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Abstract

Excessive production of superoxide (O2
•−) in the central nervous system has been widely

implicated in the pathogenesis of cardiovascular diseases, including chronic heart failure and

hypertension. In an attempt to overcome the failed therapeutic impact of currently available

antioxidants in cardiovascular disease, we developed a nanomedicine-based delivery system for

the O2
•− scavenging enzyme, copper/zinc superoxide dismutase (CuZnSOD), in which CuZnSOD

protein is electrostatically bound to poly-L-lysine (PLL50)-polyethylene glycol (PEG) block co-

polymer to form CuZnSOD nanozyme. Different formulations of CuZnSOD nanozyme are

covalently stabilized by either reducible or non-reducible crosslinked bonds between the PLL50-

PEG polymers. Herein, we tested the hypothesis that PLL50-PEG CuZnSOD nanozyme delivers

active CuZnSOD protein to neurons and decreases blood pressure in a mouse model of AngII-

dependent hypertension. As determined by electron paramagnetic resonance (EPR) spectroscopy,

nanozymes retain full SOD enzymatic activity as compared to native CuZnSOD protein. Non-

reducible CuZnSOD nanozyme delivers active CuZnSOD protein to central neurons in culture

(CATH.a neurons) without inducing significant neuronal toxicity. In vivo studies conducted in

adult male C57BL/6 mice demonstrate that hypertension established by chronic subcutaneous

infusion of AngII is significantly attenuated for up to 7 days following a single

intracerebroventricular (ICV) injection of non-reducible nanozyme. These data indicate the

efficacy of non-reducible PLL50-PEG CuZnSOD nanozyme in counteracting excessive O2
•− and

decreasing blood pressure in AngII-dependent hypertensive mice following central administration.
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Additionally, this study supports the further development of PLL50-PEG CuZnSOD nanozyme as

an antioxidant-based therapeutic option for hypertension.
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INTRODUCTION

Excessive generation of reactive oxygen species (ROS), such as superoxide (O2
•−), has been

extensively implicated in several neurologically associated cardiovascular pathologies,

including hypertension (1–5). As a major risk factor for myocardial infarction, stroke, heart

failure, peripheral arterial disease, and chronic kidney disease, the morbidity and mortality

associated with hypertension is a worldwide epidemic that is persistently rising (6).

Although there are several standard therapies that effectively lower blood pressure in many

patients, 34% of hypertensive patients in the United States who are under medical

management (approximately 16 million people taking angiotensin converting enzyme

inhibitors (ACEi), angiotensin receptor blockers (ARBs), diuretics, and beta-blockers) have

uncontrolled blood pressure despite taking currently available prescription medications (7).

Thus, there is a necessity to develop new pharmacotherapies that target novel molecular

effectors (e.g. O2
•−) that have been implicated by numerous studies to be integral in the

pathogenesis of hypertension.

Angiotensin II (AngII), the primary effector peptide of the renin-angiotensin system,

increases intracellular O2
•− levels by activating the angiotensin type 1 receptor (AT1R) on

central neurons (3, 8). Our lab and others have previously shown that the AngII-induced

increase in O2
•− contributes to the activation of neurons by modulating potassium (K+) and

calcium (Ca2+) channel activity (5, 9, 10). Furthermore, AngII-induced activation of neurons

in blood-brain barrier (BBB) deficient brain regions has been shown to increase

sympathoexcitation, which contributes to hypertensive symptoms such as increased

vasoconstriction, enhanced sodium and water reabsorption in the kidney, increased heart

rate, and activation of T-lymphocytes and inflammatory cytokines (11–17).

One specific BBB-deficient region of particular importance in cardiovascular regulation is

the subfornical organ (SFO). The SFO lies at the roof of the third ventricle in the brain and

is sensitive to circulating peptides and hormones, and to experimental treatments directly

injected into the intracerebroventricular (ICV) system. Previous studies have demonstrated

the successful scavenging of AngII-induced O2
•− with adenoviral-mediated overexpression

of copper-zinc superoxide dismutase (CuZnSOD) in the SFO and other cardiovascular

control brain regions, which in turn attenuates sympathetic drive and blood pressure in

numerous hypertensive animal models (18–25). Although these studies convincingly

demonstrate the beneficial anti-hypertensive effect of overexpressing CuZnSOD protein in

the brain, clinical use of viral vectors in patients is limited by potential toxicity,

overwhelming sequestration in the liver and aberrant inflammation (26–28).
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In an attempt to overcome the failed therapeutic potential of viral-mediated gene transfer of

