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Summary

Researchers have used whole-genome sequencing and gene

expression profiling to identify genes associated with age, in

the hope of understanding the underlying mechanisms of

senescence. But there is a substantial gap from variation in gene

sequences and expression levels to variation in age or life

expectancy. In an attempt to bridge this gap, here we describe

the effects of age, sex, genotype, and their interactions on high-

sensitivity metabolomic profiles in the fruit fly, Drosophila

melanogaster. Among the 6800 features analyzed, we found

that over one-quarter of all metabolites were significantly

associated with age, sex, genotype, or their interactions, and

multivariate analysis shows that individual metabolomic profiles

are highly predictive of these traits. Using a metabolomic

equivalent of gene set enrichment analysis, we identified

numerous metabolic pathways that were enriched among

metabolites associated with age, sex, and genotype, including

pathways involving sugar and glycerophospholipid metabolism,

neurotransmitters, amino acids, and the carnitine shuttle. Our

results suggest that high-sensitivity metabolomic studies have

excellent potential not only to reveal mechanisms that lead to

senescence, but also to help us understand differences in

patterns of aging among genotypes and between males and

females.
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Introduction

Lifespan is a highly heritable trait. Over the past 20 years, researchers

working on lab-adapted organisms have been able to identify evolu-

tionarily conserved genetic pathways which, when knocked down or

overexpressed, are able to dramatically increase lifespan. These successes

underscore two critical questions: first, at the molecular level, what are

the underlying mechanisms by which these genes affect longevity;

second, at the population level, do these same genes account for

standing variation in longevity in natural populations?

These questions are complicated by the fact that the age at which an

individual dies depends not only on its genotype, but also on a lifetime of

effects accumulated through environmental exposure, the environment-

specific response of genes, and the downstream physiological

consequences of these complex factors. Fortunately, whole-genome

sequencing and genome-wide association (GWA) studies now make it

possible to identify segregating alleles that affect complex phenotypes

such as body height, diabetes, schizophrenia, and even longevity (Jeck

et al., 2012), but GWA studies suffer from numerous challenges, and

these are further compounded in analyses of lifespan. First, alleles

identified in GWA studies typically explain just 0.1–1.0% of the variation

in complex traits (Park et al., 2010). Second, the genetic basis of lifespan

appears, at least in part, to differ between the sexes (Burger &

Promislow, 2004). Third, lifespan includes a substantial degree of

stochasticity, varying dramatically even among genetically identical

individuals raised in a constant and identical environment (Kirkwood

et al., 2005). Finally, and perhaps most importantly, lifespan is a highly

composite trait potentially influenced by the functional decline of many

underlying processes. To fully understand the genetics of lifespan, we

need to understand the genetics not simply of age at death, but rather

of the underlying causes of death.

Here, we suggest that many of the challenges that we face in our

attempts to define the pathways that account for age-related declines in

function, and for genetic variation in these declines, can be resolved

through the use of high-resolution metabolomics (Mishur & Rea, 2012).

If we can decompose the physiological processes that influence

morbidity and mortality to their constituent components (i.e., the

metabolome), we will be an important step closer to bridging the gap

between genotype and phenotype (Fig. 1). The metabolome is effec-

tively a functional intermediate between genotype and phenotype.

Previous work illustrates how the metabolome can serve as a strong

bridge between genotype and phenotype. While allelic variation typically

explains only a small fraction of the variation in complex phenotypes,

GWA studies of the metabolome have found genetic variants capable of

explaining up to 60% of the variance in the concentration of individual

metabolites (Suhre et al., 2011). The metabolome also appears to be a

sensitive indicator of age-related physiological changes both in inverte-

brates and vertebrates (e.g., Sarup et al., 2012; Yu et al., 2012).

Moreover, different mutants that extend longevity share common

metabolomic signatures (e.g., Caenorhabditis elegans: Fuchs et al.,

2010; Mus musculus: Wijeyesekera et al., 2012).

While we have learned much from these initial studies, most have

been limited by the use of relatively low-sensitivity metabolomics

technology and by limited genetic information. Studies of age and the
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metabolome have hitherto been carried out using standard metabolomic

methods, which typically measure concentrations of several hundred

metabolites, at most. This represents one percent or less of all the

circulating metabolites found within an individual animal (Jones et al.,

2012). This would be the equivalent of measuring just 300 genes in a

‘genome-wide’ screen in humans. Moreover, most of these studies have

not been able to distinguish metabolomic variation that is due to genetic

differences among individuals from variation due to nongenetic phys-

iological differences.

