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Abstract: Recently, brain connectivity networks have been used for classification of Alzheimer’s disease
and mild cognitive impairment (MCI) from normal controls (NC). In typical connectivity-networks-based
classification approaches, local measures of connectivity networks are first extracted from each region-of-
interest as network features, which are then concatenated into a vector for subsequent feature selection
and classification. However, some useful structural information of network, especially global topological
information, may be lost in this type of approaches. To address this issue, in this article, we propose a
connectivity-networks-based classification framework to identify accurately the MCI patients from NC.
The core of the proposed method involves the use of a new graph-kernel-based approach to measure
directly the topological similarity between connectivity networks. We evaluate our method on functional
connectivity networks of 12 MCI and 25 NC subjects. The experimental results show that our proposed
method achieves a classification accuracy of 91.9%, a sensitivity of 100.0%, a balanced accuracy of 94.0%,
and an area under receiver operating characteristic curve of 0.94, demonstrating a great potential in MCI
classification, based on connectivity networks. Further connectivity analysis indicates that the connectiv-
ity of the selected brain regions is different between MCI patients and NC, that is, MCI patients show
reduced functional connectivity compared with NC, in line with the findings reported in the existing
studies. Hum Brain Mapp 35:2876—2897, 2014. ©2013 Wiley Periodicals, Inc.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia in elderly population worldwide. It is predicted
that the number of affected people will double in the next
20 years, and 1 in 85 people will be affected by 2050
[Brookmeyer et al., 2007]. Thus, accurate diagnosis of AD,
especially its early stage, such as mild cognitive impair-
ment (MCI), is very important for possible early treatment
and possible delay of the progression of disease. Existing
studies have shown that MCI subjects progress to clinical
AD at an annual rate of ~10-15%, while the healthy nor-
mal controls (NC) develop dementia at an annual rate of
1-2% [Petersen et al., 2001]. So far, many methods have
been developed to identify predictive biomarkers of AD or
MCI from different neuroimaging modalities [Filippi and
Agosta, 2011; Fjell et al., 2010; Haller et al., 2010; Sperling
et al., 2011; Zhang and Shen, 2012a,b].

In the past decade, modern magnetic resonance imaging
(MRI) [e.g., functional MRI (fMRI) and diffusion MRI],
and neurophysiological [e.g., electroencephalograph (EEG)
and magnetoencephalograph (MEG)] techniques have pro-
vided efficient and non-invasive ways to map the patterns
of structural and functional connectivity of the human
brain [Robinson et al., 2010; Sporns, 2011; Xie and He,
2011]. Structural brain connectivity is referred to as the
anatomical connection pattern between different neuronal
elements [Bassett and Bullmore, 2009; He et al., 2009;
Rubinov and Sporns, 2010]. However, functional brain
connectivity is referred to as the functional association
pattern among brain regions, which can be obtained by
measuring the temporal correlations between spatially
remote neurophysiological events from fMRI and
EEG/MEG data [Kaiser, 2011; Wang et al., 2013]. Recent
applications of brain connectivity networks include explor-
ing the anatomical and functional connectivity relationship
between brain regions [Honey et al.,, 2009; Zhou et al,,
2006] and also the connectivity abnormality in neurodege-
nerative diseases (e.g., MCI and AD) for identifying
biomarkers for diagnosis [Morbelli et al., 2010; Pievani
et al., 2011; Stam et al., 2009; Wang et al., 2013].

It is reported that structural and functional abnormal-
ities can be observed in the brains of AD and MCI patients
[Busatto et al., 2003; Filippi and Agosta, 2011; Sperling
et al., 2003; Xie and He, 2011]. Recent studies have sug-
gested that, in addition to the regional disturbance of brain
structure and function, neurodegenerative diseases (e.g.,
AD and MCI) are also associated with the abnormalities in
connections between different brain regions [Bai et al.,
2012; Delbeuck et al., 2003; Morbelli et al., 2010; Palop
et al., 2006; Pievani et al.,, 2011; Stam et al., 2009; Wang
et al., 2013]; see [Kaiser, 2011; Xie and He, 2011; Ye et al.,
2011] for review. For instance, small-world characteristics
are disrupted in the functional brain networks of AD,
implicating disruptive system integrity associated with
specific cognitive states caused by the disease [Sanz-
Arigita et al., 2010; Stam et al., 2007]. Moreover, functional

connectivity is shown decreased between the hippocampus
and other regions of AD and MCI brains [Bai et al., 2009;
Supekar et al., 2008; Wang et al., 2007]. However, some
studies found increased connectivity between the frontal
lobe and other brain regions in early AD and MCI [Gould
et al., 2006; Stern, 2006].

Network analysis provides a new way for exploring the
association between brain functional deficits and the
underlying structural disruption related to brain disorders
[Kaiser, 2011; Sporns et al., 2005; Wee et al., 2011]. Due to
the increasing reliability of network characterization
through neurobiologically meaningful and computation-
ally efficient measures [Kaiser, 2011; Rubinov and Sporns,
2010], learning connectivity characteristics of network
from neuroimaging data shows great promise for identify-
ing image-based biomarkers. Recently, connectivity net-
works have been used for analysis of AD and MCL
Applications of network-based analysis tools in neuroi-
maging can be divided into two categories: (1) Studies
focusing on specific hypothesis-driven tests, for example,
on the small-world network [He et al.,, 2009; Liu et al.,
2012b; Sanz-Arigita et al.,, 2010], default mode network
[Greicius et al., 2004, 2007, 2009; Petrella et al., 2011], and
hippocampus network [Bai et al., 2009; Li et al., 2002;
Wang et al., 2006b] and (2) Studies focusing on machine
learning based methods for individual-based classification
[Chen et al., 2011; Wee et al., 2011; 2012b; Ye et al., 2011;
Zhou et al., 2011].

In the first category, studies mainly focus on network
dysfunction perspective of neurodegenerative diseases
using graph theoretical analysis [Buldu et al., 2011, He
and Evans, 2010; Xie and He, 2011], to demonstrate the
topological differences of the brain networks between
patients and NC. While these studies in general support
the hypothesis of disconnection syndrome in AD and
MCI, they cannot be automatically used to discriminate
MCI and AD from NC at individual level [Seeley et al.,
2009; Supekar et al., 2008; Wang et al., 2007]. However, in
the second category, machine learning methods are used
to train classification models to identify diseased subjects
from NC [Craddock et al., 2009; Richiardi et al., 2012; Shen
et al.,, 2010; Wang et al., 2006a]. For instance, Wee et al.
[2011] proposed an effective network-based classification
framework to identify accurately MCI patients from NC
by using a collection of measures derived from white mat-
ter (WM) connectivity networks. Shen et al. [2010]
designed a data-driven classifier based on machine learn-
ing to discriminate schizophrenic patients from NC. In
network-based classification approaches, it involves two
main steps: (1) extracting meaningful features from the
connectivity network, followed by feature selection to
select the most discriminative feature subset and (2) train-
ing a classifier using the chosen features. However, the
extracted features, such as local network measures [Wee
et al., 2011, 2012a,b] and the weights between the region-
of-interest (ROI) pairs [Chen et al., 2011], are usually con-
catenated into a long feature vector for subsequent feature
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selection and classification, without considering the
disease-related topological information such as local and
global topological information of the network. To some
extent, this may deteriorate the final classification
performance.

