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Abstract

Peppy, the proteogenomic/proteomic search software, employs a novel method for assessing the

match quality between an MS/MS spectrum and a theorized peptide sequence. The scoring system

uses three score factors calculated with binomial probabilities: the probability that a fragment ion

will randomly align with a peptide ion; the probability that the aligning ions will be selected from

the set of most intense peaks; and the probability that the intensities of fragment ions identified as

y-ions are greater than those of their counterpart b-ions. The scores produced by the method act as

global confidence scores, which facilitate the accurate comparison of results and the estimation of

false discovery rates. Peppy has been integrated into the meta-search engine PepArML to produce

meaningful comparisons with Mascot, MSGF+, OMSSA, X!Tandem, k-Score and s-Score. For

two of the three the data sets examined with the PepArML analysis, Peppy exceeded the accuracy

performance of the other scoring systems; for the third set Peppy was outperformed only by

MSGF+.
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Introduction

Software tools used to assign peptide sequences to MS/MS spectra are a staple of

proteomics research. This variety of software includes commercial offerings such as

Mascot1 and freely available options such as MSGF+2, OMSSA3 and X!Tandem4. The

peptide identification process employed by these tools is commonly accomplished via

comparing a set of spectra to a list of theoretical peptides derived from a database of

proteins. Central to this process is the peptide/spectrum match (PSM) scoring function that

provides a numerical score quantifying the quality of alignment between the observed

fragment ions of a spectrum and the ions theorized to be produced by a given peptide. One

major benefit of a software system giving numerical scores to PSMs based on match quality
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is that hundreds or thousands of potential peptide matches for a spectrum can be reduced to

the most promising candidates in a manner that is fast, consistent and unbiased. These scores

can further act as a convenient axis for result comparison, result integration, and statistical

analysis for assessment of veracity.

We have previously described Peppy, a peptide identification software built to easily handle

searching six-frame translations of genomes5. Given that the protein-coding portion of a

genome is typically a small percentage of the entire nucleotide sequence6, a peptide database

generated from a full, six-frame translation of a genome can be hundreds of times larger

than one derived from a reference protein database. To effectively search these large-

cardinality databases, we have developed a scoring system that possesses these four

characteristics: (i) Fast execution: To ensure that a search of a large database is completed in

a reasonable amount of time, the method should exhibit low computational complexity.

Ideally, this would feature low-order polynomial-time execution, and consist of fast

operations or cacheable values. (ii) High accuracy: The necessary accuracy to discriminate

among the many potential false positives in a six-frame database is a large concern in

proteogenomic searching. Most of what is translated in silico to produce a six-frame

database is not translated in vivo; these databases therefore have a very high saturation of

null peptides. This creates a higher likelihood of a spectrum having deceptively good,

incorrect match. False matches can be alleviated with a scoring function that tends to present

good score separation between true positives and false positives. (iii) Global confidence:

Scoring systems such as SEQUEST7 are spectrum-based, heuristic8 methods. A PSM score

of 5 for one spectrum may possess the same level of confidence of the peptide assignment as

a PSM score of 6 for another spectrum due simply to the fact that the second spectrum's

peptide is longer. Heuristic methods typically require a form of post-analysis, such as E

values9, so that results can be meaningfully compared. For global confidence scores, if score

A and score B are equal, then equal levels of confidence are assigned to those two PSMs.

Global confidence scores enable all PSMs to be sorted in order of confidence and for false

discovery rate (FDR) thresholds to be estimated. (iv) Mass-accuracy independent: Wenger

and Coon10 suggest that high-accuracy mass spectrometry is reducing the need for complex

scoring functions. This they demonstrate using a PSM scoring method that outperforms

several scoring systems with a simple method that is little more than a matched peak count.

This work makes clear that scoring algorithms should take advantage of high mass-accuracy

spectra when it is available as it will improve the discrimination of all scores, even naïve

ones. However, while the accuracy of mass spectrometers is continually improving, this

does not obviate the need to identify peptides within low mass-accuracy spectra. Legacy

data or new data produced from non-cutting-edge machines can contain valuable results that

await proper identification.

Materials and Methods

Peppy's scoring system consists of multiple estimated p-values that are deterministic

calculations of the probability that a peptide's theoretical ions would randomly align with the

peaks of a spectrum with the observed quality. The final score is comprised of three discrete

probability factors: (A) the probability that theoretical ions will randomly align with spectral

peaks; (B) the probability that theoretical ions will align with high intensity spectral peaks;
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and (C) the probability that spectral peaks that align with theoretical y-ions would, by

chance, be more intense than their counterpart b-ions.

