, 126). Three types of NOSs (neuronal NOS [nNOS], in-
ducible NOS [iNOS], and endothelial NOS [eNOS]) are well
characterized, associated with various biological membranes
(e.g., plasma membrane, nucleus, Golgi, and sarco/endo-

plasmic reticulum [SR/ER]), and activated through different
mechanisms (58, 118, 126). It is reasonable to assume that NO
synthesized at the cytosol can diffuse into mitochondria and
modulate their functions. Indeed, cytochrome c oxidase
(COX) (complex IV) is one of the main targets of NO, and the
inhibition of complex IV by NO binding has been well es-
tablished (28, 194). In the 1990s, several laboratories proposed
that mitochondria also serve as one of the cellular sources for
NO production through mtNOS (Figs. 1 and 3), but the exis-
tence of mtNOS is still controversial (see also Introduction
section). In Regulation of ETC Activity by Mitochondrial NO
Signaling section, we will describe the detailed mechanism of
how NO regulates mitochondrial ROS generation by chang-
ing ETC function and also discuss the controversy of the ex-
istence of mtNOS. In Interaction of NO, Mitochondrial Ca2 + ,
and ROS Generation section, we summarize the cross-talk
between Ca2 + , NO, and ROS in mitochondria.

FIG. 2. Mitochondrial ETC and mitochondrial ROS generation. In a healthy eukaryotic cell, mitochondria generate more
than 90% of the total intracellular ATP through the TCA cycle (green area) and OXPHOS (pink area). During OXPHOS, O2

- is
continuously produced as a primary oxygen free radical in mitochondria. NADH is produced from cytosolic glucose oxidation
and the TCA cycle and passes electrons to NADH dehydrogenase (complex I). Then, complex I transfers electrons to CoQ10.
CoQ10 can also receive electrons from succinate (complex II) and glycerol-3-phosphate dehydrogenase (NAD + ). Electrons from
reduced CoQ10 are then transferred to cytC oxidoreductase (complex III). Next, complex III transfers the electrons to cytC and the
electron transport continues COX (complex IV) and molecular oxygen. Electron transfer processes through complexes I, III, and IV
produce Dp, which, in turn, are used to drive ATP synthase (complex V). When Dp increases, electron transport in complex III is
partially inhibited and results in an increased backup of electrons to CoQ10 for binding to molecular oxygen, leading to the
generation of O2

- . In addition, when the electron-transport efficiency at complex I is suddenly inhibited or complex I activity is
changed, this mechanism also generates O2

- . Red ‘‘explosion’’ symbols indicate places where O2
- production occurs. Yellow star

symbols indicate enzymes/channels that are regulated by [Ca2 + ]mt. ETF-QO, electron transferring flavoprotein-quinone oxido-
reductase; UCP, uncoupling protein; ANT, adenine nucleotide translocase; PDH, pyruvate dehydrogenase; CS, citrate synthase;
ACON, aconitase; ICDH, isocitrate dehydrogenase; a-KDH, a-ketoglutarate dehydrogenase; SCS, succinyl-CoA synthetase; SDH,
succinate dehydrogenase; FUM, fumarase; MDH, malate dehydrogenase; TCA, tricarboxylic acid; OXPHOS, oxidative phos-
phorylation; [Ca2 + ]mt, mitochondrial matrix Ca2 + concentration; CoQ10, coenzyme Q10; COX, cytochrome c oxidase; cytC,
cytochrome C. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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At the IMM, in addition to Ca2 + channels/transporters,
several K + channels, including mitoKATP and mitochondrial
Ca2 + -activated K + channel (mitoKCa), are present. These
channels indirectly modulate ROS generation in patho-
physiological conditions such as ischemic/reperfusion (I/R)
in the heart (36, 124, 127, 128). Opening of mitoKATP and
mitoKCa, either by cellular signal transduction or by extra-
cellular stress such as I/R, depolarizes DJm, which reduces
the driving force for Ca2 + influx, thereby attenuating mito-
chondrial Ca2 + overload and excessive ROS generation.
Consequently, prevention of matrix Ca2 + overload and ROS
over-generation protects the heart against cell death (cardi-
oprotection). In ETC and Mitochondrial Redox Signaling
section, we summarize updated information regarding the
molecular identities of these K + channels and discuss the
possibility of redox-dependent modulation of mitochondrial
K + channels.

Under pathological conditions, the release of ROS/RNS
and proapoptotic proteins from mitochondria act as impor-
tant amplifiers for accelerating the ROS-induced mitochon-
drial ROS generation as well as cell death signaling. These
redox release channels include mPTP (see Mitochondrial Per-
meability Transition Pore and Redox Signaling section) and
IMAC (see IMAC and Redox Signaling section). Voltage-
dependent anion channels (VDAC) are redox-sensitive
channels that are located at the OMM and regulate OMM
permeability (see VDAC and Redox Signaling section) (64).
O2

- can trigger VDAC-dependent OMM permeabilization,
which subsequently activates apoptotic cascades (99). These
channels receive redox-dependent PTMs and often act as an
amplifier or positive feedback core to accelerate the patho-

logical processes due to their dual role as sensors/regulators
of redox signaling.

Overview: Mitochondrial Ion Channels/Transporters
and Redox-Dependent PTMs

ROS/RNS can alter protein structures/functions, including
channel-subunit proteins, by modifying critical amino-acid
residues, including (i) cysteine (30, 144) and methionine oxi-
dation (30, 74, 157), (ii) cysteine S-glutathionylation (72, 117),
(iii) cysteine disulfide bonds (175), (iv) cysteine surhydration
(136), (v) cysteine S-nitrosylation (70, 71, 104), (vi) tyrosine 3-
nitration (102), and (vii) dityrosine formation (175) (Fig. 4). In
addition, these redox-dependent PTMs are known to change
the biophysical properties of ion channels/transporters that
are located at plasma membranes or organelle membranes
(41, 65, 74, 115) such as their activation/deactivation profiles,
Ca2 + or voltage dependency, and interaction affinities be-
tween regulatory proteins (Fig. 5). In addition, ion channels/
transporters are frequently regulated through phosphory-
lation by upstream protein kinases (45), whose activities
are modulated by redox-dependent PTMs (Fig. 1). For in-
stance, protein kinase A (PKA), protein kinase C (PKC) (60)
and protein kinase D (PKD) (169), and Ca2 + /calmodulin-
dependent protein kinase II (CaMKII) (50) are activated either
by directly receiving redox-dependent PTMs (for PKA, PKC,
and CaMKII) or by the redox-sensitive upstream kinases (for
PKC, PKD, and CaMKII), which can ultimately modulate
voltage-gated Ca2 + channels at the plasma membrane (186).
Therefore, it is conceivable that the mitochondrial ion chan-
nels/transporters are also subject to redox-dependent PTMs

