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Abstract

Objectives—The purpose of this study was to test the hypothesis that SCN10A variants
contribute to the development of Brugada syndrome (BrS).

Background—aBrsS is an inherited sudden cardiac death syndrome. Fewer than 35% of BrS
probands have genetically identified pathogenic variants. Recent evidence has implicated
SCN10A, a neuronal sodium channel gene encoding Na, 1.8 in the electrical function of the heart.

Methods—cClinical analysis and direct sequencing of BrS-susceptibility genes were performed
on 150 probands, family members and >200 healthy controls. Expression and co-
immunoprecipitation studies were performed to functionally characterize the putative pathogenic
mutations.

Results—We identified 17 SCN10A mutations in 25 probands (20 M/5 F); 23 of the 25 (92.0%)
displayed overlapping phenotypes. SCN10A mutations were found in 16.7% of BrS probands,
approaching our yield for SCN5A mutations (20.1%). BrS patients with SCN10A mutations were
more symptomatic and displayed significantly longer PR and QRS intervals than SCN10A
negative BrS probands. The majority of mutations localized to the transmembrane-spanning
regions. Heterologous co-expression of wild-type (WT) SCN10A with WT-SCN5A in HEK cells
caused a near doubling of sodium channel current (In,) compared with WT-SCN5A alone. In
contrast, co-expression of SCN10A mutants (R14L and R1268Q) with WT-SCN5A caused a 79.4%
and 84.4% reduction in I, respectively. Co-immunoprecipitation studies performed provide
evidence for co-association of Na, 1.8 and Na,1.5 in the plasma membrane.

Conclusions—Our study identifies SCN10A as a major susceptibility gene for BrS, thus greatly
enhancing our ability to genotype and risk stratify probands and family members.

Keywords

Electrophysiology; Cardiac Arrhythmias; Brugada syndrome; Cardiac Conduction disease;
Sudden Cardiac Death; Genetics

Introduction

The Brugada syndrome (BrS), introduced as a new clinical entity in 1992 (1), is an inherited
sudden cardiac death (SCD) syndrome characterized by the appearance of prominent J
waves or ST-segment elevation in leads V1-V30f the electrocardiogram (ECG). An outward
shift in the balance of ion channel currents flowing during the early phases of the cardiac
action potential have been shown to create the substrate for the development of life-
threatening arrhythmias in BrS (2). The syndrome has been associated with 13 genotypes
(BrS1 to BrS13) displaying autosomal dominant inheritance (3,4). To date, more than 300
BrS-related mutations in SCN5A have been described (5), accounting for the vast majority
(>75%) of BrS genotypepositive cases, but only 11-28% of total BrS probands.
Approximately 65% of BrS probands remain genetically undetermined. Thus, there is a
pressing need to identify new BrS susceptibility genes for the purpose of early diagnosis,
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risk stratification, and targeted treatments (6,7). A similar situation is encountered in other
inherited cardiac arrhythmia syndromes, including early repolarization syndrome (ERS),
cardiac conduction disease (CCD), bradycardia, idiopathic ventricular fibrillation (VF),
atrial fibrillation (AF), and right bundle branch block (RBBB).

Nay1.8 (encoded by SCN10A), like Na, 1.5 (encoded by SCN5A), is a tetrodotoxinresistant
voltage-gated sodium channel located adjacent to SCN5A on human chromosome 3p21-22
(8,9). Until recently, Na, 1.8 was principally considered a neuronal sodium channel involved
in nociception. The amino acid sequences of human Na,1.8 and Na, 1.5 are similar (70.4%).
Recent evidence has implicated SCN10A in the electrical function of the heart (10-12).
Several genome-wide association studies (GWAS) have reported that single nucleotide
polymorphisms in SCN10A are associated with CCD and arrhythmogenesis (13-21). The
present study examines the hypothesis that variations in SCN10A contribute to BrS by
modulating the expression of Na, 1.5 current, the principal cardiac sodium channel.
Preliminary results have been reported in abstract form (22).

Detailed methods are provided in the online supplement.

