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Abstract

Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for

the control of external devices such as a robotic arm. Standard approaches include a calibration

phase to estimate decoding parameters. During iBCI operation, the statistical properties of the

neural activity can depart from those observed during calibration, sometimes hindering a user’s

ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a

Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle

rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the

intended movement. The algorithm, called MOCA, was tested using simulated neural activity and

evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI.

In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high

decoding errors, MOCA significantly reduced these errors (10.6 ±10.1%; p<0.05, pairwise t-test).

MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive
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Kalman filter already performed well. These results suggest that MOCA provides more robust

decoding than the standard Kalman filter for iBCIs.

Index Terms

Brain-computer interfaces (BCI); brain-machine interfaces (BMI); Kalman filter; motor cortex;
neural decoding; adaptive filtering

I. Introduction

Intracortical brain computer interfaces (iBCIs) seek to decode intended movement from

neural activity. A multielectrode array chronically implanted in the cortex records the

signals and sends them to signal processing hardware and software to extract informative

features and then estimate motor commands, such as raising the right arm. The technology

has been tested and developed in animals [1]–[6] and in early demonstrations by people with

neurological injury or disease [7]–[9]. Recent accomplishments include three dimensional,

iBCI driven robotic arm reaching and grasping by neurologically intact non-human primate

subjects [10] and by people with paralysis of the arms and legs [11], [12]. This recent

progress offers hope that iBCIs will one day restore motor control for people with paralysis.

During iBCI setup, a calibration process is typically used to set the parameters of the

decoding algorithm (filter). During calibration, the user attempts a series of instructed

movements and the neural signals are recorded. The overt actions of trained non-human

primates can be directly measured [1]–[6]. For people with paralysis, intended actions are

assumed to match those required to accomplish the directed tasks [9], [11], [13]. With the

inputs and outputs of the filter known, its internal parameters then can be estimated to

capture the statistical connection between the neural recordings and intended movement.

However, sometimes during iBCI operation, the neural firing activity or the relationship

between the neural signal and intended movement might change. Several studies have

reported this phenomenon, called nonstationarity, in which unexpected changes occur in the

statistical characteristics of the neural signals [4], [7], [14]–[20]. For instance, in monkeys,

the statistical dependency between kinematics and binned counts of detected action

potentials, i.e., spike counts, changed within a few minutes [15]. 84% of units underwent

statistically significant changes in mean firing rates in a retrospective analysis of 22 sessions

where people operated an iBCI [20]. These neural signal instabilities, combined with a

nonadaptive decoding algorithm, can introduce decoding errors, rendering the iBCI less

useful or even unusable until the decoder is recalibrated [17], [20].

Electrode placement [21], electrode design [22] and how the neural features are extracted

from the signals [19], [23], [24] may have an effect on signal stability. However, in one

study, much of the intra-day nonstationarity could not be attributed to technical artifacts

suggesting that the cause is often physiological [20]. The instabilities may arise from

changes in motor or cognitive states not modeled by the decoding algorithm. While

modeling more states might improve decoding performance [25], accounting for all the

relevant causal factors may not be feasible.
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To address this problem, iBCI operation could be halted and the decoding algorithm

recalibrated, for example, by the user actively using the iBCI to complete a series of pre-set

exercises. Data from this “closed-loop” variant of calibration can be combined with previous

calibrations to retune the filter [3], [10]–[12], [17], [26]–[28]. The more time spent

calibrating the filter, however, the less time there is available for the user to make use of the

iBCI. For a fully automated and practical iBCI, such interruption of iBCI use for

recalibration is not desirable.

Ideally, a decoding algorithm would autonomously and “silently” (without disturbing the

user) adapt to the nonstationarities that occur during iBCI operation. Differing from “closed-

loop” filter recalibration techniques, this capability calls for the filter to adjust its tuning

parameters without knowledge of the true motor states or objectives. To this end, an

adaptive linear filter [29] and point process filters [30]–[32] have been evaluated with

simulated data. Dual Kalman filtering was run offline on experimental data from monkeys

[33]. In both offline and online conditions, also with monkeys, an unscented Kalman filter

updated its parameters via a Bayesian paradigm [34]. In the latter two approaches, the

filter’s parameters were constantly adjusted by assuming the prior motor state estimates

were close to their true values.