In this article, we propose a network-based classification
framework to identify accurately MCI patients by using a
collection of local measures of connectivity networks and
topological information, derived from functional connec-
tivity networks. The key of our approach involves using a
new tool, that is, graph kernel [Shervashidze et al., 2011;
Vishwanathan et al., 2010], to directly measure the topo-
logical similarity between functional connectivity net-
works. Specifically, we first apply multiple thresholds to
generate multiple thresholded connectivity networks, to
reflect different levels of topological structure of the origi-
nal connectivity network. (Here, different thresholds deter-
mine their corresponding different levels of topological
structure. In other words, the thresholded connectivity net-
works with larger threshold often preserve fewer connec-
tions and thus are sparser in connection.) Then, for each
thresholded connectivity network, we derive its corre-
sponding subnetwork by filtering out irrelevant ROI fea-
tures, followed by a new recursive feature elimination
method based on graph kernel (namely, RFE-GK), where
in each iteration the subnetworks are derived by using the
current surviving ROI features and also the support vector
machine (SVM) with graph kernel is adopted to select the
most discriminative ROI features. Finally, we use multiker-
nel SVM to fuse all features from multiple thresholded
networks for final classification of MCI from NC. It is
worth noting that the idea of using multiple thresholded
connectivity networks has also been investigated in several
recent works, that is, in Zanin et al. [2012]. However, one
of the main differences between our method and the work
of Zanin et al. [2012] is that our method uses a multiple-
kernel learning technique to combine network properties
from multiple thresholded networks, while Zanin et al.
determined only one best thresholded network representa-
tion by exploring the classification performance on multi-
ple possible thresholds. Moreover, our method uses a new
graph-kernel tool to measure directly the topological simi-
larity between connectivity networks, which is one of our
major contributions and was not investigated in Zanin
et al. [2012].

METHOD
Data Acquisition

In this study, 12 amnestic MCI patients and 25 NC were
recruited. Demographic information of the participants is
shown in Table I. Informed consent was obtained from all
participants, and the experimental protocols were
approved by the institutional ethics board. All the
recruited subjects were diagnosed by expert consensus

TABLE I. Characteristics of the participants used in this

study
Group MCI Normal
No. of subjects (male/female) 6/6 9/16
Age (mean * SD) 75.0 +8.0 729+79
Years of education (mean * SD) 18.0x4.1 15824
MMSE (mean = SD) 285*1.5 293*1.1

panels. Data acquisition was performed using a 3.0-Tesla
GE Signa EXCITE scanner. FMRI images of each partici-
pant were acquired with the following parameters: flip
angle =77°, TR/TE =2000/32 ms, imaging matrix = 64 X
64, FOV =256 X 256 mm?® 34 slices, 150 volumes, and
voxel thickness =4 mm. During scanning, all subjects were
instructed to keep their eyes open and stare at a fixation
cross in the middle of the screen, which lasted for 5 min.
It is worth indicating that in our study, we did not use
extra techniques or devices to measure whether subjects
actually kept their eyes open during the scan. Although
existing studies have reported that the sleep alterations or
early sleep (with eyes open) in neurological and psychiat-
ric patients [AASM, 2007; Ford and Kamerow, 1989] could
be distinguished by recent multivariate pattern analysis
methods (e.g., SVM) [Tagliazucchi et al.,, 2012], the full
investigation on that topic is beyond the main aim in this
article.

Overview

Figure 1 shows the framework of the proposed method
for connectivity-networks-based classification, which con-
tains three main steps: (1) image preprocessing and func-
tional connectivity networks construction, (2) feature
extraction and feature selection, and (3) classification. For
clarity of notations, we have listed the main symbols used
in this article in the Supporting Information Table S1.

The preprocessing steps of the fMRI images, which
include slice timing correction and head-motion correction,
were performed using Statistical Parametric Mapping soft-
ware package (SPMS, http://www fil.ion.ucl.ac.uk.spm).
The first 10 acquired fMRI images of each subject were
discarded to ensure magnetization equilibrium. The
remaining 140 images were first corrected for the acquisi-
tion time delay among different slices before they were
realigned to the first volume of the remaining images for
head motion correction. Since the regions of ventricles and
WM contain a relatively high proportion of noise caused
by the cardiac and respiratory cycles [Van Dijk et al.,
2010], we only used BOLD signals extracted from gray
matter (GM) tissue to construct functional connectivity net-
work. Accordingly, we first segmented the T1-weighted
image of each subject into GM, WM, and cerebrospinal
fluid (CSF). GM tissue of each subject was then used to
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Figure I.
The proposed classification framework. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

mask their corresponding fMRI images to eliminate the
possible effect from WM and CSF in the fMRI time series.

The first scan of fMRI time series was coregistered to
the Tl-weighted image of same subject. The estimated
transformation was then applied to other fMRI scans of
the same subject. The brain space of fMRI scans for each
subject was then parcellated into 90 ROIs by warping the
automated anatomical labeling [Tzourio-Mazoyer et al.,

2002] template to the subject space using the deformation
fields estimated via a deformable registration method
called HAMMER [Shen and Davatzikos, 2002]. For each
subject, the mean time series of each individual ROI was
then computed by averaging the GM-masked fMRI time
series over all voxels in the particular ROL

In this study, the GM-masked mean time series of each
region was band-pass filtered within frequency interval
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[0.025 < f < 0.100 Hz] since the fMRI dynamics of neuro-
nal activities are most salient within this frequency inter-
val. It is reported in [Zuo et al., 2010] that the frequency
band of (0.027-0.073 HZ) demonstrated significant higher
test-retest reliability than other frequency bands. It pro-
vides a reasonable trade-off between avoiding the physio-
logical noise associated with higher frequency oscillations
[Cordes et al., 2001] and the measurement error associated
with estimating very low frequency correlations from lim-
ited time series [Achard et al., 2008; Fornito et al., 2010].
Here, the band-pass filtering was implemented using the
discrete fast Fourier transform function provided by the
MATLAB package.

We adopted Pearson correlation coefficients to compute
the functional connectivity between the ROI pairs. For
each subject, a functional connectivity network was con-
structed with the vertices of network corresponding to the
ROIs and the weight of edges corresponding to the corre-
lation coefficients. Fisher’s r-to-z transformation was
applied on the elements of the functional connectivity net-
work (matrix) to improve the normality of the correlation
coefficients as

z=0.5[In (1+7)~In (1-7)] 1)

where r is the Pearson correlation coefficient and z is
approximately a normal distribution with standard devia-
tion 6,=1/vn—1, where n is the number of ROIs. More-
over, to extract the meaningful network measures, all
negative correlations have been removed from the
obtained functional connectivity networks.

Since the functional connectivity networks are intrinsi-
cally fully connected, we threshold each connectivity net-
work with different values in order to reflect different
levels of topological structure of the original connectivity
network. The weighted clustering coefficients of each ROI
in relation to the remaining ROIs were then extracted from
each thresholded connectivity network as features for sub-
sequent feature selection and classification. We adopted a
two-stage approach to select the optimal features for MCI
classification. Specifically, a statistical ¢-test was first per-
formed to screen out some less important features in dis-
crimination between MCI patients and NC, and then
followed by the recursive feature elimination with graph
kernel (denoted as RFE-GK), to further select the most dis-
criminative features. Figure 2 illustrates the flowchart of
the proposed RFE-GK approach. Finally, multikernel SVM
was adopted for final classification based on the selected
ROI features.