Clinical analysis and participants

The clinical diagnosis of BrS and ERS was based on criteria provided in the 2005 Consensus
Conference document (23) in the case of BrS and criteria suggested in our recent review of
the J-wave syndromes in the case of ERS (24).Informed consent was obtained from all
patients upon referral to the Masonic Medical Research Laboratory for genetic testing, and
patients were tracked anonymously. This study was approved by the regional institutional
ethics review board and conducted according to Declaration of Helsinki principles. For each
patient, we collected age at time of diagnosis, gender, clinical presentation, family history,
and therapy.

Genetic screening and analysis

Genomic DNA was extracted from peripheral blood leukocytes and amplified. All known
BrS genes and SCN10A were amplified and analyzed by direct sequencing, as previously
described (25). The primer sequences for SCN10A are shown in Table S1 (Reference
Sequence: NM_006514). More than 200 ethnically matched, healthy controls, plus all
available online databases for allele frequency, conservation score, and in silico pathogenic
prediction tools, were probed for prediction of pathogenicity of the variants found.

Co-expression of Nay1.5 and Nay1.8 for co-immunoprecipitation (Co-IP) analysis and
electrophysiological investigations

Site-directed mutagenesis was performed on full-length human wild-type (WT) and mutant
SCN10A-3XFLAG cDNA cloned in pPCMV?2 vector, the WT SCN3B cloned in pCMV6-XL6
vector, and the WT SCN5A cloned in pcDNA3.1. Co-immunoprecipitation studies were
performed using HEK293 cells transfected with SCN5A, SCN10A and SCN3B plasmids were
also used for studies. Total protein was isolated 24 hours after transfection with Lysis buffer
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supplemented with protease inhibitors for Co-IP experiment. Membrane currents were
measured using whole-cell patch-clamp techniques using TSA201 cells, as previously
described (25).

Statistical analysis

Results

Data are presented as mean+SD, unless otherwise noted. For statistical analysis, two-tailed
Student's t-test and ANOVA coupled with Student-Newman-Keuls test, were used to
compare two groups and more than three groups of continuous variables separately. Chi-
square test was used for compare of categorical variables (SigmaStat, Systat Scientific Inc.,
San Jose, CA). Differences were considered statistically significant at a value of P<0.05.

Study population

We systematically evaluated 150 unrelated BrS patients and 17 family members using
genetic screening (Table 1). Most patients were male (n=101, 67.3%) with a mean age at
diagnosis of 44.5+16.1 years. One hundred and sixteen patients (77.3%) were symptomatic,
including 39 (26.0%) who suffered from syncope and 20 (13.3%) who experienced cardiac
events, documented as aborted cardiac arrest or SCD. Twenty-nine (19.3%) had a family
history of cardiac events or SCD. A Type 1 Brugada ECG pattern, characterized by a
prominent J-wave appearing as a coved type ST-segment elevation, was observed
spontaneously in 57 patients (38.0%, Figure 1A), appeared after sodium channel blockers in
76 patients (50.7%, Figure 1B) or during fever in the remaining 17 patients (11.3%, Fig.
1C). Some BrS patients also displayed ERS (Fig. 1D), CCD (Fig. 1E), RBBB (Fig. 1F),
ventricular tachycardia/ventricular fibrillation (VT/VF), or AF.

Mutation yield and analysis

Overall, 17 putative pathogenic SCN10A rare variants [16 missense and 1 frameshift
mutation] were identified in 25 probands (Fig. 2A, Tables 2 and 3). Seven family members
were positive for SCN10A variants. Eleven mutations were identified only once (64.7%),
while 6 variants were found in multiple unrelated patients (Fig. 2B). The most frequent
mutation was R14L (Fig. 1A), which was carried by 4 BrS probands. The other mutations/
rare polymorphisms present in the population were V16971 (3 patients), G1662S (3
patients), 1206M (2 patients), 11225T (2 patients), and R1869C (2 patients). Most variants
localized to the transmembrane-spanning regions (P-loop 42.3%, S1-S4 23.1% for BrS
probands, Fig. 2C).