Here, we develop an adaptive Kalman filter that adjusts an otherwise constant term, the

offset vector, in the tuning model. For the first time, we present a method that can handle

large, sudden nonstationarities and demonstrate improved performance over a standard,

nonadaptive Kalman filter in offline analysis of data from two people with tetraplegia using

an iBCI. Underlying the technique is a novel framework that employs penalized maximum

likelihood estimation to implement a Multiple Offset Correction Algorithm (hereafter

referred to as MOCA) in order to adapt the Kalman filter. The approach is similar to those

designed to construct robust filters in the face of unknown inputs [35], [36]. Perhaps most

relevant to our approach are filters built to handle large unknown impulses that are sparse in

time [37], [38]. They also perform a search over a branching set of possibilities, each a

solution from closed-form calculations, to determine if and when an impulse has occurred.

This report presents the general MOCA framework as well as a specific implementation.

Methods and data for evaluating MOCA follow, including simulations and offline,

retrospective analysis of clinical research sessions. The results demonstrate the improvement

that MOCA has over its nonadaptive counterpart.

II. Decoding Methods

A. Generic Kalman Filter

The Kalman filter [39], [40] has been successfully used in iBCIs [9], [11], [13], [41], [42].

At its core, the Kalman filter assumes a Gaussian-linear model,

(1)
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(2)

(3)

where k is the time step, x is the d × 1 motor state vector, z is the m×1 neural feature vector,

all model parameters reside in the matrices Ak, Hk, Wk, Qk, μ0, P0 and the offset vector θk,

and (μ, Σ) is a multivariate Gaussian distribution with mean vector μ and covariance

matrix Σ. The key statistical dependency between the neural features and motor states is

captured by (3) and is sometimes referred to as the tuning model.

At the current time step, k = n, the filter estimates the motor state, x̂n, given the feature

history from the first time step to the present, z1, z2, …, zn (or alternatively ). Let xk

conditioned on  be written as  or xk|k−1. Similarly, let xk conditioned on

 be written as  or xk|k. Using this notation, one way to arrive at the Kalman filter

is to maximize the a posteriori probability density (MAP) of xn|n,

(4)

Under models (1–3), x̂n can be arrived at via recursive calculations [39], [40],

(5)

where, for k ∈ {1, 2, …, n} as well as initializations x̂0 = μ0 and P0|0 = P0, we have xk|k−1 ~

(x̂k|k−1, Pk|k−1) and xk|k ~  (x̂k, Pk|k).

B. Standard, Nonadaptive Kalman Filter for iBCI Applications

In the general formulation (1–3), the matrices and offset vector can change between time

points. However, in iBCI applications, these parameters are usually assumed constant in

time,

(6)

(7)

Doing so simplifies the process of learning their values from calibration data. During filter

calibration, the participant performs tasks where zk is recorded and xk is assumed known

over many time steps. θ is set to the feature means over samples whose x values average out

approximately to zero. Values for A and H can then be found from linear regression
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techniques and the resulting residuals combined to form the covariance matrices W and Q.

Details about calibrating the Kalman filter for neural decoding can be found in [41], [42].

As in the generic case, x̂n is calculated from a recursive calculation, where now all

parameters are time invariant. Furthermore, Kk stabilizes over time to its steady state value,

K. In the case of iBCI’s, with time steps typically separated by 100 milliseconds or less, Kk

quickly converges to K [43]. Considering the filter under these steady state conditions, we

arrive at our standard, nonadaptive Kalman filter,

(8)

C. General MOCA Framework

Changes in neural activity unrelated to movement can introduce decoding errors [20]. In

order to approximately model the effects of such nonstationarities in our estimate for x ̂k, we

relax the assumption of the nonadaptive Kalman filter that θ is constant in time (7),

(9)

In effect, we go back to the generic Kalman filter model when it comes to the offset vector

(3). The resulting, recursive Kalman filter estimate of xk is the same as (8) only θ is replaced

by θk.