Here, we demonstrate the power of new, state-of-the-art high-

resolution metabolomics (Jones et al., 2012) to characterize the aging

metabolome. Hardware and software advances in high-resolution

metabolomics now support extremely sensitive measurement of tens

of thousands of metabolites (Jones et al., 2012; Uppal et al., 2013),

and these high-resolution studies can be used to determine the effects

of age on the entire metabolome (De Guzman et al., 2012). We use

high-resolution metabolomics to ask three specific questions. First, is

the metabolome a sensitive indicator of physiological state in the aging

fly? Second, is the high-sensitivity metabolome a useful biomarker of

age, can it predict the age of an individual, and moreover, can it

explain sex- and genotype-specific variation in age. And third, can

metabolomic studies reveal novel pathways associated with natural

variation in aging?

Results

We analyzed metabolomics data from 15 inbred lines from the

Drosophila Genome Reference Panel (DGRP, Mackay et al., 2012) (Table

S1, Supporting information). After quality control (see Experimental

procedures), our final dataset consisted of 293 biological samples, each

of which was run twice through each of two columns. Each sample

provided measures for 3091 features from an anion exchange (AE)

column, and 3714 features by reverse phase (C18) liquid chromatog-

raphy, for a total of 6805 features (note that some overlap occurs

between columns) (see Experimental procedures below, and Soltow

et al., 2011; for a description of the differences between these two

columns). Of the features detected, we were able to obtain putative

molecular matches for 877 metabolites in the AE column and 717

metabolites in the C18 column based on mass-charge (m/z) ratio using

the metabolite prediction program mummichog (Li et al., 2013). In our

individual metabolite analysis, we define statistically significant effects on

m/z concentrations using a conservative false discovery rate a = 0.01

(Benjamini & Hochberg, 1995). Seven of the fifteen lines used here were

putatively positive for Wolbachia infection (Table S1). Including Wolba-

chia status in our statistical models had no appreciable effect on our

conclusions and so is not discussed further.

We divide the presentation of results into three sections. First, we

examine the broad effects of age, sex, and genotype (including measures

of heritability) on individual metabolites. Second, we identify metabolites

that show significant interaction effects, looking in particular at

age 9 sex and age 9 genotype interactions. Third, we describe specific

types of metabolites that are enriched among all metabolites signif-

icantly associated with these main effects and their interactions.

Main effects

The metabolome appears to be highly sensitive to physiological state,

showing dramatic variation in response to sex, age, and genotype

(Table 1). The proportion of metabolites significantly associated with the

traits we measured varied from a low of 1% of C18 metabolites

Fig. 1 To complete the map from genotype–phenotype (G-P), we face numerous

hurdles. First, the genome consists of complex epistatic networks of genes.

Second, each gene can have pleiotropic effects on multiple traits. Third, the causal

path between a gene and its downstream phenotype is far from direct, including

effects on the transcriptome, proteome, and metabolome, and influenced by

environmental effects. This figure suggests that the metabolome can provide a

valuable intermediate stage to complete the G-P map, identifying genetic and

environmental factors that influence metabolomic profiles, and then correlating

metabolomic profiles with phenotypes of interest.

Table 1 Number and percentage of metabolites associated with age, sex, genotype, and their interactions for anion exchange (AE) and C18 columns

Parameter # of AE metabolites % of AE total # of C18 metabolites % of C18 total

Increase with age 76 2.5 36 1.0

Decrease with age 96 3.1 167 4.5

Increase in males 267 8.6 133 3.6

Increase in females 381 12.3 431 11.6

Genotype 423 13.7 292 7.9

Age 9 sex 71 2.3 167 4.5

Age 9 genotype 137 4.4 542 14.6

Sex 9 genotype 26 0.8 15 0.4
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increasing with age to a high of almost 14% of AE metabolites that

vary among genotypes. In each case, effects of one variable were

measured after controlling statistically for the effects of the other two

variables. For example, our test for the effect of genotype held the

effects of sex and age constant, effectively testing if there are

significant differences in the intercept of m/z intensity vs. age among

genotypes. Figure 2 shows two metabolites with confirmed identities

with significant age effects and two with significant sex effects. Note

that sex effects are likely underestimated, because we only included

metabolites present in at least 95% of male samples and 95% of

female samples.