A: Peak match probability

For any given peptide/spectrum pairing, some ion products may align despite the pairing

being false. This incorrect pairing could be due to factors such as matching similar

sequences (e.g. peptide GGGGKR will share many ions with GGGGRK) or purely random

alignments – that is to say, though a theoretical ion from a peptide sequence may have a

very similar mass to a fragment ion, the molecule that produced the product measurement is

not necessarily equivalent to that of the theorized ion. Many PSMs will have at least one

matching ion between their peptide and spectrum (e.g. trypsin-cleaved peptides with a C-

terminal lysine will share y1 ions). Some matches will have many ion alignments but still be

false. The aim of the first component of Peppy's scoring system is to find the probability that

the number of aligning ions occurred by chance.

Inaccuracies in measuring fragment masses necessitates defining error tolerance windows so

that a fragment ion is said to match to a theoretical ion if its observed mass falls within a

limited range of the fragment. When the error tolerance windows of all fragment ions are

combined (minus overlapping window regions), an “area” of alignment is created. This area,

when taken as a percentage of the overall precursor value, is the probability for any one

theoretical ion to find a random match. An example of a combined fragment tolerance area

is represented with the shaded area in panel “a” of Figure 1; if a theoretical ion falls within

the shaded area, it is considered a match to a fragment ion. Panel “b” of the figure likens the

theoretical ions to arrows and the combined area defined by error windows to the size of a

bull's-eye. Increasing the error tolerance is akin to increasing the radius of the bull's-eye,

thus increasing the chance for randomly shot arrows to successfully hit the target. This

approach ignores the complexities inherent in fragmentation patterns in favor of a schema

more easily modelable; however, it provides a decent estimation for chance alignment

probability and a good starting point as the first of the three probabilistic components of the

scoring system. Because the area is directly related to the maximum fragment error allowed,

better mass accuracy will result in a lower probability of random alignment.

Let n be the total number of theoretical b- and y-ions, which is given by 2 * (the number of

amino acids in the peptide - 1). Let k be the size of the subset of theorized ions that have

product matches. Let p be the summed fragment error windows expressed as a percentage of

the precursor mass. With these values in hand, a summation of binomial probabilities is used

to calculate the p-value that k or more peaks would fall in the region(s) matching theoretical

fragment m/z values:

This value is set to 1 if k < n * p. This method, as is or with slight variations, is relatively

common11 for calculating alignment probabilities. It should be noted that due to the fact that
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the value for p is directly tied to the fragment tolerance, a PSM's score would vary

depending on this setting. This score variation is true even if the exact same number of

theoretical and observed ions align for two different fragment tolerances, so caution should

be taken when comparing search results of the same spectral set that used different fragment

tolerances for the peptide identification.

B: Intensity match probability

Considering the intensity of matched spectral peaks has been shown to be effective in

determining the quality of a PSM7, 12. The second factor of Peppy's score is the probability

of theoretical ions randomly aligning with peaks of high intensity. The intensity value of a

peak corresponds to the abundance of ions at that mass observed by the tandem mass

spectrometer. Due to the fact that the fragmentation process often breaks peptides along

their peptide bonds, this will tend to produce mainline b- and y-ions with greater abundance

than other peaks. Therefore, aligning peaks of high abundance with predicted b- and y-ion

masses is a good indicator of veracity.

Following this logic, the second score factor depends on the number of theoretical ions that

match spectral peaks of high intensity. If peak matches are the product of chance

alignments, then it follows that only ∼50% of the peaks should be above the median

intensity. The probability that the alignment of the PSM is the product of a random event

diminishes as the number of matching peaks with intensities greater than the median

increases. To find this probability, the Peppy algorithm takes the peaks of a spectrum and

reorders those peaks from least intense to most intense, as illustrated by arranging the peaks

of the example PSM shown in Figure 2 to the order in Figure 3. Peppy finds the median

intensity of that peak list (m1) and tallies all of the aligning peaks above that median

intensity. The same binomial probability summation formula is used as above, where n = the

total number of theoretical ions that align with spectral peaks, k = the number of matched

peaks above the median intensity, and p = 0.5.