CuZnSOD and antioxidant drug delivery, our group has developed chemically distinct

nanoformulated complexes with CuZnSOD protein (nanozymes). We previously reported

that intra-carotid injection of nanozyme complexes composed of polyethyleneimine (PEI)-

polyethylene glycol (PEG) polymers, PEI-PEG, electrostatically bound to CuZnSOD

protein, inhibits the central AngII-induced pressor response for three days (23). In an

attempt to expand the therapeutic window of CuZnSOD nanozymes beyond three days, we

generated a novel nanozyme formulation consisting of CuZnSOD protein complexed with

cationic block copolymers, poly-L-lysine (PLL50)-polyethylene glycol (PEG) (29). We

exploited the advantageous chemical properties of PLL50-PEG block copolymers and

stabilized the complex by introducing reducible (disulfide bonds) or non-reducible (amide

bonds) covalent bonds between the PLL50 polymers using amine-reactive crosslinkers.

Crosslinked nanozymes has been shown to significantly enhance delivery of nanoformulated

complexes in vitro and in vivo (29–31).

Herein, we tested the hypothesis that crosslinked PLL50-PEG CuZnSOD nanozyme delivers

functional CuZnSOD protein to neurons and attenuates blood pressure in chronically infused

AngII-dependent hypertensive mice. We present data indicating that non-reducible

crosslinked CuZnSOD nanozyme (cl-nanozyme) delivers active CuZnSOD protein to central

neurons in culture without inducing significant toxicity, and is capable of attenuating

elevated blood pressure in AngII-dependent hypertensive mice following ICV

administration.

MATERIALS AND METHODS

Preparation of PLL50-PEG CuZnSOD Nanozyme

Synthesis, purification, and physicochemical characterization of PLL50-PEG CuZnSOD

nanozymes were performed, as previously described (29). Briefly, native bovine CuZnSOD

protein (Sigma-Aldrich, St. Louis, MO) was mixed with PLL50-PEG cationic block

copolymer (Alamanda Polymers™, Huntsville, AL). To covalently stabilize the CuZnSOD

nanozymes (Figure 1), reducible crosslinks were introduced using the commercially

available chemical cross-linker, 3,3′ dithiobis(sulfosuccinimidy-lproprionate) (DTSSP,

Thermo Fisher Scientific, Rockford, IL); while non-reducible crosslinks were introduced

using bis(sulfosuccinimidyl)suberate (BS3, Thermo Fisher Scientific). The molar ratio of

DTSSP/PLL50 and BS3/PLL50 were 0.5 and 1.0, respectively.

Electron Paramagnetic Resonance (EPR) Spectroscopy

Enzymatic activity of PLL50-PEG CuZnSOD nanozymes was determined by measuring

their ability to scavenge O2
•− in a cell-free system. EPR spectroscopy and the O2

•−-sensitive

spin probe, 2,2,5,5-tetramethyl-pyrrolidine hydrochloride (CMH, 200 μmoles/L), were used

to detect levels of O2
•− generated by hypoxanthine (HX, 25 μmoles/L) and xanthine oxidase

(XO, 10 mU/mL in 100 μL of EPR buffer), as we previously described (23). Experimental

samples included (each containing 400 U/mL of CuZnSOD protein): native CuZnSOD

protein (Sigma-Aldrich), non-crosslinked nanozyme, reducible cl-nanozyme, or non-
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reducible cl-nanozyme. EPR spectra were captured using a Bruker e-Scan Table-Top EPR

spectrometer.

CATH.a Neuronal Cell Culture

Mouse catecholaminergic CATH.a neurons were used as they have previously been

identified as a reliable neuronal cell culture model for investigating AngII intra-neuronal

signaling (32–34). CATH.a neurons (ATTC, stock no. CRL-11179) were cultured in

RPMI-1640 medium, supplemented with 8% normal horse serum (NHS), 4% fetal bovine

serum (FBS), and 1% penicillin-streptomycin, and maintained in a humidified incubator at

37°C with 5% CO2. Prior to experimentation, CATH.a neurons were differentiated for 6–8

days by adding N6,2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt (1mM,

Sigma, St. Louis, MO, USA) to the culture medium every other day, as we previously

described (5).