As a separate measure of genetic effects, we used the intraclass

correlation (t) among the fifteen inbred lines as a measure of heritability

(the percentage of total variation due to genetic effects). We identified

almost 300 metabolites with t ≥ 5% (134 C18 metabolites, 149 AE

metabolites), with maximum value of t = 28.8% among AE metabo-

lites (m/z = 693.2182) and t = 32.3% among C18 metabolites (m/

z = 179.0844). The full distribution of heritabilities is shown in Fig. S1

(Supporting information).

Supervised multivariate analysis revealed that the metabolome is

strongly predictive of sex and age. Partial least squares discriminant

analysis differentiated almost completely between the metabolome of

males and females (Fig. 3) and among flies of different ages (Fig. S2,

Supporting information). Similarly, using partial least squares regres-

sion, we found the metabolome to be an accurate predictor of age.

For both males and females, a model based on a random sample of

two-thirds of all individuals was able to explain between 78% and

92% of the variance in age of the remaining one-third of samples

(Fig. 4).

Interaction effects

In addition to the substantial proportion of metabolites that showed

significant age-specific changes in intensity or that differed significantly

between sexes or genotypes, we also found numerous metabolites

associated with interaction effects [i.e., metabolites for which the slope

of change with age differs significantly between the sexes or among

genotypes (Table 1)]. One example of a known metabolite with

significant effects on age, sex, and their interaction is shown in Fig. 2B.

Taken together, we found a total of 995/3091 metabolites (32.2%) in

the AE column and 995/3714 (26.8%) in the C18 column whose

concentration was effected by age, sex, genotype, or some interaction

thereof.

Metabolite enrichment

Using the program mummichog (Li et al., 2013), we asked whether

subsets of metabolites associated with a particular trait or trait

combination were enriched for specific classes of metabolites. Our

analysis revealed a large number of metabolic pathways whose

constituent metabolites were overrepresented among all metabolites

associated with sex, age, and their interactions. The complete list is

shown in Table S2 (Supporting information).

Among metabolites that change with age, we identified four groups

that are notable for being strongly enriched for certain pathways and

being of specific interest from an aging perspective. The first group,
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Fig. 2 Specific metabolites associated with age (A, C), sex (D), and their

interaction (B) (P < 4 9 10�11 in all cases). Blue dots indicate males, and red dots

indicate females; the value on the age-axis for (B) and (D) is shifted between the

sexes for illustrative purposes only. Confirmed metabolite identities include (A)

oleoylcarnitine; (B) 1-oleoylglycerophosphoethanolamine; (C) stearoylcarnitine;

and (D) glutamine.
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Fig. 3 First component value from partial least squares discriminant analysis

showing strong separation of males and females. (A) anion exchange column

[minimum classification error rate (CER) based on ten-fold validation = 0.017,

using four metabolites]. After permuting the class variable (sex),

CER = 0.385 � 0.008 (mean � standard error, n = 10 permutations). (B) C18

column (minimum CER = 0.021 based on 25 metabolites. After permutation,

CER = 0.371 � 0.015 [mean � SE, n = 10 permutations]).
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illustrated in Fig. 5, includes metabolites associated with sugar and

glycerophospholipid metabolism. These two pathways are connected via

interactions with 40-phosphopanthothenate. Metabolites associated with

glycolysis, including G6P, F6P, and ‘feeder’ molecules F1P, G1P,

galactose 1-phosphate, trehalose 6-phosphate, and mannose 6-phos-

phate, show a clear decline with age. Metabolites associated with

glycerophospholipid metabolism show both increases and declines with

age and include sphingosine, phosphoryl ethanolamine, 1-L-myo-inosi-

tol-1-phosphate, and phosphoryl choline.

The second group of molecules is the carnitines, illustrated in Fig. S3

(Supporting information). These molecules, which make up the carnitine

shuttle, are a key component of fatty acid metabolism and show an

almost uniform, highly significant decline with age.

The third and fourth groups, described in detail in Table 2, include

amino acids (AA) and neurotransmitters, including molecules involved in

monoamine metabolism as well as the inhibitory neurotransmitter

c-aminobutyric acid (GABA) and its precursor arginine.

Among the 150 most heritable metabolites, we observed enrichment

for two pathways related to tryptophan metabolism–tryptophan degra-

dation (AE: n = 4 observed/8 total, Padj = 0.0034; C18: n = 2 observed/

7 total, Padj = 0.023) and serotonin and melatonin biosynthesis (AE:

n = 4/6, Padj = 0.0028; C18: n = 2/7, Padj = 0.023).