FIG. 3. Regulation of ETC activity by mitochondrial NO signaling. The existence of mtNOS and the production of NO in
matrix are still controversial (see Introduction, Overview: Mitochondrial Ion Channels/Transporters, ETC, and Mitochon-
drial Redox Signaling, Regulation of ETC activity by mitochondrial NO signaling, and Interaction of NO, mitochondrial
Ca2 + , and ROS generation sections). NO diffused from cytosol to matrix or produced in mitochondrial matrix by mtNOS can
reversibly interact with (complex IV) in competition with oxygen. NO inhibits the electron flow between cytochrome b and
cytC at complex III. NADH dehydrogenase (complex I) receives S-nitrosylation (red circle), which shows reversible inhibition
of complex I activity. Therefore, mitochondrial NO interferes with ETC activity (electron flow), and excessive mitochondrial
NO production results in a decrease of ATP production, depolarization of DJm and an increase in ROS generation. There are
several reports showing that this tight functional coupling of NO and complex I or IV is derived from the physical interaction
between mtNOS and complex I or IV. Complex I, NADH dehydrogenase; complex II, SDH; complex III, cytochrome bc1

complex; complex IV, COX; complex V, ATP synthase; DJm, mitochondrial membrane potential. To see this illustration in
color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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and phosphorylation through redox-sensitive kinases, which
eventually regulate mitochondrial ROS/RNS homeostasis
(see Overview: Mitochondrial Ion Channels/Transporters,
ETC, and Mitochondrial Redox Signaling section and Fig. 1).
Since the molecular identities of the main mitochondrial ion
channels/transporters have just been discovered (see In-
troduction section), investigation of the PTMs of these pro-
teins has just started and the role of mitochondrial redox
regulation has begun to emerge (see Mitochondrial Ca2 + Influx
Mechanism and Mitochondrial Redox Signaling, Mitochon-
drial K + Channels and Mitochondrial Redox Signaling, Mi-
tochondrial Permeability Transition Pore and Redox Signaling,
IMAC and Redox Signaling, and VDAC and Redox Signaling
sections). In addition, the components of the ETC are also tar-
gets of redox-dependent PTMs, which influence the efficiency
of electron flow, ATP synthesis and ROS production (see ETC
and Mitochondrial Redox Signaling section).

ETC and Mitochondrial Redox Signaling

ETC and mitochondrial ROS generation

ROS are generated by several different cellular sources,
which include membrane-associated NADPH oxidase, cyto-
solic xanthine and xanthine oxidase, and the ETC at the IMM
(177) (see Introduction section). Among those, mitochondria
are the main source of ROS and play a central role in redox
signaling in all cell types/tissues (Figs. 1 and 2). O2

- is the
primary oxygen free radical via the slippage of an electron
from the ETC to molecular oxygen during OXPHOS (177) (see
Overview: Mitochondrial Ion Channels/Transporters, ETC,
and Mitochondrial Redox Signaling section and Fig. 2).

The most prominent contribution of mitochondria to cel-
lular metabolism is their capacity to generate ATP through the
TCA cycle and OXPHOS (Fig. 2). The main driving force of
OXPHOS is known as ‘‘chemiosmosis’’ (63). Chemiosmosis is

FIG. 4. Redox-dependent PTMs. The redox-dependent PTMs are shown. These include cysteine and methionine oxidation (A,
D), cysteine S-glutathionylation (A), cysteine disulfide bonds (B), cysteine surhydration (C), cysteine S-nitorosylation (C), tyrosine
3-nitration (E), and dityrosine formation (E). GSH, glutathione; GSSG, glutathione disulfide; GSNO, S-nitrosoglutathione; H2S,
hydrogen sulfide. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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FIG. 5. ROS-dependent regulation of cellular Ca21 handing and ROS-induced ROS generation. Schematic diagram of
ROS-dependent regulation of cellular Ca2 + handing and ROS-induced ROS generation. OMM structure is abbreviated in this
figure. Red channels/transporters can be activated by the redox-dependent PTM. Gray channels/transporters can be in-
hibited by the redox-dependent PTMs. The redox modulations of white channels/transporters are unknown (no report) or
still controversial. Voltage-gated Ca2 + channels (Cav) at the plasma membrane are phosphorylated by redox-dependent
kinases and activated. RyR and IP3R at SR/ER are activated by redox-dependent PTMs, which increase Ca2 + release from
SR/ER. SERCA inhibited by irreversible oxidative modifications. PMCA is inhibited by either direct or indirect redox-
dependent modifications. Thus, redox signaling generally increases cytosolic [Ca2 + ]c. This [Ca2 + ]c elevation feedbacks to
mitochondria through an increase in the Ca2 + influx to mitochondrial matrix, which results in a positive feedback loop of
ROS-induced ROS generation. mRyR1 and MCU, which are responsible for mitochondrial Ca2 + influx mechanism, are
capable of receiving redox-dependent modulation. Excessive ROS/RNS are released through mPTP or IMAC (not shown in
this figure) to the cytosol. Mitochondrial Ca2 + efflux is mainly regulated by an mNCE. During chronic heart failure, elevation
of cytosolic [Na2 + ]c accelerates mitochondrial Ca2 + efflux by mNCE and blunted [Ca2 + ]mt accumulation, followed by an
increase in the mitochondrial ROS level through the reduction of the NADPH-dependent antioxdative capacity at the matrix
to control the mitochondrial H2O2 level. Thus, elevated [Na + ]c and mNCE activity also contributes to the regulation of
[Ca2 + ]mt homeostasis and ROS production, especially during chronic heart failure (see detailed in Mitochondrial Ca2 + Influx
Mechanism and Mitochondrial ROS Generation section). PMCA, plasma membrane Ca2 + ATPase; RaM, rapid mode of
uptake; LETM1, leucine zipper-EF-hand containing transmembrane protein 1; NCX, Na + /Ca2 + exchanger at plasma
membrane; SR/ER, sarco/endoplasmic reticulum; SERCA, SR/ER Ca2 + -ATPase; [Ca2 + ]c, cytosolic Ca2 + concentration;
[Na2 + ]c, Na2 + concentration; H2O2, hydrogen peroxide; MCU, mitochondrial Ca2 + uniporter pore; NADPH, nicotinamide
adenine dinucleotide phosphate; RyR, ryanodine receptor; mRyR1, mitochondrial ryanodine receptor type 1; IP3R, IP3