In Vitro Cytotoxicity Assay

CATH.a neuronal toxicity was assessed using the Cell Counting Kit-8 (CCK-8, Dojindo

Molecular Technologies, Inc.) according to the manufacturer’s directions. Briefly, CATH.a

neurons were incubated with CCK-8 solution (1:10 in serum-free media) for 1 hour prior to

experimental treatment to obtain a baseline measurement of viable cells in culture. The

number of live cells was indicated by the level of colored formazan product, as determined

by measuring absorbance at 450nm. Following baseline assessment, the same CATH.a

neuronal cultures were incubated with the following treatment groups (each containing 400

U/mL of CuZnSOD protein) for 1 and 3 hours to assess neuronal viability: native CuZnSOD

protein, non-crosslinked nanozyme, reducible cl-nanozyme, non-reducible cl-nanozyme, or

the equivalent amount of PLL50-PEG polymer alone. Twenty-four hours after removing

treatment, percent cell viability was calculated by normalizing post-treatment formazan

absorbance values to pre-treatment (i.e. baseline) absorbance values. The viability of

vehicle-treated CATH.a neurons was considered as 100% survival.

Confocal Microscopy and Western Blot Analysis

Neuronal uptake of CuZnSOD nanozyme was measured by labeling reducible cl-nanozyme

and non-reducible cl-nanozyme with fluorescent rhodamine B isothiocyanate as we have

previously described (23). Free rhodamine dye was removed from the labeled nanozyme

sample by desalting the solution through an Illustra NAP-10 column (GE Healthcare).

CATH.a neurons were treated for 1 or 3 hours with the rhodamine-labeled formulations and

fluorescent images were captured with a Zeiss LSM 710 Meta Confocal Microscope.

To confirm neuronal delivery of nanozyme, we also performed Western blot analysis on cell

lysates from differentiated CATH.a neurons exposed to the following treatment groups for 3

hours: vehicle, 400 U/mL native CuZnSOD protein, 400 U/mL non-crosslinked nanozyme,

400 U/mL reducible cl-nanozyme, or 400 U/mL non-reducible cl-nanozyme. Following

treatment removal, neurons were rinsed with 1mL PBS and then incubated with 1mL

Trypsin at 37°C and 5% CO2 for 5 minutes to assist with removal of extracellular-bound

proteins and nanozymes. CATH.a neurons were subsequently scraped on ice and centrifuged

at 6,000 g for (4°C, 6 minutes). Pellet was rinsed with 100μL PBS to remove excess Trypsin
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and centrifuged again at 6,000 g for (4°C, 6 minutes). Proteins were extracted using a lysis

buffer (Complete Lysis-M, Roche Applied Science) and 25X protease inhibitor cocktail

(P8340, Sigma Aldrich) and incubating the samples on ice for 15 minutes. Samples were

subsequently sonicated and then centrifuged at 21,000 g (4°C, 10 minutes). After

determining protein concentration, samples were mixed with the 15μl of 2X loading buffer

and heated at 97°C for 15 minutes. Protein (30 μg) was separated by electrophoresis on a

12% sodium dodecyl sulfate (SDS)-polyacrylamide gel, and transferred to a nitrocellulose

membrane Membranes were probed with rabbit primary antibodies (Santa Cruz, CA) against

CuZnSOD (1:500) and actin (1:1000).

SOD Activity Assay

For determination of SOD activity levels, the same cell lysates as used for Western blot

analysis were subjected to a total SOD Activity Kit-WST assay (Dojindo Molecular

Technologies, Inc.) according to the manufacturer’s directions.

AngII Infused Mouse Model of Hypertension

Adult male C57Bl/6 mice aged 8–9 weeks (20–27 g; Harlan Laboratories, Indianapolis, IN)

were housed in an animal facility with a 12-hour light-dark cycle and fed standard chow and

water ad libitum. The following physiological parameters were measured daily in conscious

mice using a radiotelemetry pressure transmitter device (Model TA11PA-C10, PhysioTel®,

Data Sciences International): mean arterial pressure (MAP), heart rate (HR), systolic blood

pressure (SBP), and diastolic blood pressure (DBP). Mice were anesthetized with isoflurane

inhalation (0.5–2.0%) for subcutaneous implantation of the radiotelemetry device into the

abdominal flank with the catheter inserted into the left carotid artery. Mice were also

implanted with ICV cannulas under isoflurane anesthesia (−0.3mm dorsal, +1.0mm lateral to

the bregma, and −3.0mm below the cerebral surface). Animals received topical bupivacaine

on the procedure sites prior to closing the incision with suture. Following baseline blood

pressure recordings for at least 3 days post-surgery, mice were subcutaneously implanted

under isoflurane anesthesia with osmotic minipumps (Model 1002, Alzet®, DURECT

Corporation) set to infuse AngII (400ng/kg/min, Sigma-Aldrich) over the period of several

weeks. At day 9 of AngII infusion, when the mice were clearly hypertensive, a single bolus

ICV injection of the following treatments groups was performed in conscious unrestrained

mice: saline, PLL50-PEG shell, reducible cl-nanozyme or non-reducible cl-nanozyme

(130-150 U CuZnSOD activity). Mice were euthanized with an overdose of pentobarbital

(150mg/kg) administered by intraperitoneal injection. All procedures were performed in

accordance with institutional guidelines for animal research reviewed and approved by the

University of Nebraska Medical Center Institutional Animal Care and Use Committee.