Discussion

Beginning with Pletcher et al.’s (2002) groundbreaking study on the

transcriptome of aging fruit flies, systems biological studies of aging in

the fruit fly have focused primarily on the transcriptome. Here, we

turned our attention to the metabolome, in an attempt to determine the

degree to which the metabolome (i) is associated with physiological

state; (ii) can predict age, sex, and genotype-specific variation in aging;

and (iii) might reveal novel metabolic pathways associated with natural

genetic variation in aging.

While previous studies have looked at the effects of age, sex, or

genotype on metabolomic variation, this study is unique not only in its

scope (i.e., the very large number of metabolites analyzed), but also in its

design. By including age, sex, and genotype, we were able to measure

the independent effects of all three of these fundamental biological

parameters simultaneously, as well as of their interactions, and to

identify specific metabolic pathways associated with changes due to age,

sex, and genotype. This study also takes advantage in particular of new

advances in high-resolution metabolomics (Jones et al., 2012). With the

availability of this new system, we can now identify tens of thousands of

features from samples as small as a few flies (2–3 mg of tissue, in this

case).

We found that the metabolome is, indeed, highly sensitive to

physiological state as influenced by sex, by age, and by underlying

genotype, with as much as one-third of the entire metabolome

responding significantly to these factors or their interactions. Moreover,

the metabolome proved to be strongly predictive of sex and age. These

findings hold out the hope that metabolomic profiles might be a

powerful biomarker of age. Further studies are needed to determine

whether samples that are younger or older than predicted by their

metabolomic profile would be relatively longer- or shorter-lived, respec-

tively.

While this study set out to identify metabolites affected by age, the

most dramatic effects were found with respect to sex. In fact, we have

likely underestimated the proportion of metabolites that differ between

the sexes, as we excluded all metabolites that were absent in more than

5% of samples from either sex. Thus, metabolites that were found

consistently in one sex, but less so or not at all in the other sex, would

have been excluded from our analysis. Our finding of sex differences in

multiple classes of metabolites is consistent with earlier studies on flies

showing sex differences in lipid profiles (Parisi et al., 2011; Scheitz et al.,

2013).

Given these extensive differences, and the ease with which we are

able to carry out genetic manipulations in Drosophila, we should be able

to use the fly as a model system to identify the genetic basis of sex-

specific differences in the metabolome.

We found between 7% (C18) and 13% (AE) of all metabolites

differed among genotypes. This finding holds out the promise of

addressing two critical issues. First, given the strong genetic signature of

variation in metabolites, we should be able to identify the genetic basis

of individual variation in metabolites in Drosophila, as others have carried

out in humans (e.g., Kettunen et al., 2012; Suhre & Gieger, 2012).

Second, and of central interest to aging research, we should be able to

determine the extent to which genotype-specific metabolite profiles are

correlated with lifespan (and, of course, other traits of interest). These

results also fit well within the context of earlier work showing the effects

both of life-extending mutants (e.g., Fuchs et al., 2010; Wijeyesekera

et al., 2012) and of selection on lifespan (Sarup et al., 2012) on

metabolite profiles. Whether these treatments can actually reverse the

effects of age on the metabolome requires more detailed analysis.

Perhaps the most unexpected finding was the considerable number of

metabolites that showed significant age 9 genotype interactions

(Table 1). This finding was facilitated by the fact that we were able to

measure metabolites at seven different ages for 15 different genotypes.
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Fig. 4 Predicted vs. observed age, for C18 males (A), anion exchange (AE) males

(B), C18 females (C), and AE females (D). In each case, two-thirds of all samples

were chosen at random to construct a model using partial least squares regression.

This model was then used to predict values for the remaining one-third of the

samples. Predictions were repeated twenty times in each case, and the figures

shown here represent cases close to the mean R2 value. The red line represents a

second-order polynomial fit to the data, and the dashed gray line is the isometric

line. These results are consistent with R2 values obtained from ten-fold cross-

validation scores based on sparse PLS on the full dataset (R2 values: AE males: 0.92;

AE females 0.83; C18 males: 0.88; C18 females: 0.78). In all four cases, R2 values

for permuted datasets were < 0.05.

Aging in the fly metabolome, J. M. Hoffman et al. 599

ª 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



Scaled up to a larger sample of genotypes, we are confident that future

studies should enable us to identify single genes associated not only with

baseline metabolite levels (e.g., Suhre et al., 2011; Kettunen et al.,

2012), but also with the degree to which metabolite concentrations

change with age and the impact of these changes on other age-related

traits.

The strong effect of a sex 9 age interaction on metabolomic profiles

also holds out great promise for our ability to better understand why

sexes differ in longevity and in patterns of age-associated disease.

