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Abstract

Objectives—High velocity low amplitude spinal manipulation (HVLA-SM), as performed by

manual therapists (eg, doctors of chiropractic and osteopathy) results in mechanical hypoalgesia in

clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral

and/or central pain processing. The objective of this study was to determine whether thrust

magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic

range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons.

Methods—Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar

rats. Lateral thalamic neurons having receptive fields which included the lumbar dorsal-lateral

trunk were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic

von Frey (rigid tip) mechanical trunk stimuli were determined in three directions (dorsal-ventral,

45°caudalward, and 45°cranialward) prior to and immediately following the dorsal-ventral

delivery of a 100ms HVLA-SM at three thrust magnitudes (control, 55%, 85% body weight;

(BW)).

Results—There was a significant difference in mechanical threshold between 85% BW

manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (p=.01).

No changes were found in WDR neurons at either HVLA-SM thrust magnitude.

Conclusions—This study is the first to investigate the effect of HVLA-SM thrust magnitude on

WDR and NS lateral thalamic mechanical response threshold. Our data suggest that at the single
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lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude

required to elicit an increase in trunk mechanical response thresholds.
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Introduction

Spinal manipulation and spinal mobilization are commonly used in clinical practice to

alleviate low back pain.1-3 Although the underlying mechanisms remain unknown, these

forms of manual therapy have been clinically shown to increase mechanical pressure pain

thresholds (i.e. decrease sensitivity) in both symptomatic and asymptomatic subjects.4-12

Cervical spinal manipulation has been shown to result in unilateral as well as bilateral

mechanical hypoalgesia.6,7,12,13 Compared to no manual therapy, oscillatory spinal manual

therapy at T12 and L4 produced significantly higher paraspinal pain thresholds at T6, L1

and L3 in individuals with rheumatoid arthritis.4 The immediate and widespread hypoalgesia

associated with manual therapy treatments has been attributed to alterations in peripheral

and/or central pain processing including activation of descending pain inhibitory

systems.7,14-16

Increasing evidence from animal models suggests that manual therapy activates the central

nervous system and in so doing affects areas well beyond those being treated.14,17,18 Sluka

and Wright19 reported in rats that unilateral knee joint mobilization evokes bilateral

hypoalgesia, suggesting a widespread centrally-mediated response to joint mobilization.

More recently, it was shown that Grade 2 equivalent spinal mobilizations applied manually

to the L5 spinous process increases hindpaw mechanical nociceptive thresholds in the awake

rat with or without acute inflammation.17 In addition, Song et al.20 reported that instrument

delivered HVLA-SM significantly reduces the severity and shortens the duration of pain and

hyperalgesia caused by neural inflammation within the intervertebral foramen. These

findings from animal models are consistent with the widespread hypoalgesic effects reported

clinically following a manual therapeutic intervention. To what extent these hypoalgesic

effects are attributable to central mechanisms is undetermined but alterations in convergent

supraspinal nociceptive processing likely play a role.

The thalamus is subcortical structure receiving convergent input from all innocuous (dorsal

column pathway) and/or nociceptive (spinothalamic pathway) somatosensory receptors

stimulated during delivery of a spinal manipulation. The ability of the thalamus to modulate

ascending sensory input as well as interact functionally with descending pain modulating

structures such as the periaqueductal gray (PAG) is not well understood despite studies

showing the existence of direct projections between multiple thalamic nuclei and the

PAG.21-23 Recently in humans it was demonstrated that the lateral thalamus and PAG

interact reciprocally at short latencies (∼5ms) and that stimulation of either structure

relieved pain to various degrees.24 Although more work in this area is required, the authors

suggested that the thalamus and PAG influence each other in opposite ways via a fairly

direct pathway not involving spinal cord circuitry and thereby being important in pain
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perception.24 Whether or not such a pathway could contribute to the immediate and

widespread hypoalgesia following HVLA-SM is plausible but at this point purely

speculative.

Optimization of the biomechanical features that characterize a spinal manipulation such as

thrust magnitude, thrust duration, loading direction relative to the patient, tissue pre-load,

and anatomical contact site, is thought to be critical to clinical expertise.25-28 A pilot study

investigating the relationship between the magnitude of the force applied and hypoalgesia in

individuals with lateral epicondylalgia suggested that the amount of applied manual force

may determine the extent of hypoalgesia.29 The purpose of the present study was to

determine the relationship between HVLA-SM thrust magnitude and trunk mechanical

response threshold of lateral thalamic neurons in an animal model. Determination of which

(if any) biomechanical characteristics of an HVLA-SM alter neural response characteristics

has been the subject of several recent basic investigations.30-34 Together, these studies aim

to provide insight into the mechanisms underlying spinal manipulation.