The challenge then becomes choosing values for the θk’s in order to adapt the Kalman filter.

In this paper we develop a penalized maximum likelihood approach for estimating the offset

vector history, , namely,

(10)

(11)

where, we define  for notational convenience. The penality

term γ is necessary, because the standard maximum likelihood estimation severly overfits

the offsets. The penalty term can also be used to introduce prior knowledge or other

constraints into the procedure (see Section II-D).

It can be shown (see Appendix A) that (11) equates to,
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(12)

where each  is  (νk, Rk), Pk|k is computed from (5), x̂k−1 is now the

prior state estimate generated by a Kalman filter under observations for  and a

proposed realization of , and terms not depending upon  have been dropped [44].

Once  is attained, we can run the Kalman filter, subtracting the estimated offsets from

the feature vectors to arrive at an estimate for the current motor state via the recursive

calculation,

(13)

Under this general strategy, a new θ history is estimated using (12) at every time step. Thus,

θ̂
k is not found recursively, but rather it is computed at each time step using the full history

. Since the homogeneous part of (13) is the same as the original nonadaptive Kalman

filter, MOCA inherits the stability properties of the nonadaptive Kalman filter. [45].

D. MOCA Implementation

1) Constraints and Choice of Penalty for —We constrain our search over

possible θ histories and choose a penalty both to reflect our observation that neural activity

is typically stationary but, when it changes, there is a change in the average level of only a

few neural features. This is embodied in the assumption that changes in offsets are sparse

(e.g. few neurons are affected) and that changes in time occur rarely. The approach differs

from incorporating the offsets into the hidden state, where the state transition model is linear

and Gaussian. Choosing linear and Gaussian dynamics allows use of the dual kalman filter

[33]. However, we find our modeling choices of sparsity and sudden shifts to better reflect

the nonstationarties occurring on timescales less than a minute.

The approach also simplifies estimation of the offsets. We assume the offsets stay at their

calibrated values, θ, until, at some point in the recent past, they may or may not have made a

step change to a new constant value. Let the possible shift occur at k = n − τ and ξ ⊂ {1, 2,

…, m} contain the indices of the offsets that have shifted. Additionally, let ϕ denote the

amount each offset has shifted at k = n − τ. The relationship between the θk’s, θ, τ, ξ, and ϕ,

is described by,
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(14)

where ϕi = 0 if i ∉ ξ.

For our implementation, τ was set to 5 seconds.

To capture our belief that a few nonstationary offsets are more likely than many at any given

point in time, we choose an L0 penalty,

(15)

where ℓ is the number of nonstationary offsets. The L0 penalty causes (12) to be equivalent

to minimizing the Akaike information criterion [46]. For example, suppose there were 32

neural features, and we assumed only 5 of those features had nonstationary offsets (5

nonzero entries in ϕ). Then by (15), γ = 5.

2) Search Strategy for Choosing which Offsets are Nonstationary—Now that

permissible values for  are completely defined by ξ and ϕ, we can recast (12) as a two

step minimization process, where first we propose which offsets are nonstationary and then

choose the extent to which they have shifted,

(16)

where ϕ′ contains all the nonstationary components of ϕ. For example, if m = 4 and ξ = {2,

4}, then ϕ′ = [ϕ2 ϕ4]T. We can express ϕ in terms of ϕ′,

(17)

where B is an m by m identity matrix with columns associated with assumed stationary

offset components; that is. i : i ∉ ξ, removed. For example,

Because a complete search over all possible combinations for ξ is intractable, we instead

implement the suboptimal strategy of forward stepwise search (FSS) akin to that used in

linear regression under similar circumstances [47]. The algorithm initializes ξ to the null set,
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meaning no offsets have changed. During the first step, we propose adding one of the offsets

to ξ. For each of the m candidates, the procedure estimates ϕ′ (see below) and subsequently

computes . FSS then adds the candidate with the lowest  to ξ. The search continues,

adding only one offset component per step. The process terminates when  cannot be

improved by adding an offset ξ to or ξ contains all offsets. Figure 1 outlines MOCA’s

overall approach.