receptors. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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the movement of ions across a selectively permeable mem-
brane, down their electrochemical gradient (protonmotive
force: Dp), which is determined by both DJm, and DpH
components across the IMM (Dp = DJm +DpH) (92). This
large driving force for H + influx (Dp) is used by the mito-
chondrial ATP synthase (complex V) to produce ATP (Fig. 2).
OXPHOS through the ETC, which is a concerted series of
redox reactions, is catalyzed by four multi-subunit enzymes
in the IMM (complex I–IV) and two soluble factors, cyto-
chrome c (cytC) and coenzyme Q10 (CoQ10), which function
as electron shuttles within the IMS (Fig. 2). In a healthy eu-
karyotic cell, more than 90% of the total intracellular ATP is
generated by mitochondria. The basic assumption of this
chemiosmotic theory is derived from the important obser-
vation that the IMM is generally impermeable to ions, but it
maintains the permeability of H + by its unique lipid com-
position of the IMM (39), which also contributes to main-
taining the structure of cristae and enhances the efficiency of
ETC activity, possibly through the facilitation of forming
super complexes of the respiratory chain at the IMM (166) In
the ETC, electrons transfer from electron donors such as
NADH and CoQ10 to an electron acceptor O2 through a se-
ries of redox reactions (Fig. 2). This reaction generates a
H + gradient across IMM and complex I, III, and IV works as
H + pumps. O’Rourke’s group showed in cardiomyocytes
that the majority of mitochondrial ROS production is from
complex III (129), whereas Wei and Dirksen proposed that
O2

- from complex I triggers transient mPTP opening in
cardiac and skeletal muscles (189). As mentioned in In-
troduction section, it has also been shown that mitochondrial
ROS serves as an important signaling platform for T-cell
receptor signaling activation and the regulation of T-cell
homeostasis [see reviews (67, 120)]. Kaminski and Gulow’s
group demonstrated a crucial role of complex-I-mediated
mitochondrial ROS production for T-cell receptor-mediated
PKC h activation (83, 84). They showed that the ETC switches
from an ATP-producing to an oxidative signaling function
on T-cell receptor activation, and this mechanism is possibly
due to reverse electron transfer by a highly reduced pool of
ubiquinone, which is a major mechanism of mitochondrial
ROS generation via complex I (85). Meanwhile, Chandel’s
group demonstrated that ROS production from complex III
is specifically required for increasing interleukin-2 expres-
sion during T-cell receptor activation (159). Thus, it still re-
mains to be determined which sites (complex I or III) of ROS
production dominantly regulate tissue-specific cellular re-
dox signaling and function under physiological or patho-
physiological conditions.

As mentioned earlier, the main route for the H + to flow into
mitochondrial matrix, driven by the electrochemical gradient,
is through complex V. Another route for the proton inflow is
named ‘‘proton leak,’’ attributed by uncoupling proteins, and
this process can also modulate the ATP/ADP ratio (163) (Fig.
2). Proton leak is known to significantly contribute to the
control of respiration in mitochondria in state 4 and to some
extent in state 3. Therefore, uncoupling proteins also play an
important role in sustaining proton leak, preventing excessive
H + gradient, and, subsequently, avoiding excessive ROS
production (88, 109).

By using mitochondrial-targeted circularly permuted yel-
low fluorescent protein, recent studies from our collaborating
groups showed a ‘‘stochastic’’ and ‘‘transient’’ O2

- burst from

either single or restricted clusters of interconnected mito-
chondria or isolated mitochondria, termed as a ‘‘mitochon-
drial superoxide flash’’ (mSOF) (188). Interestingly, this mSOF
is usually associated with a transient depolarization of DJm

(160, 189). mSOF generation is currently proposed as a result
of a small increase in constitutive ROS production in mito-
chondria, which transiently opens a large channel mPTP to
evoke transient DJm depolarization and subsequently, stim-
ulates the ETC to produce a burst in O2

- production. This idea
is supported by the previous observations that the mPTP
opens and closes transiently (‘‘flickers’’) at its low conduc-
tance state (18, 66). Since observed mSOF frequencies vary
widely across different cell types and the experimental con-
ditions, our future studies will attempt to use these flashes as a
biomarker for the cellular metabolic activity and the oxidative
status in physiological and pathophysiological conditions
(160). Further studies will also clarify the contribution of al-
tered mSOF activity to ROS overproduction and metabolic
dysfunction in a wide range of mitochondrial diseases and
oxidative stress-related disorders. It should be also mentioned
that the mSOF activity contains a small signal component
from mitochondrial pH fluctuation, but much smaller than
that from O2

- (190). Future studies will also be directed to-
ward inventing a novel O2

- -sensitive biomarker to reduce its
pH sensitivity.

Regulation of ETC activity by mitochondrial
NO signaling

In conjunction with the hydrophobic nature of mitochon-
dria as a cellular compartment, it is a reasonable idea that
mitochondria are a significant cellular sink for NO (161) (see
Overview: Mitochondrial Ion Channels/Transporters, ETC,
and Mitochondrial Redox Signaling section). Indeed, since the
discoveries of the biological function of NO (see Overview:
Mitochondrial Ion Channels/Transporters, ETC, and Mi-
tochondrial Redox Signaling section), cellular targets of NO
have been extensively investigated and reversible binding of
NO to COX (complex IV) in mitochondria has been well
characterized (28, 194). Through investigation of NO function
in mitochondria, it was proposed in the 1990s from several
laboratories that mitochondria possess their own isoform of
NOS, termed ‘‘mtNOS,’’ which can produce NO in mito-
chondrial matrix similar to other NOS isoforms observed in
the cytosol (Figs. 1 and 3) (13, 14, 56, 59, 91, 143, 172) [see
reviews (28, 58, 194)]. However, a number of studies and
comments show the conflicting evidence about the existence
of mtNOS (28, 43, 96, 97, 173, 184, 185) (see Figs. 1 and 3). We
include both types of papers in this review, as they provide
important insights into the development of the knowledge of
mitochondrial NO functions.

[NO]mt is around nanomolar ranges (3, 4, 58, 179, 194) and
at this concentration of NO, it is able to compete with oxygen
and interact with COX reversibly (3, 4, 58, 194), interfere with
electron flow that results in a decrease in ATP production (62),
depolarization of DJm (180, 181), and an increase in ROS
generation (142, 156) (Fig. 3). Several studies showed that
complex I is also a target for NO and receives S-nitrosylation
(Fig. 4C), which causes reversible inhibition of complex I ac-
tivity (25, 42, 55) (Fig. 3). Recently, Murphy’s group demon-
strated that the reversible inhibition of complex I by selective
S-nitrosylation of Cys39 on the ND3 subunit during the
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crucial first minutes of the reperfusion of ischemic hearts re-
duces oxidative damage and tissue necrosis by decreasing
ROS production from mitochondria (40). Several groups re-
ported that this tight functional coupling of NO and complex I
or IV is derived from the physical interaction between mtNOS
and complex I or IV (55, 140) (Fig. 3). Moreover, Poderoso’s
group reported that NO exerts inhibition of the electron flow
between cytochrome b and cytC at complex III in addition to
complex IV (142, 143). These findings indicate that NO can
regulate ETC activity through direct binding of NO and/or
the redox-dependent PTMs, which eventually change the
efficiency of mitochondrial ROS generation.