Previous studies have looked at the degree to which age and sex affect

metabolite concentration (Slupsky et al., 2007; Psihogios et al., 2008),

although these studies have not looked specifically at interactions

between sex and age. Going a step further, we might ask whether we

can identify genes that affect sex differences in age-specific trajectories

of specific metabolites. While such a ‘third-order’ analysis is complex, its

feasibility is hinted at by the existence of numerous metabolites with

statistically significant three-way interaction between sex, age, and

genotype (C18: n = 56; AE: n = 34).

Our findings suggest not only that the metabolome might be a useful

biomarker of physiological state, but also that it might reveal novel

pathways associated with age. The age-related decline in carnitines was

perhaps the most consistent pattern that we observed here. Carnitines

are critical for the transfer of fatty acids into the mitochondrian, where

they undergo b-oxidation, generating acetyl-CoA, which then enters the

TCA cycle. In their study of aging in mice, Houtkooper et al. (2011)

found a similar age-related decline not only in acylcarnitines, but also in

genes associated with fatty acid metabolism. Similar declines have also

been seen in humans (e.g., Gomez et al., 2012), and numerous studies

point to the ameliorative effects of supplemental carnitines on senes-

cence (e.g., Noland et al., 2009). Our findings are consistent with

another recent study in Drosophila showing age-related changes in fatty

acid profiles (Moghadam et al. 2013).

Amino acid balance is thought to explain the dramatic response of

lifespan to dietary restriction (Grandison et al., 2009), and AAs are

important activators of the aging-related target of rapamycin (TOR)

pathway. We found AA enrichment among metabolites that increased

with age, that decreased with age, that were higher in males, and that

interacted between age and sex or age and genotype. These last two

groups suggest that AA levels might be useful in predicting differences in

patterns of aging between males and females, or among genotypes. In

support of this potential, AAs were among the metabolites with the

highest heritability, a finding consistent with previous studies on the

heritability of the metabolome (Suhre et al., 2011; Kettunen et al.,

2012; Rhee et al., 2013). Interestingly, the AAs that we identified as

Fig. 5 The network shown here represents

output from mummichog analysis with

color hue determined by the sign and size

and color intensity determined by the

magnitude of the regression coefficient in

the age model (blue is negative, red is

positive). The metabolites are putatively

annotated based on m/z ratio. This

particular module is enriched for

metabolites associated with glycolysis, for

metabolites that feed the glycolytic

pathway, and for metabolites associated

with glycophospholipid metabolism

(P = 0.04, see text for details).

Aging in the fly metabolome, J. M. Hoffman et al.600

ª 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



having the highest heritability were similar to three of four AAs found to

be highly heritable in humans, including isoleucine, proline, and

glutamine (Suhre et al., 2011).

Among metabolites that declined with age, we also observed

enrichment of those associated with glycolysis and glycophospholipid

metabolism. These two groups were linked through pantothenic acid

(Vitamin B), which is required for the conversion of pyruvate (from

glycolysis) to acetyl-CoA, part of phospholipid biochemistry. Our data

suggest that at least in flies, glycolysis declines with age. We saw that

overall, membrane phospholipids declined with age, although some

metabolites, such as phosphatidylethanolamine and phosphatidylcho-

line, moved in opposite directions (Fig. 5), an observation consistent with

previous studies (Kostal et al., 2011). Studies in flies have shown strong

effects of thermal stress on membrane phospholipids (e.g., Overgaard

et al., 2008). Future studies might benefit from a focus on the degree to

which the well-established effect of temperature on lifespan is

associated with changes in phospholipid biochemistry.

In this study, biogenic amines were associated with age and sex, and

tryptophan metabolism in particular showed high levels of heritability.

Previous studies in flies have suggested that both dopamine and

serotonin signaling might be important regulators of aging (De Luca

et al., 2003; Vermeulen et al., 2006), either directly or indirectly through

their interaction with insulin signaling pathways (Toivonen et al., 2009).

Interestingly, we also saw enrichment for the tryptophan degradation

pathway, to kynurenine, among metabolites with the highest heritabil-

ity. Recent work has implicated this pathway with aging in both worms

(Coburn et al., 2013) and flies (Oxenkrug et al., 2011).

Given the enrichment of these pathways among the most heritable

metabolites, our results offer hope that these pathways might help to

explain variation in important fitness traits, including survival, in natural

populations. This might be especially true of sex-specific differences in

aging. Biogenic amines were found to be common not only among

metabolites that differed between males and females, but also among

metabolites whose age-specific trajectories were sex-specific (Table S1).

