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Abstract

Autotaxin (ATX) is an autocrine motility factor that promotes cancer cell invasion, cell migration

and angiogenesis. ATX, originally discovered as a nucleotide phosphodiesterase, is known now to

be responsible for the lysophospholipid-preferring phospholipase D activity in plasma. As such, it

catalyzes the production of lysophosphatidic acid (LPA) from lysophophatidylcholine (LPC).

ATX is thus an attractive drug target; small molecular inhibitors might be efficacious in slowing

the spread of cancers. With this study we have generated a series of beta-keto and beta-hydroxy

phosphonate derivatives of LPA, some of which are potent ATX inhibitors.
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The autocrine motility factor autotaxin (ATX) was originally isolated from melanoma cell

supernatants as a 125-kD glycoprotein that stimulated tumor cell motility.1 In vivo

experiments documented that forced expression of ATX augments tumor cell invasion and

metastasis.2 Further, ATX promotes angiogenesis and may act in concert with other

angiogenic factors to facilitate new blood vessel formation.3 These biological properties

require enzymatic activity.

ATX belongs to the nucleotide pyrophosphatase and phosphodiesterase (NPP) family of

enzymes, which hydrolyze phosphodiester and diphosphate bonds, typically found in ATP

and ADP.4 Interest in ATX was stimulated by the identification of this enzyme as the long

elusive plasma lysophospholipase D activity, which is responsible for the cleavage of

choline group of lysophophatidylcholine (LPC) to form lysophosphatidic acid (LPA) (Figure
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1).5,6 This is a major pathway of biosynthesis of LPA in plasma.7,8 LPA is an intercellular

lipid mediator that influences many biochemical processes including cell proliferation,

smooth muscle contraction, platelet aggregation and apoptosis.9–11 For example, LPA is the

“ovarian cancer activating factor” in ascitic fluid characteristic of ovarian cancer patients.

Elevated levels of LPA are present both at early and late stages in ovarian cancer and may

play a role in tumor cell proliferation and invasion.12,13 LPA mediates its effects through the

activation of G protein-coupled receptors (GPCR).14 Thus, great efforts have been made on

the study of LPA receptor antagonists and agonists due to their therapeutic potential.15–21 In

aggregate, these data suggest that ATX is an attractive pharmacological target; blockage of

LPA production via ATX inhibition by small molecules could be a useful anticancer

chemotherapy.22,23

A lead towards developing ATX inhibitors was provided by the discovery that this enzyme

undergoes end product inhibition by, for example, LPA24. Indeed a limited number of ATX

inhibitors that are LPA analogs have been reported to date. Recently, a series of fatty alcohol

phosphate analogs were identified as LPA receptor ligands.20 Some of the analogs showed

ATX inhibition activity. A series of phosphatidic acid derivatives were investigated and only

two acyl thiophosphates showed autotaxin inhibition.21 A group of Darmstoff analogs were

reported as weak ATX inhibitors recently.25 Most recently 3-carba analogs of cyclic

phosphatidic acid were reported.26 Although lacking significant activity at LPA receptors,

they were potent inhibitors of ATX activity. In this report, we developed a series of β-

hydroxy and β-keto phosphonate derivatives of LPA as ATX inhibitors.

Synthesis of the phosphonate derivatives is described in Scheme 1. It began with the

acylation of the ammonium hydrochloride salt of tyrosine O-methyl ester a with appropriate

acyl chlorides followed by etherification of the free phenol with appropriate mesylates to

afford the fully protected tyrosine c. Next, was the base mediated addition onto the methyl

ester with the lithium anion of dimethyl methylphosphonate to achieve β-keto phosphonate

dimethyl ester d. A bromotrimethylsaline mediated deprotection of the ester ensued to afford

the β-keto phosphonate g.27 Sodium borohydride reduction of d proceeded to give two

possible diastereometic β-hydroxy phosphonate dimethyl esters which were separated by

column chromatography. The stereochemistry determination is ongoing. The β-hydroxy

phosphonate f was obtained by using the same deprotection method (for compounds f41 and

f42, pyridine was used in the deprotection).

The phosphonate derivatives were tested in choline detection assay for ATX inhibition.28

The ATX activity was measured in the presence of the compounds under different

concentrations (100µM, 10µM and 1µM). The ATX activity without compounds was used as

the standard (100% activity). Most β-hydroxy phosphonate derivatives inhibited ATX

activity at only the highest concentration tested. However, f17 and f18 exhibited significant

inhibition at 1µM (Table 1). These two compounds were synthesized from protected L-

tyrosine and they are diastereomers in terms of the β-hydroxy groups. The less polar isomer,

f17, (also known as VPC8a202) was able to inhibit 73% of ATX activity at 1 µM.

Compounds f15 and f16, which were synthesized from D-tyrosine, did potently inhibit ATX

although they contained the same 4-methoxy-3,5-dimethylpyridyl structure moiety. Other

groups including some alkyl chains and aromatic rings were also investigated. However,
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these compounds were not potent ATX inhibitors. The corresponding β-keto phosphonate

derivatives were also tested (Table 2). At the concentration of 100µM, some compounds

inhibited 50% – 70% of ATX activity. Further structure optimization was made based on the

two lead compounds f17 and f18. We kept the 4-methoxy-3,5-dimethyl-pyridyl moiety and

investigated a series of β-hydroxy phosphonate derivatives with a variety of lipophilic tails.

These data are presented in Table 3. None of these compounds were as potent as f17 or f18.

All of the compounds were tested as potential antagonists at the recombinant LPA1, LPA2

and LPA3 receptors, but none showed significant blockade at concentrations up to 10µM

(data not shown).

A potential complication of our studies is the reported inhibition of ATX by its product,

LPA,24 which is generated in our assay using LPC as a substrate.28 There, we measured the

inhibition of ATX using the artificial substrate, para-nitrophenol-thymidylic acid.5,6 Using

this substrate, we found the same rank order potency of our most potent inhibitors, including

f17 and f18 (data not shown).

In summary, we developed a series of β-hydroxy and β-keto phosphonate derivatives. ATX

inhibitory activity was determined for these compounds. Two β-hydroxy phosphonates,

which originated from protected Ltyrosine, were identified as the lead compounds. The

stereochemistry of original tyrosines and 4-methoxy-3,5-dimethyl-pyridyl moiety proved to

be important to the activity. Further SAR studies are ongoing.
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Figure 1.
Hydrolysis of LPC by lysoPLD/ATX
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Scheme 1.
Synthesis of Compounds f and g. Reagents and conditions: (i) appropriate acyl chloride,

Et3N, CH2Cl2, 0°C, 3hr, 70–80%; (ii) appropriate mesylate, K2CO3, 18-crown-6, acetone,

reflux overnight, 90–95%; (iii) n-BuLi, dimethyl methylphosphonate, then add in ester c,

−78°C, 3hr, 50–60%; (iv) NaBH4, THF, EtOH, 0°C, 2hr, 70–80%; (v)

bromotrimethylsaline, w/wo pyridine, CH2Cl2, rt, 4hr, then H2O and MeOH, overnight, 90–

95%.
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