Though the significant role of NO on ETC has been well
recognized, there are a number of contradictory reports with
regard to the existence and molecular identity of an mtNOS as
shown earlier [see reviews (28, 58, 126, 194, 195)]. The diver-
sity of the results is possibly derived from the technical issues
used in the earlier studies, including (i) the use of isolated
mitochondria and their purity; (ii) the reliability of biochem-
ical and immunohistochemical assays using specific anti-
bodies; and (iii) lack of suitable methods for measurement of
mitochondrial NO apart from cytosolic NO. Recently, genetic
approaches were also applied to clarify the molecular identity
of a putative mtNOS. Through biochemical analysis, eNOS
and iNOS are found in mitochondria (79), but the eNOS or
iNOS knockout mice still possess NOS activity in mitochon-
dria (86). Meanwhile, no signal was detected in mitochondria
from nNOS-knockout mice, suggesting that nNOS is involved
in mitochondrial NOS activity (86). This observation is sup-
ported by the recent report from the Ritter’s group using
nNOS-overexpression mice showing that nNOS over-
expression causes nNOS translocation into mitochondria,
which results in cardioprotection after I/R injury by reducing
mitochondrial ROS generation (32). Putzke et al. proposed
using nNOSa knockout mice that a splice variant of nNOS is
mtNOS (146). However, further studies will be required to
clarify whether there is functional nNOS activity in mito-
chondria in physiological conditions.

Mitochondrial Ca21 Influx Mechanism
and Mitochondrial Redox Signaling

Mitochondrial Ca2 + influx mechanism
and mitochondrial ROS generation

As first shown in early studies between the 1960s and
1970s, Ca2 + uptake into the mitochondrial matrix stimulates
ATP synthesis (66, 132). Ca2 + -dependent ATP generation is
explained as follows: (i) Three rate-controlling dehydro-
genases of the TCA cycle are activated by Ca2 + ; (ii) Ca2 + -
dependent acceleration of TCA cycle increases the production
of the primary electron donor for ETC (NADH); and (iii)
complex V is activated by Ca2 + (Fig. 2) (63). In addition, re-
generation of NADPH-dependent antioxidative capacity is
also stimulated by Ca2 + , because regeneration of NADPH
requires products of the TCA cycle (193). At the resting state,
the electrochemical driving force for Ca2 + uptake is provided
by DJm across the IMM (see Fig. 2). The mitochondrial Ca2 +

influx mechanism was initially considered a result of a single
channel/transporter function (MCU) that was proposed more
than 30 years ago, principally due to nearly complete inhibi-
tion by ruthenium red and lanthanides [see review (66)].
However, updated reports clearly show that additional Ca2 +

channels/transporters, whose characteristics are different
from the original MCU theory, also exist and, indeed, par-
ticipate in the mitochondrial Ca2 + influx mechanism, in-
cluding a rapid mode of uptake (RaM) (31, 168), Leucine
zipper-EF-hand containing transmembrane protein 1
(LETM1) (81), CoQ10 (22), and mitochondrial ryanodine re-
ceptor (RyR) type 1 (mRyR1) (19, 20, 154) [see also review
(132)] (Fig. 5).

If Ca2 + is taken into the mitochondrial matrix down its
electrochemical gradient without transport of another ion
such as through MCU (37, 90), there is a net transfer of two
positive charges into matrix, resulting in a drop of DJm for
each Ca2 + influx through MCU. However, Ca2 + accumula-
tion by MCU is counteracted predominantly by mNCE (87,
128, 129, 149) to maintain mitochondrial matrix Ca2 + con-
centration ([Ca2 + ]mt). Moreover, the Ca2 + -stimulated respi-
ration will not only compensate the loss of DJm by the efflux
of H + through the ETC but also produce a net gain of ATP.
Thus, the physiological range of Ca2 + uptake into the mito-
chondrial matrix stimulates ATP synthesis without loss of
DJm. However, if sustained cytosolic Ca2 + concentration
([Ca2 + ]c) elevation occurs, the [Ca2 + ]c triggers excessive mi-
tochondrial Ca2 + uptake (i.e., mitochondrial Ca2 + overload),
followed by DJm depolarization, a decrease in ATP produc-
tion, acceleration of ROS generation, and activation of cell
death pathways under various pathological conditions; such
as under I/R of the heart (29, 101), excitotoxicity of neurons
(131), vascular hypoxia (111), and inflammation in endothelial
cells (153). Indeed, application of Ca2 + to isolated mitochon-
dria stimulates ROS formation at the level of either complex I
(167) or complex III (34) in the ETC, suggesting that the mi-
tochondrial Ca2 + -influx mechanism alone can activate mito-
chondrial ROS generation (Fig. 2). We also reported that
blocking mitochondrial Ca2 + uptake by Ru360 can signifi-
cantly inhibit mitochondrial ROS generation in intact striatal
neurons under intense N-methyl-d-aspartate (NMDA) re-
ceptor activation (excitotoxicity), indicating that mitochon-
drial ROS increase requires Ca2 + entry into mitochondria (49).
However, it is still not clear (i) which mitochondrial Ca2 +

channel(s) is (are) responsible for the Ca2 + influx mecha-
nism and (ii) how the Ca2 + that enters into mitochondria
enhances ROS generation [see also reviews (29, 35)]. For the
first question, Cheng‘s group demonstrated that the
knocking down of MCU or its regulatory protein MICU1
markedly diminishes mSOF activity under the cytosolic Ca2 +

elevation by hyperosmotic stress (75), suggesting that at least
Ca2 + influx through MCU results in O2