Methods

All experimental procedures were approved by the Institutional Animal Care and Use

Committee. Animals were housed individually and exposed to a 12-h light/dark cycle with

food and water ad libitum. For terminal electrophysiological recordings, all animals were

anesthetized with an intraperitoneal (ip) injection of 50% urethane (1.2g/kg) and maintained

with supplements (5% urethane) administered intravenously (iv) as needed.35,36 Depth of

anaesthesia was assessed by monitoring pinch withdrawal, corneal reflex, respiration rate

and vibrissae movements to maintain an anaesthetic state III-3.35,37 The jugular vein was

catheterized and trachea intubated for the purposes of iv infusion and pCO2 monitoring

respectively. In addition, oxygen concentration, blood pressure, heart rate, and respiration

were monitored by a Mouse Ox system (Starr Life Sciences Corp., Oakmont, PA). Body

temperature was monitored with a rectal thermistor and maintained at 37°C with a

circulating-water heating pad. The rat's head was secured with the dorsal surface positioned

horizontally in a stereotaxic device (Kopf Instruments, Tujunga, CA). A small hole was

made in the skull and expanded with bone rongeurs. The exposed dura mater was opened

and the extracellular recording electrode was advanced into the thalamus.

Electrophysiology

Single thalamic neurons were recorded extracellularly with DiI (1,1′-dioctabecyl-3,3,3′,3′-

tetramethyl-indocarbocyanine perchlorate; Invitrogen, Carlsbad, CA)-coated tungsten

microelectrodes [6 to 8 MΩ impedance (FHC, Bowdoin, ME)] as previously

described35,38,39 (Fig. 1A). Thalamic tracks began 4mm below the surface of the cortex and

ended at 7.5mm.40 The tungsten electrode was slowly advanced at a rate of 1-5 μm per step

using a motorized micromanipulator (Neurostar, Germany) until spontaneous single unit

activity was encountered. If the neuron's receptive field included the dorsal-lateral trunk then

spontaneous activity was recorded for at least one minute prior to commencement of

mechanical testing using the electronic von Frey anestheiometer. Thalamic electrode tracks

were made in parallel columns, 500μm apart, and were located between -2.04mm and
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-3.30mm caudal to bregma and 1.2mm and 3.8mm lateral to midline.40 Lateral thalamic

subnuclei through which the electrode passed included: ventral lateral (VL),

ventroposterolateral (VPL), posterior (Po), laterodorsal ventrolateral (LDVL),and

laterodorsal dorsal medial (LDDM) (Fig. 1B). Thalamic neuron activity was passed through

a high impedance probe (HIP511, Grass, West Warwick, RI) and then amplified (P511K,

Grass) and recorded using a PC based data acquisition system (Spike 2, Cambridge

Electronic Design, UK).

The neurons in this study were classified as either wide dynamic range (WDR) responding

in a graded fashion to low threshold mechanical (brush stroke) and high mechanical

(noxious pinch) or as nociceptive specific (NS) responding only to noxious pinch. Neurons

responding solely to low threshold mechanical (brush stroke) trunk stimulation were not

considered in this study.

Following recording of baseline thalamic neuronal activity, an electronic von Frey

anesthesiometer with a rigid tip adapter (0.79mm2 contact area; IITC Model 2390

www.iitcinc.com) was applied within the receptive field close to the midline of the dorsal

trunk (within 2cm of the spine) in three directions: dorsal-ventral, 45°caudalward and

45°cranialward. It was thought that the direction with which the trunk stimuli were applied

might differentially affect force transmission to the trunk peripheral mechanoreceptors and

thereby impact thalamic response thresholds. The electronic vonFrey stimulus was manually

applied in increasing magnitude until either a thalamic response was elicited or 400g had

been applied to the trunk. If spontaneous bursting activity was present, mechanical testing

occurred during intermittent silent periods or during periods of minimal tonic firing.

Thalamic responses to low and/or to high threshold mechanical stimuli were recorded both

prior to and following the delivery of a simulated high velocity low amplitude spinal

manipulation (HVLA-SM). The directions in which electronic von Frey mechanical stimulus

was applied were randomized before HVLA-SM to minimize possible ordering effects.

Trunk testing locations were varied between different neurons to reduce potential long-term

effects on thalamic neuronal activity such as sensitization or habituation.