Graph Kernel

Kernel-based learning methods work by first mapping
the data into a higher dimensional feature space, and then
searching for linear relations among the mapping data
points [Scholkopf and Smola, 2002]. The mapping is
performed implicitly by specifying the kernel function

between subjects. Given two subjects (vectors) x and x/,
the kernel can be defined as k(x,x")=(d(x), (x")), where ¢
is a mapping function that maps data from data space to
feature space. The common kernel functions are linear
function and Gaussian radial basis function (RBF). These
are given by, respectively:

k(x, x7) = (x,x') 2

2
k(x,x")=exp (— Je=x1l > ®3)

262

Roughly speaking, kernel can be seen as a similarity
measure between a pair of subjects. Once a kernel is
defined, many learning algorithms such as SVM can be
applied. Besides working on feature vector, kernel can also
work on more complex data types, for example, graph,
with the corresponding kernel called as graph kernel,
which captures the semantics inherent in the graph struc-
ture [Shervashidze et al., 2011; Vishwanathan et al., 2010].
A number of methods have been proposed to construct
graph kernel, including walk-based [Gartner et al., 2003;
Kashima et al., 2003], path-based [Alvarez et al., 2011;
Borgwardt and Kriege, 2005], subtree-patterns-based
[Harchaoui and Bach, 2007; Shervashidze and Borgwardt,
2009], and limited-size-subgraph-based [Horvath et al.,
2004; Shervashidze et al., 2009] kernels. Graph kernel has
been successfully applied to a variety of problems such as
image classification [Camps-Valls et al., 2010; Harchaoui
and Bach, 2007], protein function prediction [Borgwardt
et al., 2005; Zhang et al., 2011b], etc. More recently, some
researchers also applied graph kernel for neuroimaging
studies. For example, Mokhtari et al. adopted the graph
kernel to discriminate between attentional cueing task
and rest states from functional connectivity networks
[Mokhtari et al., 2012; Shahnazian et al., 2012].

Weisfeiler-Lehman subtree kernel

We first introduce the notations of graph kernel. A
graph is an ordered pair G=(V,E) comprising a set V of
vertices together with a set E of edges. An undirected
graph is one in which edges have no orientation. A
labeled graph is a graph whose vertices are each assigned
with an element from an alphabet L. A walk is a finite
sequence of neighboring vertices, while a path is a walk
such that all its vertices are distinctive. A subtree is a
subgraph of a graph, which has no cycles (i.e., any two
vertices are connected by exactly one simple path).
Subtree pattern extends the notion of subtree by allowing
repetitions of nodes and edges. However, these
same nodes (edges) are treated as distinct nodes (edges).
Figure 3 illustrates some examples for these notations. It
is worth noting that (1) the subtree kernel between two
graphs is computed using the derived subtree patterns,
rather than their subtrees, (2) the graph used in this arti-
cle is the undirected graph.
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Flowchart of the proposed RFE-GK method. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Graph kernel is one kind of kernel constructed on
graphs that measures the topological similarity between
graphs. More formally, given a pair of graphs G and H, a
graph kernel can be defined as k(G,H)=(¢(G), d(H)),
which takes into account the topology of graphs G and H.
Typical graph kernels measure the common subgraph
such as paths and walks [Harchaoui and Bach, 2007;
Ramon and Gartner, 2003]. Recently, Shervashidze et al.
[2011] proposed an effective subtree-based method to con-

struct the graph kernel. The key concept of their graph
kernel is based on the Weisfeiler-Lehman test of isomor-
phism. Given two graphs, the basic process of the
1-dimensional Weisfeiler-Lehman test is as follows: if these
two graphs are unlabeled graph, that is, vertices of the
graph have not been assigned labels, every vertex in each
graph is first labeled with the number of edges that are
connected to that vertex. Then, at each subsequent step (or
iteration), the label of each vertex is updated based on its
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a) A labeled graph with 6 vertices and
8 edges

c) A subtres of height 2 rooted at the
node 2 (green)

b) Two examples of the walk:

152235453

43233 2->3»
But4 -2 —>53—-2—3 isapathwhile
4 =2 —=53—=4—>3 isnota pathsincs the
vertices 4 occurs twice.

d) A subtree pattern of height 2 rootedat
the node 2 (green)

Figure 3.
Example of some notations about graph. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

previous label and the label of its neighbors, that is, paral-
lelly augment the label of each vertex in the graph with
the sorted set of node labels of neighboring nodes, and
compress these augmented labels into new, shorter labels.
This process proceeds iteratively until the node label sets
of the two graphs differ, or the number of iteration reaches
its predefined maximum value, h. If the sets of new cre-
ated labels are identical after /i iterations, we cannot deter-
mine whether these two graphs are isomorphic.

Give a pair of graphs G and H, let Ly be the set of initial
labels of G and H, and L; be the set of letters that occurs
as node labels in G and H at the end of the i-th iteration of
the Weisfeiler-Lehaman test of isomorphism. Assume all
Li={sn,si, ...,y } are pairwise disjointed. Without loss of
generality, assume every L; is ordered, then the Weisfeiler-
Lehman subtree kernel of two graphs is defined as [Sher-
vashidze et al., 2011]:

k(G,H)=(6(G), &(H)), @)

where

C])(G): (Go(G,Sol), ...,O'o(G,SO|L0|),..., Gh(G,Shl), --~70h(G75h|L,,\))

and
(])(H): (GQ(H,SOl),...,GO (H,SO‘LU‘),...,Gh(H,Shl),...,Gh (H,Sh‘Lh‘))

with o;(G,s;;) and o;(H,s;) are the number of occurrences
of the letter s; in G and H, respectively. It can be proved
that this kind of kernel is positive definite and the
computational complexity for N graphs is O(Nhn+N?hl)
[Shervashidze et al., 2011], where n and I are the numbers
of nodes and edges of graphs, respectively.

Figure 4 illustrates the construction process of the
Weisfeiler-Lehman subtree kernel with h=1. Here,
L={L07L}={273,4,5,677,8,9,10,11} is considered as the
set of letters. It is worth noting that the compressed labels
denote the subtree patterns. For instance, for a node on
graph G, if the compressed label is 10, that means there is
a subtree pattern of height 1 rooted at this node, where
the root has the label 3 and its neighbors have the labels
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lllustration of the construction process of the Weisfeiler-Lehman subtree kernel with h =1 for

two graphs G and H. Here, (a) the initial labeled graph G and H, (b) augmented labels on graph
G and H, (c) label compression, (d) relabeled graph G and H, and (e) computation of the kernel
on Graph G and H. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

of 2, 3, and 4, respectively. Intuitively, the Weisfeiler-
Lehman subtree kernel accounts for the original and com-
pressed labels (i.e., the subtree patterns) in two graphs.
According to this definition, the graph kernel embeds local
and global graph topological information into kernel. In
our method, we compute the graph kernel based on the
above definition on a pair of connectivity networks that
are thresholded at same level across different subjects, as
shown in Figure 2.

Feature Extraction

In machine learning and image processing, feature extrac-
tion and feature selection are a special form of dimensional-
ity reduction. Feature extraction is a dimensionality
reduction approach that projects (linear or nonlinear) D-
dimensional vector onto d-dimensional vector (d < D),
while feature selection is an approach that selects a small
subset of original features. The aim of feature extraction and
feature selection is to prevent the curse of dimensionality
problem [Guyon and Elisseeff, 2003] and to identify the rele-

vant features that leads to better performance of learning
models.