The result of this function provides an adequate estimation of the probability of theoretical

ions randomly matching to highly intense spectral peaks; however, it does not significantly

reward for matches with the most intense peaks. Therefore Peppy further exploits the power

of the median in a series of successive iterations of the formula in a method akin to the

intensity classification of the MyriMatch algorithm13. After m1 is calculated, Peppy finds the

median above the median (m2), denoting the top 25% of most intense peaks; then it takes the

set of aligning peaks above m1, and finds how many of those lie above m2. This produces

another probability by the same binomial formula, where n = the number of aligning peaks

found above m1, k = the number of aligning peaks found above m2 and p = 0.5. This process

is repeated for m3 (the median above m2) and m4 (the median above m3), where m4

represents the subset of aligning peaks with the highest intensities. These iterations produce

four probability values, one for each of the medians, that are multiplied together to derive

one probability factor that assesses intensity alignment quality. This is given by:

Risk et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2014 July 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where s(ma) is the set of all theoretical ions that match to peaks above median ma. s(m0) is

the set of all theoretical ions that match to any peak in the spectrum. Because the

multiplicatively combined p-values of this stage are not independent, the final result is not

classifiable as a p-value and we are therefore terming the value a “score”.

C: Paired ion relative intensity probability

Peppy's final scoring factor is the calculated probability that the spectrum's matched y-ions

would, by chance, be more intense than its b-ions. A mass spectrometer that uses collision-

induced dissociation (CID) will produce a spectrum, for tryptic peptides, where y-ions tend

to be present in higher abundance than their b-ion counterparts, due to the basic Arg or Lys

at the C-terminus. This factor finds the p-value that, given a set of b/yion pairs, the number

of pairs with more intense y-ions would randomly occur.

The theoretical y- and b-ions that aligned with spectral peaks were already identified in the

stage that calculated the peak match probability (the first stage of the probability scoring). In

this step, Peppy compares each peak that aligned with a theoretical y-ion to the peak that

aligned with its theoretical b-ion counterpart. The pairing of the counterpart ions of Figure 2

is illustrated in Figure 4. If a theoretical y-ion does not have a b-ion counterpart, Peppy

considers the y-ion more intense than the bion. Conversely, if the b-ion is present but the y-

ion is absent, Peppy considers the bion to be more intense than the y-ion. If the peak

matches are a product of chance, the probability that the y-ion peak is more intense than the

b-ion peak is 50%. Peppy computes the probability of the number of y-ion dominating pairs

using the same binomial probability formula, where n = the number of theoretical y-ions, k =

the number of y-ions that were more intense than their counterpart b-ions, and once again, p

= 0.5. Note that if y-ions do not tend to be more intense than their counterpart b-ions (for

example, if a mass spectrometer does not produce spectra with higher-intensity y-ions vs. b-

ions), this probability factor does not punish the spectra for not having this characteristic – it

only rewards for it being the case.

Optimization

The fact that both the intensity match probability and the paired ion relative intensity

probability always use 0.5 as the value for p when calculating the binomial probability

provides an opportunity to optimize performance. In the Peppy implementation of the

algorithm, the software pre-calculates the B(n,k,0.5) for all practical values of n and k and

stores these values in a look-up table. Additionally, certain values can be calculated once for

a spectrum and stored with that data object to avoid unnecessary recalculation. These values

include the coverage area for probability factor A and the intensity values m1 through m4 for

probability factor B.
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Peppy's final score

The final Peppy score is found by multiplying the three probability values defined above.

The multiplicative combination, if for a true positive, will produce a very small fraction

whose quality is largely determined by the magnitude of the negative exponent. Thus the

final score is calculated as:

where A, B and C are the three probability values. This final step is essentially cosmetic as it

enhances readability, conforms to the familiar trope that ‘larger values are better’ and allows

scores to be easily compared with scores from other systems such as Andromeda11a or

Mascot1.

Worked example

To demonstrate the process by which this system produces a score, we will calculate Peppy's

score for the match quality of the peptide APAGSAAGEGLLPHR with the spectrum

depicted in the figures. The mainline b- and y-ions that align between the peptide and the

spectrum are highlighted in Figure 2. The peptide sequence length is 15 acids; the number of

theoretical ions the scoring system considers is 2 * (15 – 1), which is 28. In Figure 2, 22 of

the theoretical ions align with ions of the spectrum. The fragment error tolerance used for

ion alignment was 200 PPM, which produced a coverage area for the spectrum of 2.54%.

This provided an estimate that given any randomly generated theoretical ion, there was a

2.54% chance for aligning with a fragment ion. The probability that 22 (or more) of the

possible 28 theoretical ions would randomly align is given by B(28, 22, .0254) ≈ 2.71E-30.