- generation in
mitochondria. Moreover, Rizzuto’s group showed that MCU-
overexpressing cells were more efficiently killed after treat-
ment with H2O2, indicating that mitochondrial Ca2 + influx
through MCU enhances the effect of oxidative stress to mi-
tochondria (46). Therefore, these observations support the
initial idea that at least, mitochondrial Ca2 + influx through
MCU regulates mitochondrial ROS generation, especially in
pathophysiological conditions (Ca2 + overload). Future stud-
ies need to address whether Ca2 + influx through other mi-
tochondrial Ca2 + channels/transporters (132) can influence
mitochondrial ROS generation. For the second question, it is
possible that different levels of [Ca2 + ]mt (physiological mod-
est increases or pathological excessive increases) lead to dif-
ferent mechanisms for ROS generation (29). For instance,
stimulation of the TCA cycle and OXPHOS by physiological
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Ca2 + increases would simply enhance ROS output by making
the metabolic rate faster and consume more O2, which results
in more electron leakage from the ETC (Fig. 2). The other
possibility is that mitochondrial Ca2 + increases the NO level
(e.g., through mtNOS) (see Interaction of NO, Mitochondrial
Ca2 + , and ROS Generation section), which inhibits ETC effi-
ciency as described in Regulation of ETC Activity by Mi-
tochondrial NO Signaling section (Fig. 3). Finally, [Ca2 + ]mt

overload can lead to mPTP-mediated ROS generation.
In addition to the mechanism of mitochondrial ROS gen-

eration through excessive mitochondrial Ca2 + influx, a de-
crease in mitochondrial Ca2 + uptake can also increase
mitochondrial ROS level in certain pathophysiological con-
ditions. A few studies have attempted to show altered mito-
chondrial Ca2 + uptake during heart failure, but limited
evidence suggests that mitochondrial Ca2 + uptake is reduced
in failing cardiomyocytes (105, 116). O’Rourke and Maack
extensively demonstrated that elevation of cytosolic Na2 +

concentration ([Na2 + ]c) in heart failure dictates mitochondrial
ROS generation through a decrease in mitochondrial Ca2 +

uptake (93, 105, 107) [see reviews (106, 122, 130)]. Since mi-
tochondrial Ca2 + efflux is mainly regulated by an mNCE as
described earlier, [Na + ]c accelerates mitochondrial Ca2 + ef-
flux and blunted [Ca2 + ]mt accumulation. They demonstrated
using a guinea pig heart failure model (pressure overload
model using aortic banding) that reduced [Ca2 + ]mt decreases
dehydrogenase activity and TCA cycle efficiency (see also Fig.
2), followed by sustained oxidation of NADH and NADPH
(93, 105, 107). This, in turn, reduces the NADPH-dependent
antioxdative capacity at the matrix to control the mitochon-
drial H2O2 level (8, 9) and increases the mitochondrial ROS
level. They also discussed that a decrease in NADH and
NADPH regeneration could also explain a mismatch in en-
ergy supply and demand during heart failure (106, 122). Thus,
elevated [Na + ]c and mNCE activity also critically contributes
to the regulation of [Ca2 + ]mt homeostasis and ROS produc-
tion especially during heart failure.

The next question is whether mitochondrial ROS itself can
modify or modulate the mitochondrial ion channels/trans-
porters that are responsible for Ca2 + influx through PTMs.
Since the molecular identity of MCU channel pore (15, 46) and
its regulatory proteins (110, 139, 141) have just been discov-
ered, the information to answer this question is still quite
limited. There is still no report that MCU or its regulatory
proteins possess these PTMs through redox signaling and
change its channel functions. Anderson’s group recently re-
ported that there are two CaMKII phosphorylation candidate
motifs at the N-terminus of MCU. These nonphosphorylation
mimic MCU mutants do not respond to CaMKII-dependent
MCU current activation under mitoplast patch clamp, sug-
gesting that MCU can undergo PTMs by CaMKII (phos-
phorylation) and play a role in the regulation of MCU
function (82). Since the oxidation of methionine residue in
CaMKII can activate this kinase (50) (see also Fig. 4D), this
report indicates that there is a tight interaction between ROS
level and MCU channel function (Fig. 5). They also demon-
strated that mitochondrial CaMKII inhibition in the heart is
protective against I/R injury, myocardial infarction, and
neurohumoral injury, suggesting that MCU current inhibition
is beneficial for reducing cell death by certain pathological
myocardial oxidative stresses. Further observations will be
required to conclude whether oxidized CaMKII can be a direct

modulator for MCU through its direct phosphorylation and
can regulate mitochondrial ROS levels in heart failure.

The next possible candidate for a redox-sensitive Ca2 +

influx (mitochondrial Ca2 + channel) at mitochondria is
mRyR1 (19, 20, 154). mRyR1 was discovered as the first
mitochondrial Ca2 + influx mechanism with a known mo-
lecular identity (19, 20, 154). It is well established that redox-
dependent PTMs regulate the activity of RyRs localized
at cardiac and skeletal SR, which shows enhanced Ca2 +

leak from SR. RyRs (115) at SR received disulfide bond,
S-nitrosylation, S-glutathionylation, cysteine oxidation
(sulfonic acid), and phosphorylation by oxidized CaMKII
(123) (see also Fig. 4). Therefore, it is possible that the redox-
dependent PTMs of mRyR1 can contribute to the [Ca2 + ]mt

overload in pathophysiological conditions (Fig. 5). Further
studies will be required to determine the PTMs of mRyR1
and to characterize their physiological and pathophysio-
logical relevance to mitochondrial Ca2 + uptake.

Unlike mitochondrial channels, the redox modification
of Ca2 + channels in the cytosolic Ca2 + cycling have been
well established (Fig. 5) [see reviews (23, 73)]. For instance,
voltage-gated Ca2 + channels located at the plasma membrane
are phosphorylated by oxidized CaMKII, and Ca2 + influx
from the extracellular space to the cytosol increases (164, 165).
Ca2 + release channels at SR/ER, RyR, and inositol 1,4,5-
trisphosphate receptors (IP3R) are activated by a redox-
dependent PTM (73). SR/ER Ca2 + -ATPase (SERCA) can be
modified by cysteine oxidation or tyrosine nitrosylation (Fig.
4A, E) (155). Low levels of ROS reversibly increase SERCA
activity through oxidation, but higher levels of ROS cause its
inactivation as a result of irreversible oxidative modifications
(Fig. 4A). Plasma membrane Ca2 + ATPase (PMCA) is in-
hibited through either its direct oxidation (Fig. 4A) or methi-
onine oxidation in its binding partner calmodulin (Fig. 4D)
(73). Thus, redox signaling generally increases [Ca2 + ]c through
(i) facilitation of Ca2 + influx through the plasma membrane, (ii)
enhancing Ca2 + release from SR/ER, and (iii) inhibiting Ca2 +

export from cytosol (Fig. 5). This [Ca2 + ]c elevation feedbacks
to mitochondria through an increase in the Ca2 + influx to
mitochondrial matrix, which results in a positive feedback
loop of ROS-induced-ROS generation. In addition, as men-
tioned earlier, a decrease in the mitochondrial Ca2 + influx (by
the elevation of [Na + ]c and mNCE function) can also increase
mitochondrial ROS level through the reduction of NADPH-
dependent antioxidative capacity in the matrix.

Therefore, the cross-talk between mitochondrial ROS reg-
ulation and cellular Ca2 + cycling determines the amplitude of
cellular redox signaling.