In the connectivity networks (matrices), there exist a large
number of low level features (i.e., nX(n—1)/2, where n is
the total number of ROIs) but with small subject size. To
reduce the dimension of data and to find out the biomarkers
for MCI diagnosis, it is crucial to extract meaningful fea-
tures from the connectivity networks. The connectivity net-
works can be characterized at different levels, ranging from
properties characterizing a whole network at global scale to
properties of network components at local scale [Kaiser,
2011; Rubinov and Sporns, 2010]. Since our aim is to identify
MCI patients from NC, the weighted clustering coefficient
[Rubinov and Sporns, 2010], which conveys the topological
information of single node as well as the weighted informa-
tion of adjacent edges, was extracted from connectivity net-
work. However, since functional connectivity networks are
intrinsically fully connected, to reflect different levels of top-
ological structure of the original connectivity network, we
simultaneously threshold the connectivity network with dif-
ferent predefined values.
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Algorithm 1 Recursive Feature Elimination with Graph Kernel (RFE-GK)

Input:

Training subjects D={(G1,11), ..., (Gi, Vi), ..., (Gn,yn)} and threshold T,,, where G; is the i-th connectivity network, y; is
corresponding class label, and N is the number of training subjects.

Output:
Selected features (ROIs)
Initialize:

Subset of surviving features (ROIs) S=[1,2, ...,d], ranked feature (ROI) list F=[], and average accuracy list U=[]; Here d
is the number of surviving features in previous feature selection step;
Construct the thresholded network G,, with threshold T,, for connectivity network G;, i=1,....N

Repeat
Initialize a temporary list C=[J;
For each s € S
Let S’=S\{s};

For each pair of G|, and Gl i # j, construct two sub-networks using set S, and compute the graph kernel on two

sub-networks;

Train SVM via LOO cross-validation and get the accuracy c,

Update list C=[C, ]
End for

Find s” with corresponding maximum accuracy, and update ranked feature list F=[s F];
Update the average accuracy list U=[c, U], where Cis the average accuracy of C;

Eliminate s~ from S
Until S=||

Find c¢* with corresponding maximum average accuracy in U. Assuming that c* is the P-th value in U, we then select

top P features in F as selected features

Given the connectivity network (matrix) G=[w(i,j)]
€ R™", and the threshold T, (m=1,2,..., M), the connectiv-
ity network was thresholded by using the following
formulation:

0 if w(i,j)<T,
wm(ia]'):{ L. f ( ]) " (5)
w(i,f) otherwise
where n and M are the numbers of ROIs and thresholds,
respectively. Therefore, for each given threshold T,, we
can obtain a new connectivity network G,,=[wy(i,])],
which will be used for subsequent feature extraction.

The clustering coefficient, a local measure of individual
node, was extracted from the thresholded network as
[Rubinov and Sporns, 2010]:

F= ey o G R (e) 6)

jik

where d; is the number of neighboring node around node
i. These extracted clustering coefficients were treated as
features and used for subsequent feature selection.

It is worth noting that (1) for each thresholded connec-
tivity network, each node (ROI) corresponds to one fea-
ture, hence there are totally n features, (2) for each subject,
there are totally M different thresholded connectivity net-
works, and therefore we totally extract M groups of fea-
tures, as shown in Figure 1.

Feature Selection

In our studies, we adopted a two-stage feature selection
strategy. Specifically, a standard t-test, which has been
widely used in the neuroimaging analysis, was first per-
formed to screen out those features that are not significant
for discrimination between MCI patients and NC. For
instance, given training subjects, the P-value of each fea-
ture was first computed via f-test, and those features with
P-value larger than a given threshold will be omitted. Fur-
thermore, to preserve the topological information of con-
nectivity networks in feature selection, we used graph-
kernel based recursive feature elimination (RFE-GK) for
further selection of discriminative ROI features.

In the standard RFE method, linear or RBF kernel is
used for SVM classification, without considering the topo-
logical information of network. Since each feature corre-
sponds to a ROI or node, a subnetwork can be constructed
according to the selected features (ROIs) in the previous
feature selection step (i.e., t-test). Then, the graph kernel,
instead of conventional linear or RBF kernel, was used to
preserve the network topological information. Figure 2
illustrates the flowchart of the proposed RFE-GK
approach. Specifically, for each thresholded connectivity
network, we performed the following steps. First, we set
the features selected at the first feature selection step (i.e.,
t-test) as the initial surviving features, and used them to

¢ 2884 o



¢ Topological Graph Kernel ¢

construct the subnetwork with corresponding connections
in the thresholded connectivity network. Then, for each
node s in subnetwork, we removed it from the network
and computed graph kernel on the new subnetworks (i.e.,
after removing s-th node and corresponding edges) to
measure the topological similarity between different sub-
jects. Next, a SVM classifier with the above computed
graph kernel was trained on training subjects through
leave-one-out (LOO) cross-validation. Feature (ROI) that is
the least important for classification will be removed from
the surviving features set. The process was repeated until
the surviving feature set is empty. Algorithm 1 illustrates
the detailed procedure of the proposed RFE-GK method.

It is worth noting that our proposed RFE-GK method is
different from the standard RFE-SVM [Guyon et al., 2002],
which eliminates features through ranking based on
weight vector of a linear SVM. In our proposed method,
features are eliminated based on classification accuracy in
a wrapper-like approach. Moreover, there are two other
key differences between the proposed method and the
standard RFE-SVM, that is, (1) the former uses graph ker-
nel that preserves the topological (structural) information
of data while the latter uses standard kernel on vector-
type data without considering the structural information
and (2) the former can automatically determine a group of
stable features, as well as its number, by computing the
maximum average accuracy, while the latter needs to
decide the number of features by using other approach.

Classification

Finally, in the classification step, a linear SVM classifier
was adopted to identify MCI patients from NC by using
the features selected in the feature selection step. To deal
with multiple thresholded connectivity networks available
in each subject, we used multikernel SVM technique
[Zhang and Shen, 2012a; Zhang et al., 2011a] to combine
multiple kernels constructed from different thresholded
connectivity networks. Given a series of training connec-
tivity networks represented as G; with corresponding class
labels 1/,i=1, ..., N, where N is the number of training sub-
jects. Generally, the mixed kernel can be learned through a
linear combination of multiple basis kernels as below:

M

JEREHEPPITACHES @)
m=1

where k,, (xfn,x{n> is a basis kernel, x, and x, are two

selected features for training subjects G; and G; on the

m-th thresholded connectivity network, respectively, and p,,

is a nonnegative weighting parameter with Zﬁf:l W, =1
Different from the existing multikernel learning methods
[Kloft et al., 2011; Sonnenburg et al., 2006] that jointly opti-
mize the weighting parameter p,, together with other SVM
parameters, we adopted a coarse-grid search approach
through cross-validation on the training samples to deter-
mine the optimal p,,. After obtaining the optimal p,,, the

multiple kernels will be combined into a mixed kernel, and
standard SVM will be then performed to identify the MCI
patients from NC.