Statistical analysis

All data are expressed as mean ± SEM. For the EPR experiments, cytotoxicity and Western

blot analysis, one-way ANOVA with Dunnett’s post-hoc test was performed. For the SOD

activity assay, Student’s T-test with Welch’s Correction was performed. For the in vivo

experiments, we performed repeated measures two-way ANOVA with Dunnett’s post-hoc

test using time as a within-subject factor and treatment as a between-subject factor. P-value
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less than 0.05 was considered statistically significant. Statistical analyses were performed

using Prism (GraphPad Software, Inc.) or Statistical Package for Social Sciences software

(SPSS, Inc.).

RESULTS

CuZnSOD Nanozymes Scavenge Superoxide

To examine activity of CuZnSOD nanozymes, we tested their ability to scavenge O2
•− in a

cell-free system using EPR spectroscopy. The reducible cl-nanozyme and non-reducible cl-

nanozyme were as effective as native CuZnSOD protein in decreasing the EPR spectra

(Figure 2A). Summary data (Figure 2B) clearly reveal a significant decrease in EPR spectra

amplitude in all samples containing CuZnSOD as compared to vehicle. These data clearly

validate the O2
•− scavenging capacity of our PLL50-PEG CuZnSOD nanozyme

formulations, and confirm that the nanozyme structure does not preclude access to the

substrate nor does the protein need to be released for it to catalyze O2
•− dismutation, as

previously reported (35, 36).

Non-Reducible Crosslinked Nanozyme is the Least Toxic Formulation in vitro

We next determined the potential neuronal toxicity induced by nanozyme treatment in vitro.

CATH.a neurons were treated for 1 or 3 hours with vehicle, native CuZnSOD protein,

PLL50-PEG shell alone, non-crosslinked nanozyme, reducible cl-nanozyme, or non-

reducible cl-nanozyme, and 24 hours later cell survival was determined. Summary data

(Figure 3) reveal no significant difference in survival between neurons treated with native

CuZnSOD protein and vehicle. However, PLL50-PEG shell alone, non-crosslinked

nanozyme, and reducible cl-nanozyme did induce significant toxicity. In contrast, the non-

reducible cl-nanozyme did not induce neuronal cell death following 1 hour treatment.

However, there was a modest decline in cell survival following 3 hour treatment with non-

reducible cl-nanozyme. These data identify non-reducible cl-CuZnSOD nanozyme as the

safest formulation tested in cultured neurons.

Crosslinked Nanozymes Enhance Neuronal Uptake of CuZnSOD Protein

To evaluate the ability of cl-nanozymes to be taken up by neurons in culture, CATH.a

neurons were exposed to fluorescent rhodamine-labeled CuZnSOD nanozymes for either 1

or 3 hours. Representative confocal microscopy images (Figure 4) of CATH.a neurons

exposed to cl-nanozymes reveal uptake of either reducible cl-nanozyme or non-reducible cl-

nanozyme as early as 1 hour after exposure, with even greater uptake after 3 hours as

indicated by increased red fluorescence.

Non-Reducible Crosslinked Nanozymes Delivers Active CuZnSOD Protein to Neurons

To confirm uptake of nanozymes in vitro, Western blot analysis was performed on lysates

from CATH.a neurons treated for 3 hours with vehicle, native CuZnSOD protein, non-

crosslinked nanozyme, reducible cl-nanozyme, or non-reducible cl-nanozyme. The

representative Western blot and summary data (Figure 5A) show a significant increase in

CuZnSOD protein levels in neurons treated with non-reducible cl-nanozyme. It should be

noted that the bovine CuZnSOD protein, which is used in our nanozymes, migrates slower
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in gel electrophoresis. Next, we examined the activity of nanozyme-delivered CuZnSOD

protein. SOD activity in CATH.a neurons treated with native CuZnSOD protein, non-

crosslinked nanozyme, and reducible cl-nanozyme was slightly elevated when compared to

vehicle-treated neurons, although these differences were not statistically significant (Figure

5B). However, SOD activity was significantly elevated in neurons treated with non-

reducible cl-nanozyme. Collectively, the confocal microscopy images (Figure 4), Western

blot analysis (Figure 5A), and SOD activity assay (Figure 5B) clearly identify the non-

reducible cl-nanozyme as the most effective formulation in delivering active CuZnSOD

protein to neurons in culture.