Interaction of NO, mitochondrial Ca2 + ,
and ROS generation

As described in Introduction, Overview: Mitochondrial Ion
Channels/Transporters, ETC, Mitochondrial Redox Signal-
ing, the existence and functional role of mtNOS is highly
controversial. It is still challenging to reach an unequivocal
conclusion using currently available approaches and deter-
mine whether mitochondria contain NOS, whether this NOS
is able to produce physiologically relevant amounts of NO,
and whether there are tissue-specific distribution and func-
tions of mtNOS. In this section, we introduce recently pub-
lished reports that attempt to characterize the interaction
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between mitochondrial NO level, [Ca2 + ]mt, and ROS gener-
ation on the assumption that NOS activity exists in mito-
chondria.

Several groups reported that mtNOS has similar charac-
teristics to that of cytoplasmic NOS isoforms. They proposed
that the generation of NO by mtNOS is Ca2 + dependent and
requires O2 and l-arginine (47, 58, 194). Indeed, blocking the
MCU by extra-mitochondrial [Mg2 + ] (196) or ruthenium red
efficiently inhibits the mitochondrial NO level (47, 48), indi-
cating that mitochondrial Ca2 + influx plays a role in main-
taining the mitochondrial NO level. However, it is still in
question whether this effect is mediated through mtNOS ac-
tivity. In addition, depolarization of DJm by uncouplers
strongly decreases the mitochondrial NO level (48, 86), sug-
gesting a tight regulatory interaction between the mitochon-
drial NO level and DJm (180), but again, there is no direct
observation that DJm can regulate mtNOS activity. Thus,
these observations indicate that Ca2 + -induced NO elevation,
in part, contributes to the Ca2 + influx-induced ROS genera-
tion through NO-dependent modification of ETC activity (see
ETC and Mitochondrial Redox Signaling and Mitochondrial
Ca2 + Influx Mechanism and Mitochondrial ROS Generation
sections) (Figs. 2 and 3). However, it should be noted that
most of the reports in this section measured mitochondrial
NOS activity and/or NO level under cytosolic and mito-
chondrial Ca2 + overload, suggesting that the interaction of
mitochondrial NO and Ca2 + plays some role in mitochondrial
ROS production under pathophysiological conditions, such
as I/R in the heart. Further studies are required to clarify the
role of mitochondrial NO in mitochondrial Ca2 + homeostasis
and ROS production under physiological conditions.

Mitochondrial K1 Channels and Mitochondrial
Redox Signaling

In cardiomyocytes, both mitoKATP and mitoKCa play key
roles in cardioprotection, especially in ischemic pre-
conditioning (IPC) (124, 128). The opening of mitoKATP and
mitoKCa depolarizes DJm, which reduces the driving force for
Ca2 + influx, thereby attenuating the [Ca2 + ]mt overload. Con-
sequently, prevention of [Ca2 + ]mt overload inhibits mito-
chondrial ROS generation (Figs. 1–3), mPTP opening (see next
section: Mitochondrial Permeability Transition Pore and Re-
dox Signaling) and protects against heart cell death. Several
endogenous substances such as adenosine and bradykinin can
reduce infarct size by activation of mitoKATP channels in a
PKC-dependent manner. Adrenomedullin, a potent vasodi-
lator peptide, potentiates the opening of mitoKCa by PKA ac-
tivation. Treatment with adrenomedullin before ischemia
results in the reduction of infarct size via a PKA-mediated ac-
tivation of mitoKCa channels. Thus, some endogenous sub-
stances can confer cardioprotection via PKA- or PKC-mediated
activation of mitoKATP or mitoKCa channels (124, 128). As
mentioned earlier, since PKA and PKC are redox-sensitive
kinases, it is a reasonable idea that the activities of both mi-
toKATP and mitoKCa can be regulated by redox signaling
through phosphorylation by PKA and/or PKC under IPC.
Moreover, mitoKATP can receive redox-dependent PTMs, in-
dicating that the redox modulation of mitoKATP is one of the
key mechanisms for the cardioprotective effect in IPC (147).
The simplest prediction for the molecular identity of mitoKATP

was that it is identical to KATP at the plasma membrane: a

protein complex with an inward rectifying K + channel (Kir6.2)
as a pore region and a sulfonylurea receptor (SUR2A). Finally,
O’Rourke’s group has recently identified that one of the splice
variants of the renal outer medullary K + channel (Kir1.1) is a
suitable candidate for the pore-forming subunit of mitoKATP

using a mitochondrial proteomic approach (54). This novel
finding will pave the way for a great opportunity to study the
molecular basis of redox-sensitive PTMs in mitoKATP.

The large-conductance Ca2 + -activated K + channels (BK
channels) are also biochemically detectable in the IMM of the
brain and cardiomyocytes (124, 128). Therefore, the cur-
rent proposed molecular identity of mitoKCa is identical or
similar to the BK channels. BK channels at the plasma mem-
brane possess oxidative regulation (171). However, currently,
there are no reports with regard to redox-sensitive PTMs in
mitoKCa.

Mitochondrial Permeability Transition Pore
and Redox Signaling

mPTP is one of the most widely studied mitochondrial
channels/transporters as a critical effector/regulator of cel-
lular redox signaling [see reviews (27, 68, 80, 103, 148)]. The
properties of the mPTP are well defined, and mPTP activity is
known to be redox, Ca2 + , DJm, adenine nucleotide, inorganic
phosphate, and pH sensitive (68, 95) (Fig. 6). For instance,
under the conditions of [Ca2 + ]mt overload especially when
accompanied by the combination of high levels of ROS and
DJmt depolarization, sustained mPTP opening leads to the
release of large amounts of Ca2 + and proapoptotic proteins
from mitochondria, which subsequently leads to cell death
(27, 80). The diameter of the pore is estimated to be large
enough to pass molecules of approxiomately 1.5 kDa in their
full open state. We and others reported cyclosporine A-sen-
sitive large conductance channel activities ( > 1 nS single
channel conductance) in the IMM (154). This channel also has
transient and subconductance ( < 300 pS) states, and these
channel properties contribute to an important physiological
or pathological role by preventing [Ca2 + ]mt overload working
as a Ca2 + efflux mechanism (66) and/or by regulating mito-
chondrial ROS generation as described as an mSOF (188, 190).
On mPTP opening, the IMM no longer maintains a barrier to
protons, which leads to depolarization of DJm, followed by
the inhibition of ATP production. Due to its pore size, mPTP
opening also results in equilibration of cofactors and ions
across the IMM, including the release of accumulated Ca2 + .
This will not only lead to the disruption of metabolic gradients
between the mitochondria and the cytosol, but also influx of
water concomitantly occurs and results in swelling of the
mitochondria until the OMM eventually ruptures. The OMM
rupture also facilitates the release of proapoptotic proteins
and mitochondrial ROS, which potentially lead to apoptotic
and necrotic cell death.

