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Abstract

The proliferation of biosocial surveys has increased the importance of weighing the costs and
benefits of adding biomarker collection to population-based surveys. A crucial question is whether
biomarkers offer incremental value beyond self-reported measures, which are easier to collect and
impose less respondent burden. We use longitudinal data from a nationally representative sample
of older Taiwanese (n = 639, aged 54+ in 2000, examined in 2000 and 2006 with mortality follow-
up through 2011) to address that question with respect to predicting all-cause mortality. A
summary measure of biomarkers improves mortality prediction (as measured by the area under the
receiver operating characteristic curve) compared with self-reports alone, but individual
biomarkers perform better than the summary score. We find that incorporating change in
biomarkers over a six-year period yields a small improvement in mortality prediction compared
with one-time measurement. But, is the incremental value worth the costs?

INTRODUCTION

Publication of Between Zeus and the Salmon: The Biodemography of Longevity (Wachter
and Finch 1997) heightened interest in the collection of biological measures of chronic
disease within demographic household surveys. Prior to the 1990s, the inclusion of such
measures was generally limited to epidemiologic studies, which were often based on
geographically limited samples and generally included only limited social data. However,
since then, growing numbers of population-based surveys have collected biological
measures alongside questionnaires that rely on self-reports of health and extensive
household and individual information. As these “biosocial” surveys have proliferated,
increasing levels of research funding are being devoted to their collection. Thus, it is
important to weigh the benefits of biomarker collection against the costs: financial expense,
logistical complications, increased respondent burden, ethical issues, and threats to privacy.
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There are many ways to quantify the value of the biomarkers being collected. Here, we
focus on only one of the potential uses: their value in predicting mortality. We use mortality
because it is a well defined and salient health outcome with little measurement error,
assuming that vital status is determined from virtually complete death registration records.
Friedman and Kern (2014) argue that all-cause mortality is the single best measure of health,
noting that it is used worldwide as a key indicator of public health. Biomarkers of individual
diseases are, of course, of particular clinical interest, however the biomarkers evaluated here
relate to a broad range of diseases. Thus, we would obtain an incomplete — perhaps even
biased — assessment of their predictive power if we used a specific disease or cause of death
as the benchmark. In addition to strong validity, all-cause mortality has the advantage of
avoiding the problem that studies of a single disease may miss some deaths that were
attributed to a different cause, but resulted indirectly from the disease of interest (Friedman
and Kern 2014).

As biosocial surveys have evolved, some studies have begun longitudinal collection of
biomarkers with the expectation that measurement at multiple survey waves will improve
our understanding of the link between biomarkers and mortality (Crimmins and
Vasunilashorn 2011). As yet, however, little data have been available to test this assumption.
Prior studies have demonstrated that biomarkers are useful predictors of mortality, but few
have assessed the prognostic value of change in biomarkers to determine whether they offer
greater value than measurement of biomarker levels at a single wave. Collecting a wide
range of biomarkers is costly, so it is also important to determine whether some biomarkers
are more valuable than others or whether most of the power derives from markers
representing a particular biological system.

In this analysis, we use longitudinal data from the 2000 and 2006 waves of the Social
Environment and Biomarkers of Aging Study (SEBAS) in Taiwan, one of the first biosocial
surveys to collect two rounds of biomarkers, to investigate four hypotheses motivated by the
existing literature. First, we expect that biomarkers will have greater value for predicting
mortality than self-reported measures of health when compared side by side. Second, we
hypothesize that biomarkers will retain incremental prognostic value above and beyond self-
reports. Third, we expect that measurement of change in biomarkers will yield better
discrimination (i.e., ability to distinguish between those who died and those who did not)
than a single measurement of biomarkers. Fourth, based on prior studies that have included a
wide range of biomarkers (e.g., Crimmins and Vasunilashorn 2011, Newman et al. 20009,
Sidorenkov, Nilssen, and Grjibovski 2012, Swindell et al. 2010), we anticipate that markers
drawn from multiple biological systems will contribute prognostic value.

PREDICTING MORTALITY

Self-reported indicators of health status

Health indicators obtained from self-reports are typically important mortality predictors.
Indeed, many (but not all) of the indicators incorporated into prognostic indices designed for
clinical use (Yourman et al. 2012) could be obtained via self-report, although their validity
would need to be assessed. For the purposes of predicting longer-term mortality (over at
least four years) in community-based populations, two such indices have demonstrated good
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(Schonberg et al. 2009) or very good (Lee et al. 2006b) discrimination, although none of the
existing prognostic indices has attained excellent discrimination (Yourman et al. 2012).
Among the health indicators in these indices are: mobility/functional limitations, history of
cancer, current diabetes, smoking status, self-assessed health status, and humber of
hospitalizations in the past year (Schonberg et al. 2009, Lee et al. 2006b); see also
www.eprognosis.org. Other indicators include current chronic obstructive pulmonary
disease (COPD), congestive heart failure, and body mass index, but self-reports may not
reliably capture these variables.

As suggested above, self-reported measures have a downside: potential inaccuracy.
Misreporting may result from recall bias or from unwillingness to acknowledge health
problems. Respondents may also be unaware of some underlying conditions that confer
health risk. Then, too, there is a subjective component: for example, two people with similar
levels of physical ability may differ in their perceived—and consequently,
reported—difficulty performing a specified task (Melzer et al. 2004). All of these factors can
contribute to measurement error. One appeal of biological markers is that they may be less
subject to such errors.