3) Estimation of Nonstationary Offsets—For each ξ proposed by the FSS, an optimal

ϕ′ must be chosen to evaluate . We can derive an approximate, closed form solution for the

inner minimization in (16) to yield an estimate for ϕ′ (See Appendix B),

(18)

where  is the Kalman filter estimate at time step k under the default

assumption that none of the offsets have changed; i.e., ϕ = 0, and R is a steady-state version

of Rk. The latter exists because, as Kk quickly achieves the steady state value of K, then by

the iterative equations above in (5) and (12), Rk also reaches R. Due to (18), θ̂k is bounded as

long as the yk’s are bounded. This fact leads to bounded errors in estimating xk, assuming

the original nonadaptive Kalman filter is uniformly asymptotically stable (see Appendix C).

III. Simulation Test Methods

Before describing experiments with real iBCI data, we first illustrate the behavior of MOCA

using a controlled scenario with simulated neural data.

A. Cursor Motion Data

In order to generate the synthetic data, the velocities of arm reaching movements performed

by an able-bodied person were recorded and fed into a neural activity simulator. We

constructed a 2D radial-4 center-out-and-back cursor game using the MATLAB(R) software

platform (Figure 2). During each trial, the cursor was moved to within a highlighted, circular

target. The game was played for 60 seconds and cursor velocities were sampled at a rate of

10 Hz.

B. Simulated Neural Activity

The simulator contained a tuning model of the form (9) with 32 features, i.e. nz = 32. For

each feature, one movement direction, on average, generated the maximum level of activity.

We distributed these preferred directions equally over the entire 360 degree range. The

model was constructed so that the feature values (mean subtracted firing rates) varied

between ±10 Hz. The Gaussian noise for each feature was independent of the others and

their variances were all set to 10 Hz.
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The simulator was run in two modes: stationary and non-stationary. Under the scenario with

nonstationary offsets, the 5 features most tuned to a rightward velocity had their offsets

increased by 40 Hz above their calibrated values throughout the entire simulation. This 40

Hz value was selected to generate a velocity bias that appeared similar in magnitude to the

velocity biases occasionally observed in iBCI use.

C. Evaluation Procedure

Both MOCA and the standard, nonadaptive Kalman filter were run on the synthetic neural

activity to estimate the cursor velocity. The models in each filter exactly matched those used

by the simulator, except neither filter was informed about the 40 Hz offset increase when the

simulation was run in nonstationary mode. Besides comparing traces of the estimated and

true velocities, the mean absolute difference (μAD) between them was computed for both the

horizontal and vertical components.

IV. Offline Clinical Research Data Test Methods

A. Study Participants

Two people with tetraplegia and anarthria due to a pontine stroke enrolled in clinical

research studies where they actively controlled a computer cursor via the BrainGate2 iBCI1

to reach circular targets [9]. One participant in the study, hereafter referred to as S3, is a

woman who enrolled in the study at age 54. Participant T2, is a 65 year old man. Prior to the

sessions examined here, S3 had been working with the iBCI for over 26 months; T2’s prior

experience was just 2 months.

B. Implant

The implant consisted of a 10 × 10 microelectrode array (Blackrock Microsystems, Salt

Lake City) inserted into the motor cortex. The hand-arm region [48] was determined by pre-

operative MRI. The electrodes penetrated 1.5 mm deep in both S3 and T2 and were spaced

400 μm apart. Since four electrodes were non-active by design, a total of 96 voltage signals

were recorded by the array. The array was connected via insulated gold wires to a titanium

pedestal that was fastened to the skull. The pedestal functioned as a percutaneous connector

through which the voltage signals were transmitted, via a cable, to amplifiers, analog-to-

digital converters, as well as signal processing hardware and software on a nearby cart (see

[9] for details).