There are, of course, some limitations to this work. First and foremost,

we do not yet have a curated Drosophilametabolome. While we are able

to obtain putative matches for approximately one-quarter of all

metabolites, these matches often carry considerable uncertainty. In

some cases, a single mass-charge ratio might match 10 or more putative

known molecules. Once the fly metabolome is curated, we will be able

to more accurately describe the dynamics of fly metabolic pathways.

Moreover, in limiting our assay to metabolites with m/z-ratios of < 900,

we have eliminated many components of lipid metabolism, which is of

interest to aging studies (Barzilai et al., 2001).

Second, our study relied on whole flies. We know that metabolomic

profiles differ among tissues in the fly (Chintapalli et al., 2013).

Moreover, our whole-body analysis includes the gut and so includes

potentially confounding metabolites from the large bacterial flora found

in the fly gut (Corby-Harris et al., 2007).

Third, while this is the largest-scale analysis of age-related change in

the metabolome to date, the data represent just one experiment (albeit a

large-scale one). Changes that appear to be related to age might, in fact,

be due to secular environmental trends that occurred over the 12-week

course of the experiment (an often unstated concern of cohort aging

studies).

Our work has established the power and potential of the fly

metabolome as a model to both explain and predict variation in aging.

In light of our findings, there are several avenues for future research of

immediate interest. To begin with, we have established that there is

substantial genetic variation in the metabolome and that a large number

of specific metabolites are not only affected by age, but also show age

effects that vary by genotype. Thus, we are confident that we can use

metabolomic variation to tie together genotype with phenotype,

identifying genes that affect metabolites and metabolites that affect

and/or reflect variation in lifespan. In this way, large-scale metabolomic

studies hold out much promise in helping us to complete the genotype–

phenotype map for aging. Furthermore, here we have focused on

measures of individual metabolites. Recent work suggests that as

individuals age, we see changes not only in the levels of specific

molecules, but also in the way that these molecules interact with one

another within intracellular networks (Soltow et al., 2010). The meta-

bolomic profiles we have described here should allow us to examine age-

specific changes in network structure, and in so doing, to generate novel

hypotheses regarding pathways that are robust or frail in the face of the

aging process. Finally, and as we mentioned earlier, we must now make

it an urgent priority to curate the metabolomes of all model organisms

that are used in aging research. A recent curation of the yeast

metabolome has been made available (Jewison et al., 2012). To this,

we now need to add the worm and the fly.

Experimental procedures

Fly stocks and culturing conditions

All analyses were carried out using a set of 15 inbred fruit fly genotypes

randomly chosen from the DGRP (Mackay et al., 2012) (Table S1). The

DGRP consists of 192 fully inbred and fully sequenced strains of

Drosophila melanogaster and is freely available from the Bloomington

Drosophila Stock Center. Flies were maintained in incubators at 24 °C

on a 12/12 light–dark cycle at ~50% humidity. For all procedures, flies

were maintained on standard yeast-molasses-agar-cornmeal medium.

Table 2 List of specific amino acids (AA) and neurotransmitters associated with

different age parameters

Metabolite Effect

AAs

Tryptophan Age ↑, Age ↓, A 9 G

Isoleucine/leucine Age ↑, Age ↓, A 9 G

Arginine Age ↑

Phenylalanine Age ↑

Methionine A 9 S

Proline A 9 S, A 9 G

Threonine A 9 S, A 9 G

Aspartate A 9 G

Glutamine A 9 G

Neurotransmitters

N-acetyl-serotonin Age ↓

4-alpha-Hydroxytetrahydrobiopterin Age ↑, A 9 S

5-hydroxy-L-tryptophan Age ↑, A 9 S

Tetrahydrobiopterin A 9 G

L-Dopa Age ↓, A 9 S

Dopamine Age ↑

c-Aminobutyric acid Age ↑, Age ↓

Age ↑ and Age ↓ refer to metabolites that either increase or decrease with age,

respectively. A 9 S and A 9 G refer to metabolites with significant interaction

effects between age and sex or age and genotype, respectively. Effects are all

significant after correction for multiple comparisons with a false discovery rate of

0.01 (see text). Note that isoleucine and leucine co-elute under our conditions and

have identical mass-charge ratios so cannot be distinguished.
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Collection of known-age flies

Prior to the onset of the study, fly cultures were expanded to include four

bottles per genotype, at which point 150 virgin males and females were

collected over a 72-h period under light CO2 anesthesia. For each sex and

each of the 15 genotypes, we placed an average of 27 individuals in each

of 5 40-mL glass vials, for a total of 4032 flies distributed among 150 vials.