Implementation Details

In our study, we adopted the LOO cross-validation to
evaluate the performance of classifier. Specifically, for all
subject samples, one was left out for testing, and the
remaining were used for training (see Fig. 1). This entire
process was repeated for each subject, thereby yielding an
unbiased estimate of classification error rate. In the pro-
posed classification framework, each brain image was par-
cellated into 90 ROIs, where a 90X90 connectivity network
was then constructed according to these ROIs. Five differ-
ent values (i.e., T=1[0.20,0.30,0.38,0.40,0.45], with 0.38 as
the average value of connectivity strength between all
ROIs across all training subjects), were used to threshold
the connectivity network. The corresponding average con-
nection density (i.e., the fraction of present connections to
possible connections) of each threshold is located in inter-
val [40% 75%], which is to some extent consistent to the
average connection density interval of [25% 75%] used in
[Zanin et al., 2012], which demonstrated higher classifica-
tion performance. Moreover, 90 features were extracted
from each thresholded connectivity network. For each
extracted feature f;, we adopted a common feature normal-
ization scheme, that is, fi= (fl—fl)/ ;, where fi and o; are
respectively the mean and standard deviation of the i-th
feature across all training subjects. Here, f; and o; will be
used to normalize the corresponding feature of each test
subject.

For feature selection step, a statistical t-test was first per-
formed with five different thresholds for five different
thresholded networks, respectively. In our experiment, the
P-values were learned based on the training subjects via
the inner LOO cross-validation. Specifically, at each LOO
cross-validation, we varied P-value with [0.05 0.08 0.10
0.12 0.15] and computed the classification accuracy on
training subjects via the inner LOO cross-validation. The
P-value with the best classification performance (on the
inner LOO cross-validation) will then be used. Afterwards,
our proposed RFE-GK method was performed to select the
most discriminative ROI features. Here, the SVM was
implemented based on the LIBSVM library [Chang and
Lin, 2001], by using the default parameter values (i.e.,
C=1). At the classification step, the optimal weighting
parameter i, was learned based on the training subjects
through a grid search, using the range from 0 to 1 at a
step size of 0.1, via another LOO cross-validation.

It is worth noting that the nested LOO cross-validation
strategy used enhances the generalization power of the
classifier. For example, the inner cross-validation loop was
performed on the training data to determine certain
parameters while the outer cross-validation loop was used
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TABLE Il. Classification performance of different methods
Methods T: T, Ts Ty Ts Combined
ACC (%) VEC-RFE-LK - - - - - 83.8
VEC-RFE-RBF - - - - - 73.0
t-test 75.7 78.4 64.9 64.9 64.9 81.1
RFE-RBF 78.4 73.0 67.6 73.0 78.4 86.5
RFE-LK 83.8 70.3 64.9 78.4 64.9 86.5
RFE-GK 86.5 83.8 75.7 75.7 64.9 91.9
BAC (%) VEC-RFE-LK - - - - - 83.7
VEC-RFE-RBF - - - - - 71.4
t-test 75.5 77.5 61.0 61.0 61.0 81.7
RFE-RBF 73.2 71.4 56.5 62.7 71.0 85.7
RFE-LK 85.9 67.2 58.9 75.4 61.0 87.9
RFE-GK 87.9 81.5 71.2 73.4 61.0 94.0
SEN (%) VEC-RFE-LK - - - - - 83.3
VEC-RFE-RBF - - - - - 66.7
t-test 75.0 75.0 50.0 50.0 50.0 83.3
RFE-RBF 58.3 66.7 25.0 33.3 50.0 83.3
RFE-LK 91.7 58.3 41.7 66.7 50.0 91.7
RFE-GK 91.7 75.0 58.3 66.7 50.0 100.0
SPE (%) VEC-RFE-LK - - - - - 84.0
VEC-RFE-RBF - - - - - 76.0
t-test 76.0 80.0 72.0 72.0 72.0 80.0
RFE-RBF 88.0 76.0 88.0 92.0 92.0 88.0
RFE-LK 80.0 76.0 76.0 84.0 72.0 84.0
RFE-GK 84.0 88.0 84.0 80.0 72.0 88.0
AUC VEC-RFE-LK - - - - - 0.85
VEC-RFE-RBF - - - - - 0.79
t-test 0.84 0.86 0.74 0.71 0.68 0.86
RFE-RBF 0.68 0.77 0.75 0.65 0.76 0.83
RFE-LK 0.87 0.82 0.70 0.79 0.72 0.89
RFE-GK 0.85 0.86 0.77 0.78 0.60 0.94

Note: Ty, Ty, Ts, T4 and Ts denote using the individual thresholded connectivity network, respectively, while “combined” denotes using
all thresholded connectivity networks; ACC represents classification accuracy; BAC represents balanced accuracy of classification; AUC
represents the area under receiver operating characteristic curve; SEN represents sensitivity; SPE represents specificity; VEC-RFE-LK
and VEC-RFE-RBF represent the hybrid feature selection with the t-test and standard RFE-SVM on combined feature vector, using lin-
ear kernel and RBF kernel, respectively; t-test represents the feature selection method based on statistic ¢-test; RFE-LK and RFE-RBF rep-
resent the hybrid feature selection methods with f-test and standard RFE-SVM, using linear kernel and RBF kernel, respectively; RFE-

GK represents the proposed feature selection method.

to evaluate the generalizability of SVM models using
unseen subjects.

RESULTS
Comparison on Classification Performance

In our experiments, we evaluated the performance of
different methods by measuring the classification accuracy,
sensitivity, specificity, area under receiver operating char-
acteristic (ROC) curve (AUC), and balanced classification
accuracy. Specifically, the accuracy measures the propor-
tion of subjects that are correctly predicted among all sub-
jects, the sensitivity represents the proportion of patients
that are correctly predicted, and the specificity denotes the
proportion of NC that are correctly predicted. The ROC
curve is a plot of the sensitivity [Sen(c)] versus

1-specificity [1-Spe(c)] over all possible values (c) of the
marker. Besides, to avoid the possible inflated perform-
ance estimation on the unbalanced datasets, we also com-
pute the balanced classification accuracy, which can be
defined as the arithmetic mean of sensitivity and specific-
ity. Classification performances of the proposed and other
connectivity-network-based methods are summarized in
Table II. Figure 5 shows the ROC curves of different meth-
ods. Here, we compared our method with several feature
selection methods including: (1) t-test, (2) hybrid t-test and
standard RFE-SVM [including both linear kernel (RFE-LK)
and RBF kernel (RFE-RBF)], that is, a t-test was first per-
formed and then followed by the standard RFE-SVM to
select the most discriminative features. For further com-
parison, we also combined all 90-dimensional feature vec-
tors extracted from five thresholded connectivity networks
into a long 540 (=5 X 90) dimensional feature vector, and
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TABLE Ill. Statistical measures of performance of
different methods at the point of Yonden index

Methods Ji TP FP PPV (%) NPV (%)
VEC-RFE-LK 067 10 4 714 913
VEC-RFE-RBF 060 11 8 57.9 94.4
t-test 076 12 6 66.7 100.0
RFE-RBF 071 10 3 76.9 917
RFE-LK 076 11 4 733 95.5
RFE-GK 088 12 3 80.0 100.0

then perform different hybrid feature selections (i.e., t-test
and standard RFE-SVM), denoted as VEC-RFE-LK and
VEC-RFE-RBF corresponding to the linear and RBF ker-
nels, respectively. Finally, standard SVM is performed on
the above selected features for classification. It is worth
noting that (1) all experiments were performed via LOO
cross-validation, (2) in both Table II and Figure 5,
“combined” denotes methods using all thresholded con-
nectivity networks, while Ty, T, T3, T4, and T5 denote
methods only using one individual thresholded connectiv-
ity network.