Among the 25 SCN10A mutation or rare variant carriers, 6 carried a secondary mutation in 1
of the 12 known BrS-susceptibility genes (24.0%, Table 2). F938YFSX12, G1406D and
N1715T are novel variants in SCN10A, not previously reported (Table 3). A majority of
missense mutations (13/16) were in highly conserved residues and showed minor allele
frequencies (MAF) of 0 to 0.002 in control databases. None were found in more than 400
reference alleles in our healthy controls. All but 1 (T137M) of these 13 mutations were
predicted to be damaging by in silico prediction tools (Table 3). The MAF of S1337T was
0.0047, that of V16971 was 0.0044, and that of 1206M was 0.0046 in our controls. All 4
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cases carrying these 3 rare polymorphisms were middle-aged males (31-58 y/0) and 3 were
symptomatic.

Overlapping phenotypes of probands with SCN10A variants

With a positive proband yield of 16.7%, the prevalence of SCN10A in BrS probands is
approaching our historical yield for SCN5A mutations, which is 20.1% (Fig. 2D). In 25
SCN10A* BrS cases, 23 (92.0%) displayed overlapping phenotypes (Table 2). In cases of
BrS with overlapping phenotypes (such as CCD and early repolarization/ER patterns in
leads other than V1-V3), SCN10A* positive proband yield was greater (Table 1). BrS
patients with SCN10A mutations were more symptomatic (Syncope, SCD, chest pain) and
displayed longer PR and QRS intervals (193.4+31.8 ms and 105.7+18.9 ms) than SCN10A"
BrS probands (171.5+38.4 ms and 97.3+17.3 ms, p<0.05 respectively). No difference in HR,
QT, or Bazett corrected QT interval (QTc) was observed. The yield of SCN10A™ BrS
probands was greater in male (19.8%) than in female (10.2%, Fig. 2F) subjects in general.
This difference was not observed in the subgroup of BrS with CCD but was more obvious in
BrS cases without CCD. Figure 2E shows yield as a function of age. The yield of probands
with spontaneous Type 1 Brugada ECG pattern was 15.8%, which was similar to that in BrS
cases unmasked with a sodium channel blocker (14.5%). Interestingly, BrS probands
diagnosed during fever showed a much higher yield (5 out of 17; 29.4%) for SCN10A
variants; all were male.

The average PR interval (PRI) for BrS probands with CCD was 218.3+34.59 ms (maxium
PRI, 328 ms). The yield of SCN10A™ in this cohort was significantly higher (33.3%) than
those without CCD (11.4%; P<0.01). Compared with SCN10A" subjects, SCN10A* CCD and
BrS cases had a higher incidence of VT/VF, SCD, and chest pain (Table 1).

Also, 24 BrS cases displayed an ER pattern in leads other than V1-V3. Seven of these
probands and 2 family members were positive for SCN10A mutations, including 5 probands
with global J-point/wave elevation (ERS3, 71.4%), indicating a higher correlation of
SCN10A with BrS and ERS compared with BrS phenotype alone. In the case pictured in Fig.
1D, the proband presented with global J-point elevation (ERS/BrS), bradycardia, and a
family history of SCD. He and his affected family members carried the same SCN10A-
G1662S mutation. (Details in the Supplemental Materials).

Among 33 BrS patients presenting with VT/VF, SCN10A mutations were identified in 12.
BrS appeared spontaneously in 5 cases (41.7%), 2 were unmasked during fever (16.7%) and
the rest were unmasked using sodium channel blockers (41.7%). Including those with
pediatric bradycardia, the average heart rate of 24 probands with bradycardia and BrS was
51.4+1.7 bpm. SCN10A mutations were identified in five cases. Four family members in 3
families also were positive for SCN10A mutations (G1662S for 2, R14L for 1, and F938Y
FSX12 for 1), indicating clear genetic penetrance. SCN10A-S1337T and R1869C were
found in 2 AF probands with BrS phenotypes. The SCN10A-N1715 mutant carrier presented
with BrS and RBBB ECG pattern, an overlapping phenotype recently highlighted by Aizawa
et al. (26). (Fig. 1F).
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Functional expression studies