Flies were transferred to new vials very 2 days without anesthesia, at

which time the number of dead flies in each vial was recorded.

At seven time points (days 3, 10, 24, 36, 51, 66, and 81), we collected

two samples of three flies from each unique genotype-sex cohort

without anesthesia, placed each sample in a 1.5-mL Eppendorf tube,

instantly froze the samples in liquid nitrogen, and then placed these

samples in a �80 °C freezer until the end of the experiment. Not all

genotypes survived to age 81 day, and in some cases at later ages, only

one sample of three flies per genotype and sex was collected.

Metabolomic analysis

Each frozen fly sample was homogenized using a Pellet Pestle� Motor

(Kimble Chase, Vineland, NJ, USA) in 150 lL acetonitrile in water (2:1 v/

v) containing an isotopic standard mix (Soltow et al., 2011) and

refrozen. Immediately before analysis, the samples were thawed,

vortexed, and centrifuged at 12 300 g for 10 min at 4 °C. Extracts

(100 lL) were randomized, placed in a refrigerated autosampler, and

10 lL volumes were analyzed in duplicate with dual chromatography-

mass spectrometry (DC-MS) platforms (Soltow et al., 2011), one using

an AE column (PRPX-110S, 2.1 mm 9 10 cm; Hamilton Company,

Reno, NV, USA) and the other using a C18 column (Targa,

2.1 mm 9 10 cm; Higgins Analytical, Mtn View, CA, USA). C18 and

AE chromatography separate molecules based upon different chemical

properties. C18 is also termed ‘reverse phase’ chromatography because

the 18-carbon units are hydrophobic, retaining and separating chemicals

with partial hydrophobic character. Anion exchange, on the other hand,

has positive charges on the column, which retain and separate negatively

charged molecules. The conditions used result in about 30% overlap

between columns in chemicals detected.

Samples were fractionated with a formate or acetonitrile gradient,

respectively, ionized with electrospray ionization in the positive mode,

and detected with an LTQ Orbitrap Velos mass spectrometer (Thermo

Fisher Scientific, San Jose, CA, USA) with m/z from 85 to 2000 and

30 000 resolution. Data were extracted using apLCMS (Yu et al., 2009)

as m/z features, where an m/z feature is defined by m/z (mass/charge),

retention time, and ion intensity (integrated ion intensity for the peak).

As part of quality control, we also generated a ‘fly standard’, consisting

of a large volume of identical sample taken from 350 flies, which was

run alongside samples daily to evaluate reproducibility. While some

overlap in metabolites between the two columns is expected, data from

both columns cannot efficiently be combined for analysis due to very

different column chemistries which can lead to the same metabolite

showing different ion intensities and retention times. Therefore, we

analyzed data from both columns separately.

Data analysis

Quality control

Many metabolites show significant stochastic variation even within

samples and thus are likely to be uninformative. To minimize the impact

of ‘noisy’ metabolites, prior to data analysis, we carried out a set of

quality control procedures to limit our analysis to the most informative

metabolites. First, we only included metabolites with a signal-to-noise

ratio (SNRi = mean/sample standard deviation) ≥ 15. Second, we log-

transformed the data, which led to a normal distribution of concentra-

tions across all metabolites. Third, we removed any metabolites that

were missing from more than 5% of either all male samples or all female

samples. Fourth, we used the LSimpute imputation procedure (Bo et al.,

2004) to estimate the values of missing samples. Fifth, we limited our

analysis to metabolites with a mass-charge ratio of < 900, as data

collection parameters were optimized for m/z ≤ 900. Finally, once all

these procedures were complete, we normalized the data such that each

sample had a mean value of 0.

Metabolite-specific analysis

All statistical analyses were carried out using the statistics package R

(R Core Team, 2013).

We used a general linear model to test for the effects of age (A), sex

(S), and genotype (G) on metabolite intensity (Y):

Y ¼ lþ Aþ S þ Gþ A� S þ A� Gþ G� S þ e ð1Þ
treating all predictors as fixed effects, where l is the grand mean and e is
the residual error. We treated age as an ordered factor (effectively a

categorical variable, with the proviso that we know that age 3< age 10,

age 10< age 24, and so forth). Due to small sample sizes and not all

genotypes being present, age 81 flies were removed, leaving 274

samples for metabolite-specific analyses.