ICV-administered Non-Reducible Crosslinked CuZnSOD Nanozyme Significantly
Attenuates AngII-dependent Hypertension

We next evaluated the anti-hypertensive therapeutic potential of our cl-nanozymes in an

AngII-infused hypertensive mouse model. Mean arterial pressure (MAP) was recorded from

mice subcutaneously infused with AngII (400ng/kg/min) before and after a single ICV

injection of saline, PLL50-PEG shell alone, reducible cl-nanozyme or non-reducible cl-

nanozyme. An immediate (i.e. within 24 hours) increase in blood pressure following

implantation of AngII-filled osmotic minipumps was observed in all groups, with an average

increase of 24 mmHg on day 1 of AngII infusion (Figure 6A). There were no significant

differences in the degree of elevation in MAP between the various groups of mice at day 1

of AngII infusion (p > 0.05). Mice were ICV injected with the treatments listed above at day

9 of AngII infusion as this was the time point at which the blood pressures stabilized in the

hypertensive range (average MAP = 131 mmHg; average change from baseline (day 0)

MAP = 42 mmHg; p < 0.05 versus baseline MAP in each respective group). Importantly, the

hypertensive MAPs at day 9 were similar between all groups with no significant differences

observed (p > 0.05): Saline 128 ± 3 mmHg, PLL50-PEG shell 123 ± 3 mmHg, Reducible cl-

nanozyme 138 ± 5 mmHg, Non-reducible cl-nanozyme 133 ± 5 mmHg.

After a single ICV injection of saline, PLL50-PEG shell, or reducible cl-nanozyme at day 9

of AngII infusion, mice continued to remain hypertensive for the duration of AngII infusion

(Figure 6A). In contrast, ICV injection of non-reducible cl-nanozyme significantly

decreased MAP and DBP within 24 hours and for up to 7 days (Figure 6A, D). There was

also a decrease, although not statistically significant (p=0.085), in SBP in mice ICV injected

with non-reducible cl-nanozyme (Figure 6C). ICV injection of saline, PLL50-PEG shell,

reducible cl-nanozyme, or non-reducible cl-nanozyme did not alter heart rate (Figure 6B). It

should be noted that MAP, SBP, and DBP in all groups returned to near baseline (c.a. Day

20–21 of AngII infusion) after the AngII-filled osmotic minipumps emptied. These in vivo

data indicate that the non-reducible cl-nanozyme attenuates AngII-dependent hypertension

following ICV administration.

DISCUSSION

Our present study demonstrates the utility of PLL50-PEG nanoformulated CuZnSOD protein

as a potentially viable pharmacotherapy for AngII-dependent neurogenic hypertension. The

data presented in this study reveal that CuZnSOD cl-nanozymes retain enzymatic activity
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and are able to effectively scavenge O2
•−. Furthermore, the non-reducible cl-nanozyme

delivers active CuZnSOD protein to central neurons in culture more efficiently than native

CuZnSOD protein, non-crosslinked nanozyme, or the reducible cl-nanozyme. Lastly, our in

vivo experiments demonstrate the therapeutic potential of the non-reducible cl-nanozyme

formulation and its ability to significantly attenuate hypertensive blood pressure for up to 7

days following a single ICV injection in AngII-hypertensive mice. Taken together, our data

strongly support the further development of non-reducible cl-nanozymes for the improved

treatment of hypertension in which there are excessive levels of O2
•− in the central nervous

system.

Previous studies by numerous groups have clearly demonstrated that increased scavenging

of O2
•− in the brain, via adenoviral-mediated overexpression of CuZnSOD or SOD

mimetics, decreases blood pressure and attenuates sympathoexcitation in various animal

models of hypertension (18–25). For example, adenovirus-mediated overexpression of

CuZnSOD in the SFO or rostral ventrolateral medulla (RVLM) of the brain decreases blood

pressure in AngII-infused hypertensive mice and spontaneously hypertensive rats (SHR),

respectively (18, 19). In addition, CuZnSOD overexpression in the RVLM decreases blood

pressure and reduces sympathetic vasomotor tone in the 2 kidney-1 clip hypertensive rat

model (37). Central administration of tempol, an SOD mimetic, attenuates the increase in

blood pressure and renal sympathetic nerve activity induced by ICV infusion of AngII (38).

Although these previous studies and others have convincingly demonstrated a beneficial

anti-hypertensive effect of overexpressing O2
•− scavengers in the brain, the use of viral

vectors or SOD mimetics in clinical practice is limited by poor cellular uptake, rapid

clearance, toxicity, end-organ sequestration, and/or inflammation (26–28). Furthermore, it is

essential to develop clinically acceptable therapeutic strategies with relevant routes of drug

delivery (i.e. intravenous, intranasal, or sublingual administration). Thus, it becomes

increasingly important to investigate new therapeutic strategies which may address these

pharmacokinetic obstacles in drug delivery and development.