Co-IP Study

For functional characterization, SCN5A/WT, SCN10A/WT, or SCN5A/WT+SCN10A/WT
were co-expressed with SCN3B/WT in HEK293 cells (Fig. 3A). Peak Iy,amplitude at
-35mV was -462.8+83.2 pA/pF for SCN5A/WT+ SCN3B/WT. Addition of SCN10A/WT
yielded a near doubling of peak Inato -859.7+98.9 pA/pF (P<0.01). In contrast, co-
expression of SCN10A/WT+SCN3B/WT alone generated very low amplitude current
(-12.2+3.3 pA/pF, P<0.01 compared with the other 2 groups, Fig. 3B). Co-expression of the
SCN10A mutants, R14L and R1268Q, with SCN5A/WT and SCN3B/WT caused a major loss
of function of Iy, (Fig. 3C-1). SCN10A-R14L reduced peak Iy, density to -177.5+49.5
pA/pF (P<0.01 vs. SCN10A-WT) and caused a significant positive shift of half-activation
voltage (V1/2, P<0.05). SCN10A-R1268Q reduced current density to -133.9+36.6 pA/pF
(P<0.01 vs. SCN10A/WT) with no change in activation parameters. The half-inactivation
voltage (V1) of SCN10A-R1268Q was 7.7 mV more negative than that of SCN10A-WT
when co-expressed with SCN5A-WT+SCN3B-WT (P<0.05). Recovery from inactivation
was similar in the two mutant groups, but both were slower than WT channels (P<0.05
respectively in both tsand vs). The gating defects caused by SCN10A-R14L and SCN10A-
R1268Q served to reduce sodium channel availability. (Details in Table S2 of the Online
Supplement).

We examined the capability of Na,1.5 to physically interact with Na, 1.8 using Co-IP. The
channels were expressed in HEK293 cells either alone or in combination and isolated by
pull-down using an antibody to the FLAG on SCN10A. Figure 4A shows the protein input
for each condition, demonstrating the presence of the transfected proteins under the
appropriate conditions. Figure 4B demonstrates the association between Na,1.5 and Na,1.8
when co-expressed (Lane 5, bottom). This interaction was lost when the pull-down antibody
was omitted (Lane 4, bottom) and did not occur due to in vitro mixing of the protein lysates
(Lane 6, bottom).

Discussion

SCN10A in the heart and its role in arrhythmogenesis

SCN5A and SCN10A located in close proximity to each other in chromosome 3p22. In 1997,
SCN10A protein (also referred to as PN3, SNS, and hereafter, Na,1.8) was initially shown to
be specifically expressed in rat and human dorsal root ganglia (27). Real-time polymerase
chain reaction and immunostaining methodologies have detected a low level of expression
of the SCN10A gene product in mouse and human heart tissues with somewhat higher levels
in the Purkinje system (12,15,18). Na, 1.8 immunoreactivity was detected in intra-cardiac
neurons and ganglia in human myocardium (28). With in situ hybridization method,
SCN10A displayed a similar distribution pattern Scn5a in mouse hearts (10). These findings
notwithstanding, some researchers deny the existence of Na,1.8 in cardiac myocytes. For
example, Veldkamp and colleagues reported that SCN10A expression modulates cardiac
electrical activity primarily by regulating the firing patterns of intracardiac neurons (11).
Conflicting data also resulted from other in vivo and in vitro experimental studies in the
animal models (12,15).
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The localization, expression level, and function role of Na,1.8 in the heart remain highly
controversial. Nonetheless, our results support the conclusion that SCN10A variants play a
key role in developing arrhythmogenic J-wave syndromes, including both BrS and ERS,
likely through a direct effect on Nav1.5-mediated cardiac Iny(Central Hlustration). A key
role for Na, 1.8 in human cardiac electrophysiology is supported by GWAS, showing that
SCN10A plays an important role in cardiac conduction disease, by influencing PRI and QRS
duration, as well as heart rate and arrhythmic risk. Several independent loci within SCN10A
have been identified, including rs6795970 (13-18), rs6798015 (16,19), rs6800541 (16,20),
rs7430477 (16), and rs12632942 (15). A recent genome-wide association study of 312
individuals with BrS and 1,115 controls reported a significant association signal at a
SCN10A locus rs10428132, providing additional support for a role for SCN10A variants, in
this case 3[prime]-UTR or intronic, in the development of BrS (21).