By including all parameters in the model, we are asking, for example,

whether sex has a significant effect on metabolite intensity after

controlling for the effects of age and genotype. To determine signifi-

cance for each factor in the model shown in Eqn 1, we set the false

discovery rate (Benjamini & Hochberg, 1995) at 1% using all P-values

associated with that specific factor. To obtain P-values for the effects of

genotype and of its interactions with age or sex, we carried out a

likelihood ratio test using the lrtest function in the epicalc package in R.

We followed Hoffmann & Parsons (1988) to obtain approximate

estimates of narrow-sense heritability (h2) from the intraclass correlation

(t) between lines. Here, t ¼ r2
b=ðr2

b þ nr2
wÞ, where r2

b and r2
w are the

between-line and within-line variances, respectively, and n = 3 is the

number of individuals within each sample. Within- and between-

genotype variances were determined using the lme function in the

package NLME in R, treating age and sex as fixed effects and genotype

(line) as a random effect. While Hoffmann & Parsons (1988) and

subsequent authors suggest various equations to convert t to h2, here

we present only the intraclass correlation.

Metabolome-wide analysis

To determine the degree to which metabolomic profiles could be used to

predict sex or age, we used the sparse partial least squares discriminant

analysis function (splsda) as implemented in the R packagemixOmics (for

sex and genotype) and partial least squares regression as implemented

by the mvr function in the PLS package in R (for age). We set the number

of components as (k�1), where k is the number of classes (2 for sex, 7

for age, 15 for genotype). For splsda, we chose the number of

metabolites to include in each analysis based on that number which

minimized the classification error rate (CER), using ten-fold cross-

validation. Supervised classification schemes with relatively low numbers

of samples and high numbers of variables can lead to overfitting

(Westerhuis et al., 2008). Accordingly, we compared observed CER with

mean CER (�1 SE) obtained from ten permutation tests in which the

classification group (sex or age) was sampled randomly without
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replacement. This comparison tells us whether the observed classification

is any better than one would expect by chance.

We used partial least squares to predict sample age using training and

testing sets. In this case, training sets consisted of 2/3 of all samples, and

the model derived from this set was used to predict the classification for

the remaining 1/3 of the samples. We obtained R2 values using ten-fold

cross-validation and compared these values with R2 values where the

class variable was permuted.

Metabolite annotation and tests of metabolite enrichment

In this study, we adopted a novel approach to perform putative

metabolite annotation and enrichment analysis in one step (Li et al.,

2013). Theoretically, most metabolites from mass spectrometry can

match multiple metabolite compounds. The program that we have used

here, mummichog, selects the most probable metabolites from these

multiple candidates, based on the enrichment of metabolic networks

and pathways, because a biological process is expected to favor a more

connected network over random distributions. This approach has been

validated on multiple experimental datasets (Li et al., 2013). The fly

metabolic network model from the MetaCyc database (Caspi et al.,

2012) and the reference model in mummichog (Li et al., 2013) were

used to test the enrichment of pathways and networks. The null

distribution in pathway analysis is based on the permutation of

metabolite selections, which takes into full consideration the aforemen-

tioned multiple-matching problem.

We first determined subsets of metabolites to look for pathway

enrichment. We ran a model for both columns separately of only age,

sex, and their interaction, and took the 250 most positively and 250

most negatively associated metabolites based on their P-value for each

parameter (age, sex, and the interaction between the two). This gave us

12 different subset lists (six from each column) that were then run

through the program mummichog for pathway enrichment analysis.

For age and genotype interactions, we ran a likelihood ratio test as

described above to determine those metabolites with a significant age–

genotype interaction. We chose 250 metabolites with the smallest

P-value for both the C18 and AE columns for enrichment analysis.
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Fig. S1 Histogram of intraclass correlations among all metabolites for AE

(top) and C18 (bottom) columns.

Fig. S2 Sparse partial least squares discriminant analysis is able to distinguish

samples of different age, where age is treated as a factor rather than a

continuous variable as in Fig. 4, with relatively high accuracy.

Fig. S3 Carnitine shuttle pathway from mummichog analysis of metabolites,

with color and intensity determined by the sign and magnitude of the

regression coefficient in the age model (blue is negative, red is positive).

Table S1 Bloomington Stock Center numbers, DGRP numbers, and

wolbachia status for those inbred lines analyzed in this study.

Table S2 Mummichog enrichment analysis for sets of analytes significantly

associated with specific factors.
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