As can be seen from Table II and Figure 5, the proposed
method performs the best in all performance measures
including the classification accuracy, balanced accuracy,
sensitivity, specificity, and AUC value. Specifically, our
method achieves a classification accuracy of 91.9%, a bal-
anced accuracy of 94.0%, an AUC of 0.94, and a sensitivity
of 100.0%, while for other connectivity-network-based fea-
ture selection methods, the best accuracy is only 86.5%,
the best balanced accuracy is 87.9%, the best AUC is 0.89,
and the best sensitivity is 91.7%. Obviously, by including
the topological information through graph kernel, our pro-
posed method achieves consistently better performance
than the existing methods. In addition, it is worth noting
that our method achieves a perfect sensitivity, that is, it
successfully classified all the MCI patients. Table II also
indicates that the combination of multiple thresholded
connectivity networks performed significantly better than
using any single thresholded connectivity network alone.

Moreover, Table S2 in the Supporting Information gives
the classification results on each test subject as well as the
combination weights of five thresholded connectivity net-
works. In addition, to investigate further the generalizabil-
ity of the obtained SVM classifier, we recorded the
number of support vectors (SVs) after the learning process.
Table S3 in the Supporting Information gives the number
of SVs used in each LOO cross-validation of each method.
As we can see from Supporting Information Table S3, our
proposed method achieves the smallest average number of
SVs compared with other methods.

Finally, we further employed other statistical measures
to evaluate the diagnostic power of the various methods.
Specifically, we used Yonden index (]) [Fluss et al., 2005],
positive predictive value (PPV), and negative predictive
value (NPV):

J = max{Sen(c)+Spe(c)—1}

TP

PPV = TP+FP
TN

NPV = TN+EN

where TP, TN, FP, and FN denote true positive, true nega-
tive, false positive, and false negative, respectively. Table
IIT summarizes these statistical measures of different meth-
ods at the point of Yonden index, and Figure 5 plots the
cut-off point corresponding to the Youden index for differ-
ent methods. As can be seen from both Table IIl and Fig-
ure 5, our proposed method achieves the best performance
on all above statistical measures.

The Most Discriminative Regions

In this subsection, we evaluated the discriminative
power of the selected features. Since the selected features
are different in each LOO cross-validation fold, we choose
those features with the highest occurrence frequency in all
LOO cross-validation as the most discriminative features
for classification.

Table IV shows the top twelve ROIs with the highest
frequency in different thresholded connectivity networks.
The result shows that the most discriminative regions
obtained using our proposed method include the inferior
temporal gyrus, anterior cingulate gyrus, amygdala, insula,
orbitofrontal cortex, heschl gyrus, rectus gyrus, and pre-
central gyrus, which are consistent with previous studies.
Figure 6 shows the top 19 ROIs that are selected from all
thresholded networks, as listed in Table IV.

To visualize the discriminative power of the selected
features, the locality preserving projection (LPP) approach
[Belkin and Niyogi, 2002; He and Niyogi, 2003] that pre-
serves the intrinsic geometrical structure of the data and
implicitly emphasizes the natural clusters in the data (i.e.,
it makes the neighboring points in the ambient space
nearer in the reduced representation space, and far away
points in the ambient space further in the reduced repre-
sentation space) was adopted to project the selected fea-
tures into a 2-D space. Specifically, for each feature
selection method we selected the top 12 features with the
highest frequency in LOO cross-validation and then pro-
jected them into a 2-D space using LPP. Figure S1 in the
Supporting Information shows the 2-D visualization
results of LPP approach. As can be seen from Supporting
Information Figure S1, feature selection methods enhance
the discriminative ability of the selected features compared
with the whole feature set.

The Connectivity Analysis

To analyze the connectivity strength between selected
ROIs and to visually show the differences on connectivity
networks for MCI patients and NC, we computed the
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TABLE IV. Top selected ROIs

Ty

T,

T3

L olfactory cortex

R inferior temporal gyrus

L inferior temporal gyrus

L anterior cingulate gyrus

R supramarginal gyrus

L supplementary motor area
L orbital part of inferior frontal gyrus
L gyrus rectus

R gyrus rectus

R amygdale

R precentral gyrus

R anterior cingulate gyrus

L inferior temporal gyrus

L olfactory cortex

R inferior temporal gyrus

R gyrus rectus

R amygdala

R precentral gyrus

L gyrus rectus

L orbital part of inferior frontal gyrus
L supplementary motor area
R supramarginal gyrus

L anterior cingulate gyrus

R anterior cingulate gyrus

L anterior cingulate gyrus
L olfactory cortex

R middle cingulate

L amygdala

L calcarine sulcus

R olfactory cortex

L middle cingulate

R inferior temporal gyrus
L orbital part of inferior frontal gyrus
R amygdala

L heschl gyrus

L gyrus rectus

T4

T;

All

L olfactory cortex

R middle cingulate

R olfactory cortex

L gyrus rectus

L anterior cingulate gyrus
L amygdala

R inferior temporal gyrus
L orbital part of inferior frontal gyrus
R amygdala

L inferior temporal gyrus
L calcarine sulcus

R anterior cingulate gyrus

L amygdala

R middle cingulate

L orbital part of inferior frontal gyrus
L olfactory cortex

R olfactory cortex

L gyrus rectus

L anterior cingulate gyrus
R inferior temporal gyrus
R anterior cingulate gyrus
L insula

L inferior temporal gyrus
L calcarine sulcus

R precentral gyrus

L orbital part of inferior frontal gyrus
L supplementary motor area
L olfactory cortex

R olfactory cortex

L gyrus rectus

R gyrus rectus

L insula

L anterior cingulate gyrus

R anterior cingulate gyrus

L middle cingulate

R middle cingulate

L amygdale

R amygdale

L calcarine sulcus

R supramarginal gyrus

L heschl gyrus

L inferior temporal gyrus

R inferior temporal gyrus

Note: Ty, To, T3, T4, and Ts denote, respectively, using single thresholded connectivity network, while “All” denotes the ROIs from all

thresholded connectivity networks; L and R represent left and right, respectively.

average connectivity network based on all 19 ROIs
selected in Table IV. Specifically, for each group, an aver-
age connectivity network was constructed based on all 19
selected ROIs with the connection as the average of
weights (i.e., connectivity strength) of corresponding edge
in connectivity networks for subjects in the same group.
Figure 7 graphically shows the average connectivity net-
works (matrix). Colors in Figure 7a,b represent connectiv-
ity strength, while colors in Figure 7c represent the
connectivity strength difference between MCI and NC
groups on certain ROIs. As can be seen from Figure 7, in
most cases the connectivity strengths in MCI group are
smaller than those in NC group.

However, to visualize the topology of network for MCI
and NC, an average connectivity subnetwork was con-
structed for each group, according to the selected ROIs in
each thresholded connectivity network. Moreover, the
threshold value that was used to threshold connectivity
network was also used to threshold the corresponding

average connectivity subnetwork. Figure 8 shows those
thresholded averaged connectivity subnetworks. Each red
node denotes a brain ROI, and the edge denotes the con-
nectivity between ROI pairs. The thickness of edge is pro-
portional to the weight of edge between ROI pairs, and T,
T,, T3, T4, and T5 denotes the individual thresholded con-
nectivity network, respectively. Compared with NC group,
we can observe significant reduction in connections in the
MCI group. These results suggest possible disruptions in
connectivity between these regions, as reported in previ-
ous studies.