Clinical and genetic findings related to SCN10A

We identified 17 putative pathogenic SCN10A variants in 25 of the 150 BrS probands
screened. A positive proband yield of 16.7% is approaching our historical yield of 20.1% for
SCN5A and a yield of 11% to 28% (21% average) reported in the international compendium
of SCN5A mutations (5). In our study, as in the international compendium study, there was a
male predominance of the BrS phenotype (67% vs.78%). The latter has a similar yield
between males and females (20% vs. 22%, respectively).This was not the case in our screen
for SCN10A mutations, where the yield was greater in the case of males (20% vs. 10%).

In our study, 66.7% of SCN10A mutations were localized to transmembrane and pore-
forming domains; this is in comparison to the nearly 75% reported in the SCN5A
compendium. Of all BrS-related SCN10A variants, one was a frameshift and the rest were
missense mutations (94.1%), whereas in the compendium of SCN5A mutations, two-thirds
were reported to be missense mutations.

In 25 of the cases reported, 6 also were found to carry a second potentially pathogenic BrS
mutation (Table 2). As such, the number of SCN10A variants that we count as potentially
responsible for the clinical phenotype could be an overestimate. This notwithstanding, the 3
mutations in calcium channel genes were found in patients displaying a prolonged PRI
(>180 ms) and normal QTc interval, pointing to a clear predominance of the SCN10A
mutation leading to a loss of function of In,. The KCNJ8 mutation likewise was
accompanied by a prolonged PRI. The two SCN5A mutations were both accompanied by
very prolonged PRI (240-280 ms) suggesting that both the SCN5A and SCN10A variants
contributed to the clinical phenotype. Interestingly, the yield of BrS probands unmasked by
fever is much higher in the case of SCN10A vs. SCN5A mutation (29.4% vs. 17.2%,
unpublished data from Dan Hu et al.). There was a higher association with SCD and syncope
in the case of SCN10A vs. SCN5A mutations. Also interesting is the larger number of
complaints of chest pain in the SCN10A* group than the SCN10A" cases, which is not
observed when SCN5A* and SCN5A"™ cases are compared.

Greater than 90% of the SCN10A* BrS subjects presented with mixed phenotypes, the most
common of which was CCD. It is not surprising that, as with SCN5A mutations (39% when

J Am Coll Cardiol. Author manuscript; available in PMC 2015 July 08.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Hu et al.

Page 8

PR>200 ms vs. 8% when PR<200 ms (6)), the yield of SCN10A mutants was much higher in
BrS probands with prolonged PRI (31% in PR>200 ms vs.11% in PR<200 ms).

Our observations of a high prevalence of SCN10A variants associated with BrS and ERS,
most of which: 1) are in amino acid residues that are highly conserved in mammalian
species; 2) exhibit a very low MAF in controls; 3) are predicted by in silico models to be
pathogenic; 4) show good genotype-phenotype correlation in cases in which family
pedigrees are available; and 5) show a major loss of function in Iy in the 2 cases in which
the variants were functionally co-expressed with SCN5A, suggesting that SCN10A is an
important susceptibility gene for BrS and as well as for other cardiac syndromes including
CCD, ERS, AF, VT/VF, RBBB, and bradycardia. SCN10A is known to be involved in
nociception (29). Our referring physicians did not report altered nociception other than an
increased incidence of chest pain.