For the intensity match probability, it is shown in Figure 3 that of the 22 matching peaks, 18

are above the median. The probability of this occurring by chance is given by B(22,18,0.5)

≈ 0.0022. When peaks above the median are taken as a subset, this subset has a median at

m2. Of the 18 matching peaks that are in this subset, 14 are above the median, the odds of

which are B(18,14,0.5) ≈ 0.015. This process is repeated for m3 and m4 producing

probabilities of B(14,6,0.5) = 1 and B(6,6,0.5) ≈ 0.016 respectively. The final intensity

coefficient is the multiplicative combination of the values found for the four medians which

≈ 5.24E-7. To find the relative b- and y-ion intensity score, of the 14 ion pairs (illustrated in

Figure 4), 12 have y-ions that present with greater intensity than their sibling b-ion

(represented in the figure by the filled circles on the bottom row). The probability of this

scenario, or a more extreme value, occurring randomly is given by B(14,12,0.5) ≈ 0.0065.

Finally we multiplicatively combine the three score factors: 2.71E-30 * 5.24E-7 * 0.0065 ≈

9.24E-39. The final score is –log10(9.24E-39) ≈ 38.03.

Experimental Section

To facilitate a comparison of the performance of Peppy's scoring method to that of other

peptide identification systems, the Peppy search engine was integrated with the PepArML14

meta-search engine. PepArML provides a unified search interface for a variety of search

engines and a search engine agnostic results combiner using the same decoy-based FDR
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estimation technique for all search engines. As such, it provides an excellent platform for

comparing search engines' peptide identification performance in as close to an apples-to-

apples manner as possible.

The public PepArML meta-search platform supports Mascot1; X!Tandem4 with native, k-

score15, and s-score scoring; OMSSA3; MSGF+2 and Peppy integrated for the purpose of

this evaluation — reformatting spectral data as needed and constructing search

configurations for each search engine on the fly to ensure consistent and repeatable search

results across spectral data files, search configurations, and search engines. Searches were

performed against the UniProtKB/Swiss-Prot protein database without regard to taxonomy.

Spectra were automatically formatted and enumerated for each search engine to ensure

reliable and consistent spectrum identifier tracking, 13C isotope peak precursor correction-

enumeration, and, when necessary, charge-state correction and enumeration to ensure the

spectra searched by each engine are consistent. The same decoy database, representing

reversed target sequences, was searched by each search engine—instead of relying on

internal search engine decoy algorithms, which ensures the target and decoy sequences

evaluated were consistent. Finally, the same FDR procedure was used to estimate the

statistical significance of each search engines' peptide identifications. The FDR estimation

procedure first merged the target and decoy peptide identifications, selected the highest

ranking peptide identification per spectrum, tabulated the number of rank 1 target and decoy

hits at each score, and computed the q-value curve based on the cumulative number of target

and decoy hits at each score16.

Despite these efforts to create apples-to-apples comparisons of search engines, it is

impossible to match each search engine's parameters to each other perfectly. Peppy requires

precursor and fragment tolerances be specified in units of parts-per-million (ppm), while

OMSSA supports the specification of these tolerances in Daltons (Da) only, and Mascot

supports fragment tolerances only in absolute units (Da and mmu). Furthermore, the search

engines differ in terms of specifying instrument type and expected fragmentation

characteristics, with Mascot providing a variety of generic instrument types (ESI-TRAP,

MALDI-TOF-TOF, ESI-FTICR) and Peppy, OMSSA and X!Tandem requiring no such

parameter. Lastly, search engines sometimes interpret the same conceptual parameter

settings differently. For example, Mascot considers peptides from the N-terminal of the

protein to be trypsin-specific even with the initial Met removed, and some search engines

consider the precursor tolerance with respect to m/z units rather than in units of mass. We

made a best effort to configure each search engine appropriately and to match the search

parameters as closely as possible. In the case of mass tolerances, we used ppm-based

tolerances wherever possible, converting to absolute mass units at 1000 Da as necessary –

for example, 50ppm was substituted with 0.05 Da.

Data Sets

The following sets of MS/MS spectra were used by PepArML to compare algorithm

performance:

S17 - 1,389 MS/MS spectra from the Sashimi project data repository (http://

sashimi.sourceforge.net) data set 17mix_test2, representing a tryptic digest of 17 standard
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proteins, analyzed using an electrospray ionization quadrupole time-of-flight mass

spectrometer (Q-TOF Ultima) (Micromass/Waters, Manchester, United Kingdom). The S17

data set contains 241 (17.35%) true positive spectra assignable to peptides from the expected

or contaminant proteins.

CPTAC1 – 2,000 MS/MS spectra were randomly selected from a spectral set gathered, as

described by Harsha Gunawardena17, “in a data-dependent manner on a Q Exactive mass

spectrometer (Thermo Fisher Scientific, San Jose, CA) in high resolution (high-high mode

of operation). For example, a full scan mass analysis on an Orbitrap (externally calibrated to

a mass accuracy of < 1 ppm, and resolution of 75,000) was followed by intensity-dependent

HCD-MS/MS of the top 20 most abundant peptide ions at 17,500 resolution. The MS/MS

acquisition of a precursor m/z was repeated for 30 s and subsequently excluded for 60 s.