Spinal Manipulation

HVLA-SMs were delivered in the dorsal-ventral direction to the L5 vertebra. The lumbar

spine was mechanically secured by clamping the L2 spinous process and fixing the iliac

crests with hip pins (David Kopf Instruments, Tujunga, CA). A very small skin incision was

made over the L5 vertebra through which a pair of adjustable toothed forceps was inserted

and rigidly attached to the lateral surfaces of the L5 spinous process. In clinical settings, the

HVLA-SM force-time loading profile can be likened to a triangle wave 41,42 with a thrust

phase rising to a peak load in less than 150ms.41-43 Clinically, manipulative thrust forces

range from 31% to 78% body weight (BW) assuming an average human body weight of

70kg.44,45 Therefore, HVLA-SMs were delivered as a triangle wave with a thrust phase of

100 ms and amplitudes of 55% BW or 85% BW (Fig. 1C). Prior to the delivery of each

manipulative thrust, the lumbar spine was positioned neutrally with neither force nor

displacement being applied by the motor to the L5 vertebra. The testing order of the three

thrust magnitudes [control (i.e. 0% BW), 55% BW, 85% BW] was randomized for each
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neuron within each direction yielding a randomized complete block design. A period of five

minutes lapsed between manipulations which appears to be adequate time to mitigate

viscoelastic tissue changes related to HVLA-SM.46

Histology

Following extracellular thalamic recordings, the rat was perfused transcardially with 0.9%

saline followed by 4% paraformaldehyde. The brain was removed and stored in a 30%

sucrose/10% formalin solution at 4°C until sectioning. Brains were cut with a cryostat

(30μm sections) and mounted on microscope slides. Electrode track locations confirmed

(Fig. 1A) with postmortem histological reconstructions using with a Nikon Optiphot

microscope with EFD-EPI fluorescent attachment and illumination system with adjacent

sections stained with cresyl violet as previously established.35,38,39,47-49

Data Analysis

Data analyses were conducted using SAS (version 9.2, SAS Institute, Cary, NC). For each

mechanical testing direction, by neuron classification, a one-way analysis of variance

(ANOVA) for a randomized complete block design, with neuron as the block, was used to

test between thrust magnitudes. Statistical significance was set at .05. Mean changes

between pre- and post HVLA-SM mechanical thresholds and 95% confidence intervals

under the ANOVA model are given in figures; mean differences between both control and

55% BW with 85% BW and 95% confidence intervals (lower, upper) from the ANOVA

model are given in the text.

Results

Electrophysiological activity of 47 thalamic neurons located in lateral thalamic subnuclei

which responded to mechanical stimulation applied to the lumbar dorsal-lateral trunk were

obtained from 15 adult male Wistar rats (330-540g) (Fig. 2). Of these neurons, 47% (22/47)

were classified as WDR neurons and 53% (25/47) were classified as NS neurons. The mean

rate of spontaneous activity was 4.64 imp/s (SD 2.58) for WDR neurons and 3.76 imp/s (SD

2.51) for NS neurons. An example of a WDR neuron's response to 45° cranialward and

dorsal-ventral mechanical trunk stimulation prior to HVLA-SM is shown in Fig. 3.

Changes in WDR mean trunk mechanical threshold evoked by HVLA-SM were not

significantly different among the three thrust magnitudes (control-0%, 55%, 85% BW)

during dorsal-ventral testing (F2,42=0.32, p=0.73; Fig. 4A), 45° caudalward (F2,42=0.34,

p=0.71; Fig. 4B) nor the 45° cranialward (F2,42=0.85, p=0.44; Fig. 4C) testing directions.

Changes in NS neuron mean trunk mechanical threshold evoked by HVLA-SM were

significantly different among the three HVLA-SM thrust magnitudes during dorsal-ventral

testing (F2,48=3.45, p=0.04; Fig. 4A), but not during the 45° caudalward (F2,48=1.88,

p=0.16; Fig. 4B) or 45° cranialward (F2,48=0.74, p=0.48; Fig. 4C) testing directions. During

dorsal-ventral testing, the 85% BW mean HVLA-SM thrust magnitude was significantly

different from control (53.0g, p=.01, 95% CI: 12.3, 93.6) but not the 55% BW mean HVLA-

SM thrust magnitude (30.2g, p=0.14, 95% CI: -10.5, 70.8).
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Four WDR neurons that responded to brush stroke prior to the HVLA-SM ceased to respond

to this innocuous type of mechanical stimulation following the higher (85% BW) but not

lower (55% BW) manipulative thrust magnitude. The remaining 18 WDR neurons which

also responded to brush stroke were unaffected by HVLA-SM.