Mechanisms underlying SCN10A modulation of electrical function of the heart

a-subunit interactions have previously been shown to aggravate as well as ameliorate
disease phenotypes. The combination of SCN2A and KCNQ2 mutations cause severe seizure
manifestations (30), an Scn8a mutation has been shown to compensate for
haploinsufficiency of Scnla (31), and SCN9A mutations are known to modify the severity of
SCN1A-related Dravet's syndrome (32). A recent BrS study reported a dominant-negative
effect of SCN5A mutant channels interacting with SCN5A-WT channels (33). Given their
proximity to one another, SCN5A and SCN10A may be subject to common regulatory
mechanisms, such as transcriptional control by TBX3 and TBX5 (10).

We hypothesize that SCN10A modulates the activity of the canonical cardiac sodium

channel encoded by SCN5A in the heart. Our co-expression studies provide evidence in
support of this hypothesis showing that Na, 1.5 and Na,1.8 co-associate when expressed
together. The observed functional interaction between Na, 1.5 and Na,1.8 may suggest either
a direct physical interaction between the two channels or an indirect interaction within a
larger protein complex. SCN10A-WT causes a gain of function in Na,1.5 current, whereas
SCN10A-mutants (R14L and R1268Q) cause loss-of-function of Na, 1.5 current, which is
expected to reduce excitability and lead to development of the arrhythmogenic substrate
responsible for BrS and ERS, as well as CCD, VT/VF, AF, RBBB, and bradycardia.

Limitations and future directions

Of the 16 missense mutations uncovered in this study, only 2 were functionally
characterized. Despite these limitations, it is important to note that 13 of these variants were
totally absent from our own ethnically matched controls and are either absent or negligibly
present in all available public databases. Moreover, these mutations are located in highly
conserved residues and are predicted to be pathogenic by in silico prediction tools.

Our co-immunoprecipitation data pointing to co-association of Na,1.5 and Na,1.8 proteins
were performed following co-expression of SCN5A and SCN10A in HEK cells. Ideally,
these studies should be performed in native human ventricular myocytes. This, however,
must await the availability of more reliable Na,1.8-specific antibodies. Additional studies
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are needed to expand the size of the cohort and to conduct functional expression of WT and
mutant SCN10A in native myocytes or alternatively in induced pluripotent stem cell-derived
cardiomyoctyes.

Conclusions

The findings of this study extend our knowledge of the role of Na,1.8 in the heart and
provide an explanation for why SCN10A variants cause conduction and rhythm disturbances,
some previously identified by GWAS. Our data identify SCN10A as a new BrS
susceptibility gene and as a potential target for genetic screening and antiarrhythmic
intervention. We demonstrate co-localization and co-association of Na,1.8 and Na,1.5 in the
plasma membrane and a gain of function of SCN10A-WT and loss-of-function of SCN10A-
mutants on Nay1.5 In,. BrS males between 11-50 years old, presenting with a prolonged PRI
and QRS prolongation, VT/VF, ERS, and/or symptoms (syncope, SCD, chest pain), have the
highest probability of carrying an SCN10A variant. The spectrum of SCN10A arrhythmic
phenotypes, including BrS, ERS, CCD, VT/VF, AF, RBBB, and bradycardia, is similar to
that of SCN5A variants. With a yield of 16.7% for SCN10A, a genotype can now be
identified by us in more than 50% of BrS probands.

Perspective

Competency in Medical Knowledge

Brugada (BrS) and early repolarization (ERS) syndromes are responsible for ventricular
fibrillation (VF) and sudden cardiac death (SCD) of young adults. Fewer than 35% of BrS
probands have genetically identified pathogenic variants. The identification of SCN10A as a
major susceptibility gene for BrS and ERS greatly enhances the capability to risk-stratify
probands and family members by genotyping.