Collectively, the extensive evidence establishing the benefit of scavenging O2
•− in the brain

provides rationale for our experiments in which we investigate the efficacy of a

therapeutically relevant antioxidant strategy for the improved treatment of hypertension.

One promising drug delivery option includes implementation of nanotechnology. The

utilization of nanoparticles has been shown to improve solubility and long term stability of

pharmacological agents through prevention of premature clearance by the renal or reticulo-

endothelial systems (39). As such, we believe there is great utility in developing

nanoformulated CuZnSOD protein as an antioxidant therapeutic strategy for hypertension.

We previously reported that a non-crosslinked formulation of CuZnSOD nanozyme, in

which the block copolymer PEI-PEG is electrostatically bound to CuZnSOD protein,

inhibits the acute central AngII-induced pressor response for three days (23). These initial

experiments prompted us to explore other chemically distinct nanoformulations, in which

complexes are stabilized with reducible or non-reducible crosslinked bonds between the

PLL50-PEG block copolymers, with the intention of expanding the therapeutic window.

Using these crosslinked complexes and a more relevant model of hypertension (i.e. chronic

subcutaneous infusion of AngII) in the current study, our data presented herein clearly
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demonstrate the O2
•− scavenging capacity of crosslinked nanozymes and identify the non-

reducible cl-nanozyme as the ideal nanoformulation to safely deliver active CuZnSOD

protein to neurons in culture. Furthermore, the non-reducible CuZnSOD cl-nanozyme

significantly decreased MAP and DBP in AngII hypertensive mice following ICV

administration. In addition, SBP was decreased, although not statistically significant

(P=0.085), in mice ICV injected with the non-reducible cl-nanozyme. Collectively, these

data suggest that ICV-administered non-reducible cl-nanozyme decreases blood pressure in

AngII-dependent hypertensive mice by influencing both preload and afterload, and

inhibiting sympathetic output. Future studies in which the non-reducible cl-nanozyme is

peripherally administered (i.e. intravenously, intranasally, or sublingually) are needed to

determine the direct effect, if any, of the nanozyme on cardiac function.

The integral involvement of O2
•− in the pathogenesis of hypertension has been implicated

and recapitulated in numerous animal models over the years. As a downstream signaling

molecule in the renin-angiotensin-aldosterone system (RAAS) pathway, there is also

mounting evidence that excessive levels of O2
•− in hypertension are generated by

immunological changes (i.e. activation of T cells and cytokines) (14, 15, 40-42). As such,

we posit our O2
•− scavenging CuZnSOD nanozymes may have an added benefit over

traditionally prescribed pharmacotherapies for hypertension, which specifically target the

RAAS pathway (ACE inhibitors; ARBs), as they will scavenge O2
•− produced from multiple

stimuli (i.e. AngII and cytokines). In fact, it has been reported that increased O2
•−

scavenging in hypertensive rats via peripheral administration of tempol prevents vascular

dysfunction and improves renal blood perfusion to a greater extent than the ARB

candesartan (43, 44). To this extent, future studies will not only compare our peripherally

administered CuZnSOD nanozymes with standard antihypertensive medications, but will

also examine synergistic or additive therapeutic efficacy of CuZnSOD nanozyme given in

combination with standard antihypertensive drugs.

While the results from our current study are promising, there are several considerations

which must be addressed in further developing this nanoformulated therapeutic strategy for

human hypertensive patients resistant to currently available pharmacotherapy. Considering

previous studies have shown that increased O2
•− scavenging in neurons inhibits the AngII-

induced modulation of ion channel activity and increases neuronal firing (23, 45), we

speculate that neurons in cardiovascular control brain regions surrounding the ventricular

system, such as the SFO, internalize the non-reducible cl-nanozyme following ICV

injection. However, since our nanozymes are not designed to specifically target neurons, it is

plausible that other cell types in the brain also internalize the complexes. It is certainly

feasible to further develop nanoparticles to target cell-specific populations, as Muzykantov

and colleagues have successfully performed with other CuZnSOD nanoformulations

targeted to endothelial cells (46–50). Nonetheless, supplementary studies are needed to

determine the cellular distribution of non-reducible cl-nanozyme following in vivo

administration.