DISCUSSION

In this article, we proposed a connectivity networks-
based classification framework to identify automatically
the MCI patients from NC. The key of the proposed
method involves the use of a new topological graph
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Figure 6.
Top 19 regions that were selected using the proposed method. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

kernel-based approach to select the most discriminative
features for classification. The classification performance
was evaluated via LOO cross-validation to ensure the gen-
eralization of classifier. The obtained results show that our
proposed method can significantly improve the classifica-
tion performance of the connectivity-network based classi-
fication method.

Significance of Results

Recently, connectivity-network-based classification meth-
ods have been proposed for diagnosis of neurodegenera-
tive diseases. However, the topological information from
network, which may potentially further improve predic-
tion accuracy, is not fully wutilized in the existing
connectivity-based classification methods. Our study dem-
onstrated that, by including the topological information,
the proposed method can achieve much improved per-
formance in identifying MCI subjects from NC. In particu-
lar, our method can achieve a perfect sensitivity (ie.,
correctly classifying all MCI subjects) compared with other
methods (for example, in [Wang et al., 2013] a sensitivity
of 86.5% is obtained, and in [Chen et al., 2011] a sensitivity
of 93% is obtained). This is important for clinical applica-
tions because there are different costs for misclassifying a
normal person to be a patient, compared with the case of

misclassifying a patient to be a healthy person. Obviously,
compared with the former, the latter may cause more
severe consequences and thus has higher misclassification
cost. Hence, it is advantageous for a classifier to provide
higher sensitivity rate.

The regions selected in the course of classification by
our method are in agreement with previous studies, which
include the inferior temporal gyrus [Han et al., 2011; Lenzi
et al., 2011], anterior cingulate gyrus [Davatzikos et al.,
2011; Grady et al., 2003; Han et al., 2011], amygdala
[Davatzikos et al., 2011], insula [Davatzikos et al., 2011;
Grady et al., 2003], orbitfrontal cortex [Han et al., 2011;
Wee et al.,, 2012a], heschl gyrus [Liu et al., 2012b], rectus
gyrus [Wee et al, 2012b], and precentral gyrus [Lenzi
et al., 2011]. However, we also analyzed the connectivity
between the selected brain regions and found that the
MCI patients have lower functional connectivity when
compared with the healthy subjects. This finding is con-
sistent with previous studies. For example, Bai et al. [2011]
explored the properties of whole-brain networks and
found the evidence of reduced connectivity in the MCI
group. Wang et al. [2013] investigated the topological
architecture of the functional connectome in MCI patients
and found abnormal structure as shown by an increase of
characteristic path length and impaired functional connec-
tivity between different functional modules. Supekar et al.
[2008] reported that AD patients had reduced clustering in
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(b) The average connectivity strength of NC grou;

SFI ORI NI N, N 6T XN NSO A Lol B

(c) Differences in average connectivity strength between MCland NC

Figure 7.
Visualization on average connectivity networks (matrices) con-
structed using |19 selected ROlIs in Table Ill. Here, colors in (a)
and (b) represent the connectivity strength, while the color in
(c) represents the difference of connectivity strength between
MCI and NC. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

the brain functional networks. Other studies suggested a
loss in small-world characteristics (i.e., high degree of clus-
tering and short path length) in subjects with MCI and AD
[Liu et al., 2012b; Sanz-Arigita et al., 2010; Yao et al., 2010].

These changes in connectivity may further indicate that
some ROIs are affected by the disease and their functional
connectivity between ROIs are thus disrupted, which is
consistent with the evidences of early functional abnormal-
ities in MCI patients [Feng et al., 2012; Liu et al., 2012b;
Wang et al., 2013]. Therefore, it is reasonable to speculate
that these decreased connectivity led to decreased func-
tional integration and information processing capability of
the brain, which may account for cognitive deficits in
patients.

Overall, our results show that the proposed method can
automatically and effectively identify the MCI patients from
NC, and provide empirical evidence for disrupted network
organization in MCI at nodal and connectional levels.

Functional Connectivity Network and
Identification of MCI

Functional connectivity analysis is a technique for in vivo
examination of brain regions cooperating during rest or task
performance and provides a measure of the temporal corre-
lation between neurophysiological activities in different
brain regions [Bai et al., 2009; Friston et al., 1996]. Recent
studies have shown that higher cognitive processing is not
isolated to specific brain regions, but instead resulting from
the interactions of different brain regions [Bai et al., 2009;
Huang et al., 2010]. Numerous studies have suggested that
the neurodegenerative diseases such as AD and MCI are
related to a large-scale, highly connected functional net-
work, rather than solely on one single isolated region [Dam-
oiseaux et al., 2012; Filippi and Agosta, 2011; Grady et al.,
2001; Kiuchi et al., 2009; Kuceyeski et al., 2012; Liu et al.,
2012a; Rose et al., 2000; Sanz-Arigita et al., 2010; Stam, 2010;
Xie and He, 2011; Xie et al., 2006]. Therefore, this concept
provides an important alternative to make use of the charac-
teristics of functional connectivity to identify the AD or MCI
patients from NC, and to understand better the underpin-
nings of MCI and AD pathology.

Recently, some works on identifying MCI based on extract-
ing features from connectivity network have been reported
[Chen et al., 2011; Wee et al., 2011, 2012a,b]. For example, in
[Wee et al., 2012a] a multispectrum approach was proposed
to characterize the blood oxygenation level dependent
(BOLD) signals with multiple frequency sub-bands, where
local clustering coefficients were then extracted from these
networks as features for classification. Also, in [Chen et al.,
2011] the averaged low-frequency BOLD signal time course
was computed for 116 ROIs, and the Pearson product
moment correlation coefficients of pairwise ROIs were used
to classify subjects. As can be seen from Table IV, the pro-
posed method achieves the best accuracy.

Effect of Feature Extraction and Selection

Traditional algorithms used in machine learning are
often susceptible to the well-known problem of the curse
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Figure 8.

Thresholded average connectivity subnetwork based on top 12
selected ROIs (as listed in Table Ill) for NC (a) and MCI (b)
groups. Tl, T2, T3, T4, and T5 denote using ROIs from the cor-
responding thresholded connectivity network. (PCG.R =R pre-
central gyrus, ORBinf.L =L orbital part of inferior frontal gyrus,
SMA.L =L supplementary motor area, OLFL =L olfactory cor-
tex, OLFR=R olfactory cortex, REC.L=L gyrus rectus,
REC.R =R gyrus rectus, INS.L=L insula, ACG.L=L anterior

cingulate gyrus, ACG.R =R anterior cingulate gyrus, MCG.L=L
middle cingulate, MCG.R =R middle cingulate, AMYG.L=L
amygdala, AMYG.R =R amygdala, CALL=L calcarine sulcus,
SMG.R =R supramarginal gyrus, HES.L=L heschl gyrus,
ITG.L=L inferior temporal gyrus, ITG.R =R inferior temporal
gyrus; L = Left, R = Right). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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TABLE V. Comparison on classification performance of
different functional connectivity network based methods

No. of
subjects
ACC SEN SPE
Method MCI Normal (%) (%) (%) AUC
Wee’s (Wee et al., 12 25 86.5 - - 0.86
2012a)
Chen’s (Chen et al., 15 20 91.0 930 910 095
2011)
Proposed 12 25 919 100.0 919 094

of dimensionality [Guyon and Elisseeff, 2003]. In these sit-
uations, it is often beneficial to reduce the dimension of
the data to improve the efficiency and accuracy of data
analysis. In addition, from a statistical point of view it is
desirable that the number of training subjects should sig-
nificantly exceed the number of features. In theory, the
number of subjects needs to be increased exponentially
with the number of features if inference is to be made
about the data [Cunningham, 2008]. Feature extraction and
selection, which are often applied as a data pre-processing
step or part of the data analysis to simplify the data
model, are the two most commonly used approaches for
dimensionality reduction. In this study, we adopted both
approaches to pre-process our data to improve the per-
formance of classifier and to find out the biomarkers for
identifying MCI from NC.