C. Sessions

Participants operated the iBCI to control a cursor on a computer screen. The trials consisted

of either radial-4 center-out-and-back tasks, radial-8 center-out-and-back tasks, or a random

step tracking Fitts metric task. While the details of the tasks have been detailed previously

[9], we briefly review the key aspects. The purpose of each trial was to move the cursor

through the 2D space of the screen to reach the currently highlighted circular target and

either dwell on the target for a predefined time period or select it akin to clicking with a

computer mouse. For radial-4 and radial-8 variants, the targets were located at the screen’s

1CAUTION: Investigational Device. Limited by Federal Law to Investigational Use.
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center as well as equally distributed along the periphery. Adhering to a center-out-and-back

paradigm, trial sequencing first presented a peripheral target followed by the center target

(Figure 2). For the Fitts variant, the targets were presented at random locations on the screen

and the size of the target randomly varied, but otherwise the tasks followed the same design

as the radial-4 and radial-8 tasks.

We analyzed 20 and 22 blocks of trials from sessions with S3 and T2 respectively. Sessions

explored ranged over 22 months (792 to 1447 days after implant) for S3, whereas T2

sessions spanned 8 months (68 to 270 days after implant). We chose sessions to encompass

a wide range of cursor control performance.

D. Pre-Filter Signal Processing

After exiting the pedestal, all 96 voltages were immediately passed through a cable to signal

processing hardware (Blackrock Microsystems, Salt Lake City). The signals then underwent

amplification, an analog bandpass (0.3 Hz to 7.5 kHz), digitization (30 kHz), and highpass

filtering (250 Hz). Either time and amplitude windows were used to manually sort spiking

units [8] or threshold crossings were employed [11], [49], [50]. For each unit, the number of

spikes in nonoverlapping 100 ms time bins were counted. Each component of the feature

vector corresponded to the count of a particular unit’s spike or threshold crossing.

E. Evaluation Procedure

Both MOCA and the standard, nonadaptive Kalman filter were run offline using the

recorded neural activity features to estimate the intended velocity, separate from any

decoding that was done during the session to control the cursor. However, unlike the

simulated data case, we did not know the true intended velocity; that is, we did not know the

ground truth of how the person intended to move during each sample interval. We did,

however, assume the person intended to move towards the target. Thus, we had a plausible

value for the velocity’s direction, but not its magnitude. At every time step, we computed

the angular error, e, between the target direction and the direction of the velocity estimated

by the filters. The mean angular error (MAE) across all time steps, k ∈ {1, 2, …, ns}, in a

trial block was used to measure decoding error; that is, .

V. Results

A. Simulation Tests

In both stationary and nonstationary simulation mode, MOCA’s offset corrections were

recorded over time. When the simulation was in stationary offset mode, meaning the offsets

did not depart from their calibrated values, MOCA’s corrections were infrequent and minor

(Table I). On average, only 1.46 ± 0.57 offsets out of 32 offsets were corrected at any given

time. For those offsets that were corrected, the mean correction was relatively small (0.75 ±

0.44 Hz compared to the average modulation range of 20 Hz).

Under nonstationary conditions, MOCA corrected for all five of the increased offsets (Table

I and Figure 3). Throughout the simulation, the estimate was close to the true value of 40 Hz

in all five nonstationary cases. MOCA made very few corrections to the stationary offsets
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(0.02 ± 0.13 offsets out of 27 stationary offsets) on average and the associated values were

relatively inconsequential (0.03 ± 0.23 Hz vs. an average modulation rate of 20 Hz) (Table

I). In addition, MOCA rapidly adapted to the offset changes. After collecting a sufficient

amount of neural activity history (τ = 5 seconds), MOCA immediately detected the 40 Hz

offset change (estimates at 5 seconds: 39.52, 39.97, 40.14, 40.34, and 40.38 Hz).