Translational Outlook 1

The ability of mutant neuronal sodium channels to cause a loss of cardiac sodium channel
activity provides insights into mechanisms by which SCN10A variants may contribute to
overlap syndromes including BrS, ERS, cardiac conduction disease, and various bradycardia
phenotypes

Translational Outlook 2

These findings help to delineate the role of neuronal sodium channels in the electrical
function of the heart.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Representative Cases of the Different Brugada Syndrome (BrS) Phenotypes Associated
with the SCN10A Mutations/Rare Variants Identified

Each panel shows the ECG phenotype, amino acid alignments of the mutated residue
position in a number of mammalian species, and DNA chromatogram of wild-type (WT)
and mutant SCN10A. For the pedigrees in panels D&E, +/- denotes heterozygous for the
mutation; circles represent female subjects and squares represent male subjects. The arrow
denotes the proband. Clinically affected and unaffected subjects are labeled as black and
white, respectively. CCD: cardiac conduction disease; ERS= early repolarization syndrome;
RBBB-= right bundle branch block; SCD= sudden cardiac disease.
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Figure 2. Clinical and Genetic Prevalence of SCN10A Mutations/Rare Variants in probands with
Brugada Syndrome (BrS) Identified in the Present Study

A: Schematic showing topology of Na, 1.8, the pore-forming a subunit encoded by SCN10A
and location of putative BrS-causing variants. B: Frequency distribution of SCN10A
mutations/rare variants in BrS cases (green). C: Percentage of mutations/rare variants in BrS
cases (green) by location. D: Mutation detection yield by gene in Masonic Medical Research
Laboratory BrS cases. E&F: Bar graph showing age and gender distribution of BrS cases.
CCD-= cardiac conduction disease.
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Figure 3. Electrophysiology Effect of SCN10A on Cardiac Sodium Channel Current (Iyg) when
Co-Expressed with SCN5A and SCN3B in HEK?293 Cells

A&B: Superimposed traces and bar graph depicting peak Iy, recorded from co-expression
of SCN10A/wild type (WT)+SCN3B/WT, SCNSA/WT+SCN3B/WT and SCN5SA/WT
+SCN10A/WT+SCN3B/WT. **P<0.01 vs. SCN5A/WT+SCN10A/WT+SCN3B/

WT, #P<0.01 vs. SCNSA/WT+SCN3B/WT. C-E: Representative Iy, traces, current-voltage
relationship and voltage dependence of activation for SCN10A/WT, SCN10A/R14L and
SCN10A/R1268Q when co-expressed with SCNSA/WT+SCN3B/WT. F&G: Representative
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steady-state inactivation and recovery traces recorded from WT and mutant channels. H&I:
Boltzmann distributions of voltage-dependent channel inactivation and recovery curve with
a double-exponential fit for the 3 groups. All related values and the number of cells used are
presented in Table S2 in the Supplemental Materials.
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Proposed Mechanism by Which SCN10A Mutation Causes Brugada Syndrome

A SCN5A =Nay 1.5 Chromosome 3
1 /SCN10A=NaV1.8

Normal ECG Brugada ECG

i
vz/\ﬁJ\rwvw\mww

" ~V’MV\MMM\W

Figure 4. Representative Experiments Demonstrating Physical Interaction between Nay1.8 and
Nay1.5
Panel A shows protein input and panel B shows protein isolated by the antibody pull-down

co-immunoprecipitation (Co-IP). Lanes 1-6 correspond to the following experimental
conditions: (1) non-transfected, (2) Na, 1.8 expressed alone, (3) Na,1.5 expressed alone, (4
and 5) Na, 1.8 and Na,1.5 co-expressed, (6) mixed lysates from lanes 3 and 4. Panel B
shows the pull-down of Na,1.5 is specific to Na,1.8 cellular co-expression.
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Central IHllustration: SCN5A and SCN10A, genes encoding cardiac and neuronal
sodium channels, are found in close proximity on chromosome 3 (A). Our study suggests
that mutations in SCN10A can lead to a loss of function in sodium channel current (INa) and
thus contribute to the manifestation of Brugada syndrome (BrS), a sudden cardiac death
syndrome. The data suggest physical association of the two channel proteins (NaV1.5 and
NaV1.8) in the plasma membrane (B). Our study identifies SCN10A as a major
susceptibility gene for BrS, thus greatly enhancing our capability to genotype and risk
stratify probands and family members (C).
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