Despite numerous efforts, the exact molecular identity of
mPTP is not conclusive (Fig. 6). Based on previous biochem-
ical and pharmacological studies, the classical hypothetical
model of mPTP is the supra molecular structure that is com-
posed of (i) the VDAC in OMM; (ii) mitochondrial creatine
kinase in IMS; and (iii) the adenine nucleotide translocase
(ANT) in IMM and cyclophilin D (CypD) in the matrix.
However, recent genetic studies using knockout mouse
modes reveal that VDAC and ANT are not essential for pore
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opening and CypD potently sensitizes the pore opening to
Ca2 + (12). Therefore, these proteins have been currently es-
tablished as regulatory rather than pore-forming components
of the mPTP (94). Halestrap’s group has recently proposed the
mitochondrial phosphate carrier (PIC) as a pore component of
the mPTP (68). However, PIC knockdown using siRNA in
HeLa cells (65%–80% reduction of PIC) could not abolish
mPTP opening, and an essential role for the PIC in mPTP
formation still remains controversial (183). Finally, two recent
publications have identified the mitochondrial ATP synthase
as a possible molecular identity of the pore-forming structure
of the mPTP (24, 61). Future studies will address the detailed
molecular components of mPTP, including ATP synthase, and
identify the critical site(s) for the direct redox-dependent
PTMs of mPTP under physiological and pathophysiological
conditions. Since recent publications showed that oxidation of
a-subunits of ATP synthase at cysteine 294 can modulate its
activity (187), this single cysteine will become a primary
candidate site for investigating the PTM of mPTP.

There are several reports showing the redox-dependent
PTM of mPTP regulatory proteins, CypD and ANT, but it is
not well understood whether or how these modifications af-
fect mPTP activity (for VDAC see VDAC and Redox Signaling
section): Critical thiols on the matrix side of ANT, at Cys57,
Cys160, and Cys257 regulate the bindings of ADP or CypD to
ANT (114); the S-nitrosylation of Cys203 in CypD is necessary
for the redox stress-induced activation of mPTP (121) (Fig. 6).

IMAC and Redox Signaling

IMAC is also an important sensor and regulator of ROS
signaling [see review (129)]. Early studies of mitochondrial
swelling showed that an anion-selective channel is present in
IMM and later, it was named IMAC (57). IMAC is a benzo-
diazepine-sensitive channel and it shows *100 pS single
channel conductance (89). This channel is activated by matrix
Mg2 + depletion or alkalization. We also reported that single
channel recordings of the heart IMM show a variety of anion

selective conductance and the most prominent one is the
centum picosiemen conductance channel, which matches the
channel properties of IMAC (154). The single channel current-
voltage curve of IMAC exhibits a linear relation, but the open
probability of IMAC is higher in positive voltages, thereby
showing an outward rectifying whole-mitoplast current (154).
IMAC has slight anion selectivity and small molecules such as
chloride, bicarbonate, phosphate, succinate, citrate, and ATP
can pass through the IMAC pore (57).

The physiological role of IMAC is still unknown, because
IMAC only appears to conduct ions under alkaline matrix
conditions. However, this anion efflux through IMAC enables
mitochondria to restore their normal volume after patholog-
ical swelling. The role of IMAC in pathophysiological condi-
tions was well studied, especially in cardiomyocytes, by
O’Rourke’s group [see reviews (2, 5, 21, 192)]. They showed
that photoactivation of single mitochondrion in cardio-
myocytes using two-photon microscopy induces whole-cell
wide oscillation of DJm and ROS generation (7). In this ex-
perimental model, they found that the O2

- leaked through
IMAC at the photoactivated mitochondrion and stimulated
the opening of IMAC at the neighboring mitochondria. This
series of reactions (regenerative ROS-induced IMAC open-
ing in the neighboring mitochondria) through the mito-
chondrial network can reach a critical point that evokes
whole-cell-wide oscillation of DJm and ROS generation.
Moreover, this metabolic instability (or metabolic oscilla-
tion) induces an oscillatory activation of sarcolemmal KATP

channel, which results in periodic shortening of the cardiac
action potential (7). In an ex vivo whole heart model, this
mechanism provides a ‘‘metabolic sink’’ in the I/R regions to
induce abnormal propagation of cardiac action potential and
cause arrhythmias (1). A benzodiazepine receptor antago-
nist, 4-cholorodiazepam abolishes metabolic oscillation,
mitochondrial ROS generation, and cardiac arrhythmia in-
duced by reoxygenation, indicating that redox-dependent
modulation of IMAC plays critical roles in ischemia/re-
perfusion-induced arrhythmia.

FIG. 6. Ca21- and redox-dependent regu-
lation of mPTP. A hypothetical model of
mPTP structure is shown at the middle (red
dot line area). CypD and ANT are currently
recognized as regulatory proteins of mPTP.
CypD and ANT receive redox-dependent
PTMs (red circles). CypD, cyclophilin D. To
see this illustration in color, the reader is
referred to the web version of this article at
www.liebertpub.com/ars
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The current major limitation in the research in IMAC
functions is that the molecular identity of this channel has
not yet been identified. Recently, the families of voltage-
dependent Cl - channels and/or Cl - intracellular channel 4
(CLIC4) are proposed as candidates for IMAC (52). Further
investigation will be required for confirming that the CLIC4
is, indeed, responsible for IMAC activity. Though the molec-
ular identity of IMAC is still unknown, functional observation
suggests that this channel contains thiol groups (16). Pre-
treatment of thiol reactive agents, N-ethylmaleimide, mersa-
lyl, and p-chloromercuribenzenesulfonate increases the IC50

values of IMAC inhibitors (e.g., H + , Mg2 + , and cationic am-
phiphiles) (17). Matrix glutathione level seems to be critical for
IMAC activity, because the inhibition of mitochondrial glu-
tathione uptake, the NADPH-dependent glutathione reduc-
tase, or the NADH/NADPH transhydrogenase triggers
IMAC opening (6). These observations support the idea
that there are redox-dependent regulations of IMAC activity.
Future studies will be required to understand the IMAC
molecular identity as well as the precise patterns of the redox-
dependent PTM of this channel.