In terms of performance, MOCA was similar to the nonadaptive filter during stationary

simulation mode, i.e. when no offsets were perturbed. Specifically, the filters produced

similar estimates of the velocity. As measured by the mean absolute error between the

estimated and actual values, their performance was within 1% of each other.

However, when 5 offsets were increased by 40 Hz from their calibrated values, the

velocities estimated by the filters differed substantially. Specifically, while the nonadaptive

decoder’s estimates revealed an error bias, MOCA mitigated that bias as shown in Figure 4.

The mean absolute deviation dropped by nearly an order of magnitude, from 0.354 to 0.047

screen units per second in the horizontal direction under the nonadaptive filter and MOCA

respectively. In the vertical dimension, the deviation fell from 0.070 to 0.024 screen units

per second (both the width and height of the game area was 1.2 screen units).

B. Clinical Research Session Tests

MOCA was compared to the nonadaptive Kalman filter using sessions where two

individuals operated the investigational BrainGate iBCI. All filters were run offline to

generate velocity estimates from the feature histories in a retrospective fashion. Use of

MOCA reduced the mean angular error by 4.8 ± 8.98 degrees (p< 0.05, pairwise t-test)

(Figure 5). MOCA had its greatest beneficial impact in trial blocks where the nonadaptive

filter gave relatively large error and did not significantly affect cases where the nonadaptive

filter reported relatively low error. Specifically, when the nonadaptive filter provided an

error above 90 degrees, MOCA yielded an average reduction of 10.6 ± 10.1% (p< 0.05,

pairwise t-test). Below 90 degrees, MOCA may have slightly increased error 0.01±3.83

degrees, but the findings were not statistically significant (p= 0.99, pairwise t-test).

On average, across all trial blocks, MOCA corrected 17 ± 11% of the offsets. The fraction of

corrected offsets positively correlated with the nonadaptive filter’s performance error

(Pearson’s correlation coefficient = 0.52; p< 0.05 t-test). Among those offsets corrected, the

level of correction was relatively large. Normalized to the associated feature’s standard

deviation of modulation, the average was 0.48±0.17, nearly half the level of modulation.

When compared to the nonadaptive filter’s performance error, no statistically significant

correlation was found (Pearson’s correlation coefficient = 0.02; p-value = 0.90, t-test). One

might assume that as the error of the standard filter increases it is due to more nonstationary

channels. This in turn would suggest more offsets corrected by MOCA. Taken together, the

results suggest that MOCA applied a higher degree of correction to the more nonstationary

blocks of trials.

MOCA’s ability to rapidly adjust modeling parameters differentiates it from other published

adaptive filtering methods applied to iBCI recordings. For example, Li, et. al. applied

Bayesian regression with a joint formulation to update parameters every two minutes [34].
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We tested the Bayesian regression technique on the offline clinical data set and found the

best performance to occur when the update interval was reduced to 30 seconds. Despite the

optimization, MOCA still performed better than Bayesian regression. As compared to

Bayesian regression, MOCA reduced mean angular error by −3.67 ± 10.48 degrees (p< 0.05,

pairwise t-test).

VI. Discussion

In this offline analysis, MOCA provided an improvement in decoding performance when

compared with the nonadaptive Kalman filter, resulting in increased robustness to the

decoding of nonstationary neural signals. When control was relatively poor with the

nonadaptive filter, MOCA often provided reduced error. During relatively good control

under the nonadaptive Kalman filter, MOCA demonstrated no significant positive or

negative impact. These findings are consistent with the hypothesis that occasionally iBCI

control is degraded by nonstationarities that can be approximately modeled by offsets to the

baseline firing rate. In these cases, MOCA successfully adapted the filter parameters and

mitigated the effects of the nonstationarities. Furthermore, by virtue of the algorithm’s

design, the adaptation took place in a few seconds.