In addition, the precise subcellular localization of the cl-nanozymes following neuronal

uptake remains unclear. However, there seems to be a clear distinction in the cellular

distribution of reducible cl-nanozyme versus non-reducible cl-nanozyme, as indicated by the

Savalia et al. Page 9

Free Radic Biol Med. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



representative confocal microscopy images (Figure 4). The reducible formulation shows

punctate staining throughout the cell, while the non-reducible formulation shows both

punctate staining in the cell as well as distribution along the plasma membrane. We believe

this differential distribution is a reflection of the distinct chemical properties of the two

crosslinked formulations. The reducible cl-nanozyme is composed of disulfide bonds which

may easily disassociate in the intracellular reducing environment. While the non-reducible

cl-nanozyme is composed of more stable amide bonds and is thus likely to remain intact in

the intracellular environment. We posit that the non-reducible cl-nanozyme associated with

the plasma membrane may be of therapeutic benefit as it could easily scavenge O2
•−

generated from membrane-bound NADPH oxidase, one of the primary sources of AngII-

induced O2
•− production in neurons (2). This theory may indeed identify the mechanism

whereby non-reducible cl-nanozyme achieves therapeutic efficacy following ICV injection

in vivo (Figure 6A). However, additional studies are needed to address this hypothesis. An

additional explanation as to why the reducible cl-nanozyme had no effect on the elevated

MAP in the AngII-infused mice is that the disulfide bonds between the polymers are

reduced upon injection into the brain, which allows for the polymer to dissociate from the

protein, resulting in the release of CuZnSOD protein from the complex. It is well-accepted

that free CuZnSOD protein does not permeate cell membranes and thus the reducible cl-

nanozyme may fail to deliver active CuZnSOD protein to neurons in vivo. These theories

identify potential mechanisms whereby non-reducible cl-nanozyme, but not reducible cl-

nanozyme, achieves therapeutic efficacy following ICV injection.

It is important to highlight that our cell culture experiments were performed using the

catecholaminergic CATH.a neuronal cell line. Although these neurons have been widely

identified in the literature as exhibiting similar AngII intra-neuronal signaling mechanisms

as primary neurons isolated from the hypothalamus and brainstem (33), future experiments

must include the utilization of primary neurons cultured from the brains of AngII-infused

hypertensive mice. Additionally, we must consider that the potential toxicity of the cl-

nanozymes in vitro may not necessarily duplicate the noxious or immunogenic mechanisms

which occur in a full-body in vivo animal model. In regards to our in vitro toxicity study

(Figure 3), the PLL50-PEG shell causes a marked decrease in neuronal cell survival most

likely because the highly positively charged PLL polymers damage the cells via interaction

with the negatively charged cell membrane and other macromolecules. This toxicity induced

by positively charged polymers is well-documented (51, 52). It should also be noted that we

posit that the non-crosslinked CuZnSOD nanozyme is as toxic as the PLL50-PEG shell alone

because the polymer shell dissociates from the enzyme (as it is not crosslinked) allowing for

free positively charged PLL50-PEG to damage the cells. Furthermore, we speculate that

upon entering the reducing intracellular environment, the reducible disulfide bonds between

the PLL polymers of the reducible cl-nanozyme are cleaved and consequently release the

positively charged and cytotoxic PLL50-PEG shell resulting in mild, yet significant neuronal

toxicity (Figure 3). These toxicity data may provide some explanation for the discrepancy

between the CuZnSOD protein and activity levels detected in the non-crosslinked nanozyme

group (Figure 5). It should be noted that the SOD activity assay we used does not

specifically measure CuZnSOD activity; rather, it measures total SOD activity (including

manganese SOD and extracellular SOD). Cells treated with non-crosslinked nanozyme did
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not show an increase in CuZnSOD protein, but did show an increase, although not

statistically significant compared to vehicle-treated cells, in SOD activity. We posit that the

increase in SOD activity observed in the non-crosslinked nanozyme treated cells is due to

increased activity of the other SOD isozymes. We believe the other SOD isozymes,

particularly MnSOD, may become more active in these cells in attempt to combat the

toxicity induced by the non-crosslinked nanozyme formulation, as shown in Figure 3.

However, additional experiments are needed to test this hypothesis. Collectively, these data

further support the benefit, in terms of potential cellular toxicity, for chemically crosslinking

the PLL50-PEG shell with non-reducible covalent bonds. Nonetheless, it will be imperative

to investigate the potential cellular toxicity in multiple cell populations (e.g. endothelial

cells, astroglia, microglia, oligodendrocytes, etc.) and following more clinically relevant

routes of cl-nanozyme administration in vivo.