Discussion

In rats, axons from as many as 6000 spinal neurons project to the thalamus.50 Both

innocuous and noxious sensory inputs from Aβ, Aδ, and C fibers in cutaneous nerves and

group II, III, and IV fibers in muscle nerves converge in the thalamus.51-53 For example,

wide dynamic range thalamic cells located in the lateral VPL-VL subnuclei respond to

noxious stimulation of muscle and tendon while also responding to innocuous stimulation of

the skin.54 The lateral thalamic subnuclei, more specifically the ventral posterior nuclei

(VPL, Po) are the primary terminus for spinothalamic inputs from both sides of the spinal

cord.55 However in the rat, one must be mindful that an estimated 15-20% of all

spinothalamic tract neurons have branches terminating in both medial and lateral thalamic

nuclei56,57 indicating a much broader influence on different aspects of the pain matrix. With

the thalamus's role of processing innocuous and noxious sensory input along with its diffuse

network of connections, it is rational to think that convergent input and reciprocal feedback

from pain matrix structures to the thalamus could play a part in the immediate and

widespread hypoalgesic effects associated with manual therapy intervention. To our

knowledge, this study is the first to investigate the effects of HVLA-SM thrust magnitude on

the mechanical thresholds of thalamic neurons.

Relative to control, the 85% BW thrust magnitude HVLA-SM significantly increased

mechanical thresholds of lateral thalamic NS neurons to dorsal-ventral mechanical testing of

the trunk. Since the mechanical thresholds to 45°caudalward and 45°cranialward testing

directions did not significantly differ relative to control, the decrease in trunk mechanical

sensitivity likely was not a generalized response. In addition, the majority of WDR neurons

(84%) retained their responsiveness to innocuous trunk stimulation following the 85% BW

manipulative thrust magnitude suggesting no adverse effects to neural tissue.

The finding that only the higher intensity manipulative stimulus (i.e. 85% BW vs 55% BW

or control) decreased the mechanical sensitivity of lateral thalamic neurons to mechanical

trunk stimulation coincides with other reports relating graded mechanical or electrical

stimulus intensity to the magnitude of central inhibition58,59 but is in contrast to a recent

clinical study reporting no differences in pressure pain thresholds in subjects receiving

different amplitudes of posterior-anterior lumbar mobilizations.5

Several clinical studies indicate that spinal manipulation alters central processing of

mechanical stimuli evidenced by increased pressure pain thresholds and decreased pain

sensitivity in asymptomatic and symptomatic subjects following manipulation.6,7,11,60,61

However, questions of mechanism and whether certain biomechanical dose characteristics of

spinal manipulation and/or mobilization such as force magnitude, force duration, loading

direction (relative to the patient), anatomical contact point, frequency and amplitude of

oscillation are required for eliciting hypoalgesia are just beginning to be
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investigated.5,10,30,32 Krouwel et al.5 recently reported no significant difference in

hypoalgesia among subjects receiving different amplitudes of lumbar posterior-anterior

mobilizations while Pentelka et al.10 reported that at least four sets of large amplitude

lumbar mobilizations (instead of the three sets used traditionally) were required to elicit

hypoalgesia. Moss et al.9 suggested that the repetitiveness of movement should be

considered as the hypoalgesic stimulus rather than the pressure being used during joint

mobilization procedures and this concept appears to be supported by the recent findings of

Pentelka et al.10 It may be found that a threshold force is required to elicit hypoalgesic

effects during short duration manual procedures such as HVLA-SM but is unnecessary when

using slower repetitive interventions such as spinal mobilization.

Limitations

Spinal cord tissue was not harvested nor evaluated histologically. The possibility that an

85% BW thrust magnitude HVLA-SM may have resulted in trauma to underlying neural

tissue and thereby influence the outcome is highly unlikely since significant threshold

changes were not seen in all mechanical stimuli testing directions following the higher

magnitude thrust. This conclusion is further supported by the finding that the 85% BW

manipulative thrust failed to eliminate the responsiveness to innocuous trunk stimulation in

the vast majority of thalamic neurons. In addition, similar HVLA-SM procedures with thrust

magnitudes of 85% - 100% BW have been applied in other animal studies without any

indication of neural trauma or underlying tissue damage31,62 and similar forces are applied

safely in clinical settings.41-43

Our use of a single application of the electronic von Frey mechanical stimulus to the trunk in

a given direction prior to and following a spinal manipulation rather than performing

multiple applications (3-10x) as with classical von Frey63 or electronic von Frey64,65 studies

may have contributed to the variability we observed in thalamic responses (Fig. 4). The

decision to use a single electronic von Frey application to the trunk in any given direction

was made to limit potential sensitization and/or tissue damage which can occur from

repetitive mechanical stimulations. Mechanically testing in three directions (dorsal-ventral,