The offline nature of the analysis presents limitations, but also may lead to an underestimate

of the benefits. A decoder’s online performance can vary greatly from its offline counterpart

[51]. Online, the person controlling the iBCI can try to correct for perceived errors generated

by the decoding scheme. We anticipate that the adaptive method developed here would

mitigate the nonstationarities sufficiently such that real time corrections made by the iBCI

operator would result in a marked improvement in task performance.

MOCA was developed to address a common observation that when a person operates an

iBCI, systematic changes in feature offsets can occur [20]. It is postulated that there are

many other types of nonstationary behavior, such as unexpected changes in tuning direction.

Modification and expansion of the presented adaptive filtering framework could be used to

handle these other cases.

Finally, MOCA’s search to explore which offsets are non-stationary is a partial one.

Computationally, it becomes intractable to score all possible subsets of the features (aka

powerset) as there are 2m combinations. Better search strategies or more extensive searches

combined with much larger computational power might yield even greater improvement.

For example, the small and occasional erroneously assigned corrections by MOCA might be

eliminated by backward stepwise search.

MOCA - the presented, adaptive version of the Kalman filter - improved offline decoding

performance on average in 42 sessions where two people controlled an iBCI. Furthermore,

the improvements were the greatest when the effect of nonstationarities were large. The

methods are derived from a penalized maximum likelihood formulation, which serves as a

formal way to model nonstationarities as offsets and adds an adaptive mechanism to the

Kalman filter, already a popular choice for decoding in iBCIs. Thus, beyond the immediate

usefulness of the instantiated MOCA algorithm, the MOCA framework provides a

foundation for constructing other offset correction algorithms in iBCIs. MOCA may also be
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useful in applications, beyond iBCIs, when a Kalman filter is applied in the context of

nonstationary data. In such cases, the technique can quickly adapt the filter solely from the

observations’ history.
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Appendix A

We seek to show that (11) equates to (12). Examining (11),
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(19)

we see that  requires evaluation. Let  and

. As mentioned in Section II-A, the current motor state given all

prior neural features and the entire offset history follows a multivariate Gaussian

distribution, i.e. xk|k−1 ~  (x̂k|k−1, Pk|k−1), where x̂k|k−1 and Pk|k−1 can be produced from the

recursive Kalman filter calculations (5) with x̂1|0 = Aμ0 and P1|0 = AP0|0AT. Since qk ~ (0,

Q) and zk|k−1 is a linear function of qk and xk|k−1, i.e., zk|k−1 = Hxk|k−1 + qk, then p(zk|k−1) = 

(νk, Rk), where νk = HAx̂k−1 + θk and Rk = H(APk−1|k−1AT + W)HT + Q.

Inserting  (νk, Rk) into  yields,

(20)

where C is a constant with respect to .

Appendix B

We seek to prove the inner minimization of ϕ′ in (16) is solved approximately by (18).

Because we assume a single step change in the offsets at k = n − τ, summation terms in (16)

associated with k < n − τ are constant with respect to ϕ′ and thus can be removed from the

optimization,

(21)

Next, from its definition, we note that Rk is not a function of ϕ′. Additionally, since Kk

quickly achieves the steady state value of K, then by the iterative equations above in (5), Rk

also reaches a steady state matrix we label as R. Thus, R−1 is a precomputed constant,

(22)

Thus, ϕ′ only enters into the objective function through the νk’s, both directly and implicitly

through x̂k−1,

(23)

In order to express each x̂k−1 in terms of ϕ′, we first rearrange the recursive equation for x̂k
in (5),
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(24)

We then can calculate the first few iterations for x̂k in terms of ϕ̂,

which leads us to the general relation,

(25)

where we note that  is the Kalman filter estimate at time step k when ϕ = 0, that is the

default assumption that none of the offsets have changed.