In conclusion, the experimental data presented in this paper provide sufficient evidence

supporting the delivery of active CuZnSOD protein to neurons by nanomedicine-based

technologies for the treatment of AngII-dependent hypertension. This distinct crosslinked

nanoformulated drug delivery system provides an alternative strategy for targeting specific

downstream signaling molecules in the RAAS pathway, namely O2
•−, known to play a

critical role in the pathogenesis of hypertension. The promising results from our in vitro

experiments, coupled with the therapeutic efficacy as illustrated by the attenuated blood

pressures in AngII-infused hypertensive mice following central administration with non-

reducible cl-nanozyme, warrants further investigation to pursue these novel

nanoformulations as a therapeutic option for the improved treatment of hypertension.
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HIGHLIGHTS

• PLL50-PEG CuZnSOD nanozymes effectively scavenge superoxide

• Non-reducible crosslinked nanozymes deliver active CuZnSOD protein to

neurons

• Non-reducible crosslinked CuZnSOD nanozyme attenuates AngII hypertension

• Nanomedicine is a therapeutically relevant drug delivery strategy for

antioxidants
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FIGURE 1. Schematic of PLL50-PEG CuZnSOD Nanozyme
Block copolymer of poly-L-lysine (PLL50)-polyethylene glycol (PEG) electrostatically

binds to native CuZnSOD protein. Two distinct formulations of the nanozyme have been

synthesized with reducible or non-reducible crosslinked bonds between PLL polymers to

create covalently stabilized complexes.
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FIGURE 2. CuZnSOD nanozymes scavenge superoxide
(A) Representative EPR spectra of the O2

•− sensitive CMH spin probe in cell-free samples

treated with vehicle, native CuZnSOD protein, reducible cl-nanozyme, or non-reducible cl-

nanozyme. Superoxide was generated in these cell-free samples by hypoxanthine and

xanthine oxidase. (a.u. – arbitrary units). (B) Summary EPR spectroscopy data showing

CMH spectra amplitude, which is directly proportional to the amount of O2
•− in the sample,

in hypoxanthine/xanthine oxidase-containing samples treated with vehicle, native CuZnSOD

protein, non-crosslinked nanozyme, reducible cl-nanozyme, or non-reducible cl-nanozyme

(n = 4–5 per group). Data represent mean ± SEM. * P < 0.05 vs. vehicle.

Savalia et al. Page 17

Free Radic Biol Med. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIGURE 3. Non-reducible cl-nanozyme is the least toxic nanozyme formulation
Summary data showing CATH.a neuronal survival 24 hours after neurons were treated with

vehicle, native CuZnSOD protein, PLL50-PEG shell, non-crosslinked nanozyme, reducible

cl-nanozyme, or non-reducible cl-nanozyme for 1 or 3 hours (400U/mL of CuZnSOD was

used for all CuZnSOD treatments). n = 4 separate neuronal cultures for native CuZnSOD

protein; n = 10 separate neuronal cultures for all other groups. Data represent mean ± SEM.

* P < 0.05 vs. vehicle.
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FIGURE 4. Neuronal uptake of CuZnSOD crosslinked nanozymes
Representative confocal microscopy images from three independent experiments of CATH.a

neurons exposed to rhodamine-labeled reducible or non-reducible cl-nanozyme (400U/mL

of CuZnSOD) for 1 or 3 hours. Magnification bar = 20μm.
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FIGURE 5. Non-reducible cl-nanozyme delivers active CuZnSOD protein most efficiently to
neurons in culture
(A) Representative Western blot and summary quantification from lysates of CATH.a

neurons treated (3 hours) with vehicle, native CuZnSOD protein, non-crosslinked

nanozyme, reducible cl-nanozyme, or non-reducible cl-nanozyme (400U/mL of CuZnSOD

was used for all CuZnSOD treatments). *P < 0.05 vs. vehicle. (B) Summary data showing

SOD activity in CATH.a neurons incubated for 3 hours with the same treatments listed

above (A). n = 4–5 separate neuronal cultures per group. Data represent mean ± SEM. * P <

0.05 vs. vehicle.
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FIGURE 6. ICV-administered non-reducible cl-nanozyme decreases blood pressure in AngII-
dependent hypertensive mice
Mean data showing AngII-induced changes in mean arterial pressure (A), heart rate (B),

systolic blood pressure (C) and diastolic blood pressure (D) following subcutaneous infusion

of AngII (400ng/kg/min) and changes in these physiological parameters after a single bolus

ICV injection of saline, PLL50-PEG shell, reducible cl-nanozyme, or non-reducible cl-

nanozyme (130–150 U of CuZnSOD was used for nanozyme treatments). n = 5–7 mice per

group. Data represent mean ± SEM. * P < 0.05 vs. ICV-injected saline; # P = 0.085 vs. ICV-

injected saline.

Savalia et al. Page 21

Free Radic Biol Med. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