45°caudalward, 45°cranialward) prior to and following three thrust magnitudes of (0%-

control, 55% BW, 85% BW) equated to 9 mechanical stimulations per neuron. Applying

multiple von Frey stimulations per direction would have greatly increased this number of

applied mechanical stimulations which may have resulted in sensitization and/or tissue

damage. Despite having used single trunk applications of the electronic von Frey in the

past,35 future studies should consider decreasing the number of mechanical stimulus

directions tested while increasing the number of electronic von Frey applications in a given

direction to reduce variability while limiting the potential sensitization or tissue damage.

Trunk mechanical stimuli responses were recorded in multiple lateral thalamic nuclei.

Although there is collateral branching of projection fibers among thalamic nuclei along with

degrees of functional overlap, it is recognized that several lateral thalamic nuclei included

within this study make distinct contributions to somatosensory and/or nociceptive

processing. Future studies may wish to concentrate on recording from single thalamic nuclei

(i.e. VPL, Po, VL) or those nuclei which are closely related functionally.
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It should be noted that whether or not changes in thalamic mechanical response thresholds

are related to the clinically reported hypoalgesia following spinal manipulation remains to

be determined. It is widely recognized that clinical pain, nociception and pain relief are

multifactorial and complex in nature involving multiple spinal and supraspinal centers.

Whether HVLA-SM's specific thrust magnitude or any other biomechanical dosage

characteristics are required to produce antinociceptive or hypoalgesic related responses in

other ascending or descending supraspinal pain processing centers such as the medullary

reticular formation or periaqueductal gray remains to be determined.

Conclusion

To our knowledge, this study is the first to investigate the effects of spinal manipulation and

its thrust magnitude on the response properties of supraspinal neurons. The results suggest

that at the level of a single lateral thalamic neuron, there may be a minimal thrust magnitude

required for spinal manipulation to elicit an increase in the response thresholds of NS

thalamic neurons to mechanical stimulation of the trunk. Larger studies examining the

effects of thrust magnitude and other clinician-controlled mechanical HVLA-SM parameters

on thalamic, brainstem, and cortical neurons known to be involved in nociceptive

somatosensory processing need to be performed to confirm and extend the present findings

and help elucidate the underlying mechanisms of spinal manipulation induced hypoalgesia.
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Fig. 1.
(A). Example of tracks (arrows) from Dil-coated electrodes through the lateral thalamus

(TH) and hippocampus (HP) in a coronal brain section at 40x magnification. Of the three Dil

electrode tracks shown, the medial & lateral Dil tracks are seen in greater detail in adjacent

tissue sections; (B). A diagram illustrating the experimental setup for extracellular thalamic

recordings at -2.5mm caudal to bregma. Shading indicates search area which included the

laterodorsal dorsal medial (LDDM), laterodorsal ventrolateral (LDVL), ventrolateral (VL),

posterior (Po), ventroposteromedial (VPM), and ventroposterolateral (VPL) nuclei; (C).

Force profiles for L5 spinal manipulative thrust with 100ms duration at 55% and 85%

bodyweight.
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Fig. 2.
Summary showing the location (open circles) of 29/47 lateral thalamic neurons responding

to mechanical stimulation applied to the trunk at -2.5mm caudal from bregma level. The

shading indicates the search area. The remaining 18 neurons not shown were located at

different thalamic levels.
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Fig. 3.
Trunk mechanical stimuli (upper row) responses of a single wide dynamic range thalamic

neuron located (●) in the ventral lateral (VL) nucleus at -2.5mm caudal to bregma. Raw

electrophysiological recordings (lower rows) of responses to lumbar trunk electronic von

Frey stimuli in the 45° cranialward (161g) and dorsal-ventral direction (69g). Note graded

response to trunk stroke and trunk pinch. Cal bar = 1s.

Reed et al. Page 14

J Manipulative Physiol Ther. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Mean HVLA-SM changes in lumbar trunk electronic von Frey mechanical activation

response thresholds (grams) for the dorsal-ventral, 45° caudal and 45° cranial directions of

wide dynamic range (WDR) and nociceptive specific (NS) lateral thalamic neurons

following time-control, 55% and 85% body weight high velocity low amplitude spinal

manipulation thrust duration. Data are reported as means and 95% confidence intervals

(lower, upper 95% CI).
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