Substituting this finding into the definition for νk, we have,

(26)

In order to further simplify, we again aggregate terms,

(27)

(28)

in order to arrive at,

(29)

To minimize the objective function, , we

compute the gradient and find the critical point,
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(30)

(31)

We know the critical point is a minimum because the second derivatives form the Hessian

matrix,  where each term is nonnegative definite, since R is positive

definite.

Appendix C

To better understand error bounds, we note that (18) implies errors in estimating θk are

bounded, if the yk’s are bounded. Let Δθ denote the error bound on the θk’s. We can then

compare the state estimate under a perfect estimate for the offsets, , to one where the

offset error is at its maximum bound, ,

(32)

Since , we have,

(33)

As k→ ∞, . Assuming the original nonadaptive filter is uniformly

asymptotically stable, then ||Sj|| exponentially decays as a function of j [45]. By the ratio test

for the series then, ek is bounded as k → ∞.
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Fig. 1.
Overall schematic of the multiple offset correction algorithm (MOCA). At each step in the

procedure, an additional offset index, i, is added to the nonstationary set, ξ. The decision is

based on improving an objective function, , tied to maximizing the likelihood. The process

terminates when either the step fails to improve  or all offsets are considered nonstationary.

The resulting estimates for the nonstationary offsets, ϕ̂′, are then used to correct the Kalman

filter.
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Fig. 2.
Description of the 2D radial-4 center-out-and-back cursor game used to compare the filters.

a) The objective is to move the cursor (trajectory represented by the black dotted trace) to a

randomly chosen, peripheral target (filled in with gray) and then b) move it back to the

center target.
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Fig. 3.
MOCA’s offset corrections while the simulation ran in nonstationary mode. The colored

traces indicate the corrections to 5 offsets which departed from their calibrated values by 40

Hz (highlighted by the gray line). The vertical axis between 4.5 and 37.5 Hz was removed to

zoom in on areas of interest. Because MOCA must wait for a history of features to become

available, it does not attempt to estimate offsets during the first 5 seconds of the simulation.
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Fig. 4.
Simulation traces comparing the two filters while in nonstationary mode. Black traces

denote true cursor velocity over time. Similarly, gray traces provide the respective filter’s

estimate of the cursor velocity. Mean absolute deviations, μAD, between the true and

estimated cursor velocity along each component summarize the overall estimation accuracy.

The simulation conditions cover the case where 5 of the offsets were increased from their

calibrated values, requiring the decoder to adapt.

Homer et al. Page 22

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2014 July 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5.
Offline comparison between MOCA and the standard, nonadaptive Kalman filter. Each data

point in the plot represents a trial block (S3 designated with black circles and T2 with black

crosses). The horizontal position of each data point denotes the mean angular error from the

standard filter whereas the vertical position gives the same metric when applying the MOCA

variant. The light grey line is provided for reference as data points below the line indicate a

lower error under the adaptive decoder.
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TABLE I

Distribution of corrections made by MOCA during three different situations. Because all features had an

average modulation of ±10 Hz, the sizes of the false corrections made to the unperturbed offsets were

relatively small.

Simulation mode stationary sim. nonstationary sim.

Offset type all 32 units unperturbed 0 Hz 27 units unperturbed 0 Hz 5 units perturbed +40 Hz

correction < −2 Hz a 0.00% 0.00% 0.00%

−2 < correction < 0 Hz 2.24% 0.05% 0.00%

correction = 0 Hz 95.43% 99.93% 0.00%

0 < correction <= 3 Hz 2.33% 0.02% 0.00%

3 < correction <= 38 Hz 0.00% 0.00% 0.00%

38 < correction <= 39 Hz 0.00% 0.00% 1.96%

39 < correction <= 40 Hz 0.00% 0.00% 52.42%

40 < correction <= 41 Hz 0.00% 0.00% 42.65%

41 < correction <= 43 Hz 0.00% 0.00% 2.97%

43 < correction Hz 0.00% 0.00% 0.00%

a
The table shows the frequency of corrections, binned by value, reported as a percentage.
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