VDAC and Redox Signaling

VDAC is the most abundant protein in the OMM, and it
serves as the primary route of entry and exit for metabolites
and ions across the OMM [see review (64)]. VDAC controls
the diffusion of O2

- from the IMS to the cytosol (69). More-
over, VDAC itself is a putative target of O2

- -, and O2
- can

modulate its function (108).
VDAC channels have a highly conserved homology with

bacterial porins and can exist in a variety of functional states
that differ in their ability to pass nonelectrolytes and conduct
ions. VDAC gating has a voltage-dependent profile (162).
VDAC shows *3 nS in 1 M NaCl in the full conductance
‘‘open’’ state (152). In the open state, it shows a significant
preference for anions and especially favors metabolic anions.
The closed state favors cations. The permeability of VDAC to
small cations by free diffusion includes K + , Na+ , and Ca2 + (see
also Fig. 6). Ca2 + ion permeates through both the open and
closed states of VDAC, because the ion selectivity at the open
state is rather poor (152). Nonelectrolytes ( < 6 kDa) can also
pass through the open channel, enabling the passage of me-
tabolites such as ATP, ADP, and inorganic phosphate (150).

As mentioned in Mitochondrial Permeability Transition
Pore and Redox Signaling section, VDAC is not essential for
the opening of mPTP, but its opening or closure is one of the
important factors for the regulation of cell death signaling
(Fig. 6). VDAC interacts with the apoptosis regulators, Bcl2-
family members, including Bak, Bad, tBid, and Bcl-xL, which
can change the VDAC channel activity (128, 152). For in-
stance, Bax interaction can induce a novel high-conductance
state of VDAC that permits cytC to escape from the IMS.
Madesh and Hajnoczky found another mechanism for the
VDAC-dependent permeabilization of the OMM by O2

- .
They showed in permeabilized hepatocytes that O2

- treat-
ment can elicit the proapoptotic protein cytC to be released
from mitochondria through VDAC, whereas H2O2 cannot.
This O2

- -induced cytC release through VDAC is an inde-
pendent phenomenon of Ca2 + -dependent mPTP opening.
Moreover, O2

- triggers apoptosis via VDAC-dependent
OMM permeabilization without apparent contribution of

proapoptotic Bcl2-family proteins. However, the detailed
mechanism of how O2

- modulates VDAC function remains
an open question. There are two possible mechanisms: (i) O2

-

directly adds PTMs to VDAC when released to the cytosol
through this channel (69); and (ii) ROS, including O2

- , targets
VDAC via lipid oxidation by indirectly altering the lipid en-
vironment of VDAC (151). However, there is still no evidence
to support these ideas.

Closing Remarks

Research conducted on the mitochondrial ion channels/
transporters has been widely recognized as an important
field in cell biology, even though their progress is relatively
slow mostly due to the fact that their molecular identities
remain unknown for a long period of time. Recent advances
in the cloning of various mitochondrial ion channels/
transporters have provided essential information for inves-
tigating the regulatory mechanisms underlying redox-
dependent PTMs of the structure and function of these
channels/transporters. This new knowledge is crucial for
our understanding of the fundamental roles of mitochon-
drial ion channels/transporters in cell metabolism and sig-
naling under healthy and diseased states. Furthermore, it
will lead us to design or discover more specific inhibitors/
activators to each channel/transporter that will have the
potential to turn into therapeutic drugs for treating diseases
caused by mitochondria-mediated oxidative stress. Mean-
while, we need to keep in mind that the molecular identities
of the majority of mitochondrial ion channels/transporters
are still unknown, which will limit our understanding of the
whole picture of their roles as sensors and regulators of
cellular redox signaling.

In conclusion, cardiac mitochondrial ion channels/trans-
porters are crucial sensors and regulators for mitochondrial
and cellular redox signaling. Revealing the molecular identi-
ties and biophysical and biochemical properties of mito-
chondrial ion channels/transporters will provide us with new
strategies for antioxidation therapies targeting various human
diseases.
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Abbreviations Used

a-KDH¼ a-ketoglutarate dehydrogenase
DJm¼mitochondrial membrane potential

ACON¼ aconitase
ANT¼ adenine nucleotide translocase

BK channel¼ large-conductance Ca2+-activated K+ channel
[Ca2+]c¼ cytosolic Ca2+ concentration

[Ca2+]mt¼mitochondrial matrix Ca2+ concentration
CaMKII¼Ca2+/calmodulin-dependent protein

kinase II
CLIC4¼Cl- intracellular channel 4
CoQ10¼ coenzyme Q10

COX¼ cytochrome c oxidase
CS¼ citrate synthase

CypD¼ cyclophilin D
cytC¼ cytochrome C

eNOS¼ endothelial NOS
ER¼ endoplasmic reticulum

ETC¼ electron transport chain
ETF-QO¼ electron transferring flavoprotein-quinone

oxidoreductase
FUM¼ fumarase
GSH¼ glutathione

GSNO¼ S-nitrosoglutathione
GSSG¼ glutathione disulfide

H+¼proton
H2O2¼hydrogen peroxide

H2S¼hydrogen sulfide
ICDH¼ isocitrate dehydrogenase
IMAC¼ inner membrane anion channel

IMM¼ inner mitochondrial membrane
IMS¼mitochondrial intermembrane space

iNOS¼ inducible NOS
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Abbreviations Used (Cont.)

IP3R¼ inositol 1,4,5-trisphosphate receptors
IPC¼ ischemic preconditioning
I/R¼ ischemic/reperfusion

LETM1¼ leucine zipper-EF-hand containing
transmembrane protein 1

MCU¼mitochondrial Ca2+ uniporter pore
MDH¼malate dehydrogenase

mitoKATP¼mitochondrial ATP-sensitive K+ channel
mitoKCa¼mitochondrial Ca2+-activated K+ channel

mNCE¼mitochondrial Na+/Ca2+ exchanger
mPTP¼mitochondrial permeability transition pore

mRyR1¼mitochondrial ryanodine receptor type 1
mSOF¼mitochondrial superoxide flash

mtNOS¼mitochondrial nitric oxide synthase
[Na2+]c¼ cytosolic Na2+ concentration

NADPH¼nicotinamide adenine dinucleotide phosphate
NCX¼Na+/Ca2+ exchanger at plasma membrane

NMDA¼N-methyl-d-aspartate
nNOS¼neuronal NOS

NO¼nitric oxide
NOS¼NO synthase

O2
-¼ superoxide

OMM¼ outer mitochondrial membrane
ONOO-¼peroxynitrite

OXPHOS¼ oxidative phosphorylation
PDH¼pyruvate dehydrogenase

PIC¼mitochondrial phosphate carrier
PKA¼protein kinase A
PKC¼protein kinase C
PKD¼protein kinase D

PMCA¼plasma membrane Ca2+ ATPase
PTM¼post-translational modification
RaM¼ rapid mode of uptake
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
RyR¼ ryanodine receptor
SCS¼ succinyl-CoA synthetase

SDH¼ succinate dehydrogenase
SERCA¼ SR/ER Ca2+-ATPase

SR¼ sarcoplasmic reticulum
TCA¼ tricarboxylic acid
UCP¼uncoupling protein

VDAC¼voltage-dependent anion channel
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