To evaluate the effect of feature extraction and selection,
we performed three additional experiments. (1) Without
feature extraction from connectivity network and without
feature selection (Exp 1). Specifically, we directly con-
verted the connectivity network (matrix) into a vector,
instead of extracting features from connectivity network.
Then a linear SVM was trained to classify the MCI from
NC based on the aligned vectors. (2) Without feature
extraction from connectivity network (matrix) but with fea-
ture selection (Exp 2). Specifically, we converted the con-
nectivity network (matrix) into a vector, and a simple
feature selection method based on statistic t-test was per-
formed. Then, a linear SVM was used to classify the MCI
patients from NC. (3) With feature extraction but without
feature selection (Exp 3). Specifically, the features (i.e., the
clustering coefficient) were first extracted from the thresh-
olded connectivity network before they were combined
into a long vector and used for MCI classification. The
experimental results are summarized in Table VI. As can
be seen from Table VI, the method in the first experiment
obtains the worst classification performance, because of
the following disadvantages: (1) the aligned vectors have
huge features (here 90 X 89/2 =4005), which may cause
the problem of overfitting on training; (2) some useful
information (e.g., topology) of connectivity is lost in
matrix-to-vector transformation. The results in the second

experiment are the best, indicating that the feature selec-
tion can improve the classification accuracy. These three
methods are, however, inferior to the proposed method,
indicating the importance of employing both feature
extraction and feature selection.

Effect of Threshold

In AD/MCI studies threshold-based method has been
used for exploring topological properties of functional con-
nectivity network [Liu et al., 2012b; Sanz-Arigita et al.,
2010; Supekar et al., 2008]. To determine an appropriate
threshold, network properties are often explored over a
range of thresholds. For example, Supekar et al. [2008]
adopted thresholds ranging from 0.01 to 0.99 with an
increment of 0.01 to explore the “small-world” properties
of functional connectivity networks in AD. Recently, Zanin
et al. [2012] proposed an approach to determine the best
threshold by exploring the classification performance on
the whole range of applicable thresholds. Compared with
the single threshold based methods, our method has the
following advantages; (1) avoiding testing over a range of
thresholds to find the optimal one: (2) combining network
properties from multiple thresholded networks for classifi-
cation by using the multiple-kernel learning technique.

To investigate the effect of threshold on final classifica-
tion performance, we performed the following experiment
on nonthresholded networks. Specifically, we first
extracted features (i.e., the local clustering coefficients)
directly from the original connectivity network (i.e., non-
thresholded connectivity networks). Then, we performed
the hybrid feature selection (i.e., t-test and standard RFE-
SVM with linear kernel) to select the most discriminative
features. Finally, a linear SVM was trained for classifica-
tion. The obtained classification accuracy is 72.9%, with a
balanced accuracy of 67.0% and an AUC value of 0.82.
Obviously, these results are much lower than those of our
methods as shown in Table II, which validates the efficacy
of our proposed multithreshold approach for functional
connectivity network based classification.

Effect of Image Preprocessing Step

In this subsection, we investigate the effect of image pre-
processing step for final classification. First, to check
whether motion parameters are the same in the two
groups (i.e., MCI patients and NC), we performed two-

TABLE VL. Classification performance without-feature-
extraction and/or without-feature-selection

Experiment ACC (%) BAC (%) AUC
Exp 1 64.86 48.00 0.50
Exp 2 70.27 65.00 0.80
Exp 3 64.86 48.00 0.56
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sample t-test on the six standard head motion parameters
between patient and control groups. The results show that
the head motion profiles are matched between two groups
(P>0.2182 in any direction), and none of the subjects in
the study have a displacement >3 mm and an angular
rotation >3 degrees in any direction. Furthermore, the
mean motion metric, as mentioned in [Van Dijk et al,
2012], has been used to evaluate the head motion between
two groups, and no significant (P>0.05) difference was
observed based on two-sample t-test.

Then, we performed another set of experiments on the
same dataset but using the image preprocessing steps
descriebd in [Van Dijk et al., 2012], except for global signal
regression due to controversy in this preprocessing step.
The details of image preprocessing are provided in the
Supporting Information. In the experiments, we adopted
the same setting as before except for using different sets of
thresholds T'=1[0.0, 0.1, 0.15, 0.2, 0.25]. The corresponding
average connection density of these thresholds is located
in the interval [38%, 65%]. In the Supporting Information,
Table S4 gives the classification results, and Supporting
Information Table S5 shows the top twelve selected ROIs
in five thresholded connectivity networks.

As can be seen from Supporting Information Table S4
and Table II, overall two different image-preprocessing
steps achieve comparable performances in terms of classi-
fication accuracy and balanced accuracy. Significant
improvements can still be observed when using different
image-preprocessing method, which confirms that our pro-
posed method performs better than the compared meth-
ods. In addition, comparing Supporting Information Table
S5 with Table IV, we find that the most of discriminative
regions obtained with two different preprocessing steps
are consistent.

Limitations

This study is limited by following factors. First, during
the network construction, the definition of nodes and
edges is a critical step. Previous studies have demon-
strated that network nodes can be defined using both ana-
tomical and/or functional brain atlases and image voxels,
but the constructed network exhibited significantly differ-
ent topological properties [Hayasaka and Laurienti, 2010;
He and Evans, 2010; Sanabria-Diaz et al.,, 2010; Wang
et al.,, 2009; Zalesky et al., 2010]. This study does not ana-
lyze the impact of different brain parcellation atlases on
classification performance. Second, the performance of our
proposed method may be affected by the unbalanced data.
A classifier will normally try to adapt itself for better pre-
diction of the majority class. Although the sensitivity has
been improved by our proposed method, the proposed
framework at its current stage is not designed to handle
this issue. Full investigation focusing on handling unbal-
anced data will be our future work. Third, in our study,
we investigated only the classification between MCI and

NC, and did not test the ability of the proposed frame-
work to identify AD from NC, and more importantly the
multiclass classification of AD, MCI, and NC. Many multi-
class classification methods are available [Duda et al.,
2001] and can be tested, which will be our future work.
Another limitation of our current study is the limited sam-
ple size. In the future, we will evaluate our proposed
method with larger dataset.

CONCLUSION

In this article, we have proposed a connectivity
networks-based classification framework to identify auto-
matically MCI patients from NC. The core of the proposed
method involves a novel topological graph kernel based
feature selection method. Specifically, the graph kernel
was used to measure the topological similarity between
two networks of subjects. Moreover, multiple thresholds
were used to threshold the functional connectivity net-
work, and multiple kernel learning approach was adopted
to combine features that were selected from multiple
thresholded connectivity subnetworks. Experimental
results show not only the significant improvement of clas-
sification performance in terms of accuracy, AUC value,
and sensitivity, but also the great potential of our method
in detecting ROIs and functional connectivity that are sen-
sitive to disease pathology.
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