Monoisotopic precursor ion selection and charge state screening was enabled for triggering

data-dependent MS/MS scans.”

CPTAC2 – 2,000 MS/MS spectra were randomly selected from a spectral set gathered from

a quadrupole time-of-flight AB Sciex Triple TOF 5600 mass spectrometer using a data-

dependent method, acquiring MS1 and MS2 spectra at 20 Hz acquisition speeds. The mass

spectrometer was interfaced to an Eksigent 2D nano capillary pump. The columns were

housed in an Eksigent Nanoflex module with two 200μM × 15cm CHIP cartridges in series.

The peptides were eluted with an acetonitrile gradient over 160 min.

Trypsin was used as the proteolytic enzyme for all proteomic samples in all data sets.

CPTAC data was gathered from global proteomic analyses of human-in-mouse tumor

xenografts. The full array of CPTAC data, as well as detailed descriptions of the sample

preparation and LC-MS/MS processes, are available from cptac-data-portal.georgetown.edu.

Results and Discussion

Q-value curves showing the performance of the seven scoring systems on the three data sets

are provided in Figure 5. Many researchers are interested in the number of spectra identified

at the 1% FDR, so we closely examined the performance of the scoring systems at that

threshold (Table 1). Of the seven scoring systems, Peppy had the most positive spectral

identifications at the 1% FDR for two of the three data sets examined (S17, CPTAC2). For

S17, Peppy identified ∼18% more spectra than the runner-up, MSGF+. With CPTAC2,

Peppy made only ∼3% more identifications than the second-place results from MSGF+.

With the CPTAC1 data set, Peppy placed second to MSGF+, identifying ∼23% fewer

spectra. These results demonstrate that Peppy's scoring system fulfills the “high accuracy”

and “mass-accuracy independent” goals described in the introduction, at least for data sets

possessing the characteristics of those examined.

Our primary goal with Peppy was to develop a system that could easily handle

proteogenomic searches. When creating the scoring system component, it was our hope to

create one that was at least on par with those widely used. Based on these results, it is fair to

say that this goal was achieved. Peppy, including the implementation of this scoring method,

is an open source project. The scoring system objects are designed so that additional scoring

systems can be added and easily selected at runtime via a simple properties file. Based on
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our tests and those performed by others10, it is clear that while certain scoring systems

consistently perform very well relative to other systems, no one scoring system is

unvaryingly the best. In fact, it could be argued that for any given set of spectra, a

specialized scoring system could be constructed that would outperform all other systems.

Thus facilitating easily switching between scoring systems is an effort to address this

phenomenon of heterogeneous optimal identification methods. Our hope is that the openness

of this project will foster improvements to this scoring system and the addition of others as

knowledge and research trends in proteomics advances.

Availability

The Peppy source code, compiled executable, documentation, PepArML parameters and

PepArML results are available at http://geneffects.com/peppy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Peak coverage of an MS/MS spectrum. Panel “a” shows a spectrum coverage “area”; the

gray shading represents the area covered when fragment tolerance is taken into account. (For

illustrative purposes, the fragment tolerance represented in this figure is exaggerated far

beyond what is appropriate for a modern mass spectrometer. Panel “b” represents peak

coverage with varying error tolerances to targets with varying bull's-eye radii.

Risk et al. Page 11

J Proteome Res. Author manuscript; available in PMC 2014 July 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Example PSM. The spectrum of Figure 1 has been matched to the predicted b- and y-ions of

the peptide APAGSAAGEGLLPHR.
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Figure 3.
Medians above medians. Here the fragment ions of Figure 2 have been arranged in order of

intensity. The peaks matching to the theorized peptide sequence have been labeled. This

figure illustrates the heuristic that true alignments tend to occur with peaks of greater

abundance. Here, m1, m2, m3 and m4 denote the peaks with abundances in the top 50%,

25%, 12,5% and 6.25%, respectively.
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Figure 4.
Relative b- and y-ion intensities. This figure presents a “paired layout” where the matching

ions from Figure 2 have been arranged so that matched b-ions have been paired with their y-

ion counterparts. Pairs where the y-ion dominates the b- are noted with filled circles on the

bottom row.
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Figure 5.
Q-value curves output by PepArML. These charts show the performance of the seven search

engines evaluated with the three test data sets. Here the number of spectra positively

identified is a function of the false discovery rate. Set S17 contains a lower percentage of

identifiable true positives; there is therefore less granularity.
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