Some studies that examine the relationship between biomarkers and mortality use individual
biomarkers as predictors, whereas others develop a composite measure based on multiple
markers. Studies also differ in the number and range of markers they use: some rely on a
few closely related markers that reflect a common biological system, while others include a
larger number of markers that represent multiple systems (e.g., cardiovascular, metabolic,
immune/inflammatory, neuroendocrine, renal, hepatic). Given the vast literature linking
biomarkers and mortality, here we focus on the smaller set of studies that include markers
drawn from multiple systems. We divide our review into two parts: 1) studies that use
individual markers; and 2) those that use multi-system summary scores.

Studies Using Individual Markers Representing Multiple Biological Systems—
Many studies have investigated the association between survival and a collection of
individual biomarkers drawn from multiple biological systems (e.g., Crimmins, Kim, and
Vasunilashorn 2010, Crimmins and Vasunilashorn 2011, Fried et al. 1998, Kistorp et al.
2005, Lan et al. 2007, Lee et al. 2006a, Newman et al. 2009, Sidorenkov, Nilssen, and
Grjibovski 2012, Swindell et al. 2010, Turra et al. 2005). These studies demonstrate that
cardiovascular, metabolic, inflammatory, neuroendocrine, and other markers that reflect
disease (e.g., kidney, liver) are useful predictors of mortality. An important question is; how
do we quantify the predictive ability of a particular set of biomarkers?

The most common approach, by far, for quantifying the predictive ability of a model is the
C-statistic or Area Under the Receiver Operating Characteristic Curve (AUC). Receiver
operating characteristic (ROC) analysis quantifies the model’s accuracy in discriminating
between two states (in this case, alive or dead) as the discrimination threshold varies.
Variation in the “cut-off” threshold used to classify subjects into the two groups typically
involves a trade-off between sensitivity (those who died are classified as “dead”) and
specificity (those who survived are classified as “alive”). A lower cut-off yields greater
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sensitivity but lower specificity. The ROC curve plots sensitivity against 1-specificity for all
possible cut-off values of the classifier. The area under that curve is used to summarize the
global performance of the classifier. The AUC can be interpreted as the probability that
those who actually died are assigned a higher predicted probability of death than those who
survived (Pencina and D'Agostino 2004). So, an AUC of 0.5 would indicate that the model
performs no better than chance alone and an AUC of 1.0 would represent perfect accuracy
(100% sensitivity and specificity). Statistical significance alone is not sufficient to
demonstrate that a marker substantially improves model performance, and even a large
effect size does not necessarily translate into a meaningful improvement in discriminatory
ability (Pencina et al. 2008). The improvement in the C-statistic/AUC associated with an
additional indicator is often small in magnitude even when the odds ratio associated with
that marker is large; Pencina et al. (2008) suggest that an increase in AUC of 0.01 may be
considered a meaningful improvement.

Here, we limit our review to studies that: 1) examined individual biomarkers drawn from
multiple systems as predictors of all-cause mortality, where the markers include standard
cardiovascular/metabolic markers (e.g., blood pressure, lipids, measures of glucose
metabolism, and obesity) as well as at least one inflammatory marker (e.g., interleukin-6,
IL-6; C-reactive protein, CRP); and 2) assessed the discriminatory ability of the set of
biomarkers. We identified six such studies (see Table 1) based on five unique datasets in
four countries: Costa Rica (Rosero-Bixby and Dow 2012), Germany (Haring et al. 2011),
the Netherlands (Newson et al. 2010, Stork et al. 2006), and Taiwan (Goldman et al. 2006b,
Goldman et al. 2009). Some of these studies also included neuroendocrine markers such as
cortisol, dehydroepiandrosterone sulfate (DHEAS), epinephrine and norepinephrine. The six
studies also incorporated “other” biomarkers that cannot be easily classified into one of the
above-mentioned groups. Half included a measure of renal function (e.g., creatinine
clearance, urinary albumin). Two studies included serum albumin (Goldman et al. 2009,
Newson et al. 2010), which is a non-specific measure of underlying disease. Two studies
(Goldman et al. 2006b, Goldman et al. 2009) incorporated insulin-like growth factor 1
(IGF-1), which affects muscle growth and is an indirect marker of inflammation. Haring et
al. (2011) added a marker of liver function (glutamyltransferase). Two studies (Stork et al.
2006, Newson et al. 2010) incorporated carotid plaque burden, which is a marker of
atherosclerosis. Rosero-Bixby and Dow (2012) included performance assessments (i.e., grip
strength, gait speed, peak expiratory flow). Another study included a measure of bone
density (Newson et al. 2010).

Most of these studies found that the addition of biomarkers led to a large gain in predictive
ability. One exception was Haring et al. (2011) who reported that the biomarkers provided
only a minuscule gain in AUC (0.004), but their model included only the four “most
informative” biomarkers (out of 10). In contrast, the Costa Rican study (Rosero-Bixby and
Dow 2012) included 22 biomarkers and the Taiwan studies (Goldman et al. 2009, Goldman
et al. 2006b) included 13-16 biomarkers; these three studies found that the set of biomarkers
accounted for a 0.06-0.08 increase in AUC. One of the Dutch studies included only three
markers (IL-6, CRP and the number of carotid plaques), but those markers contributed to a
0.15 improvement in AUC (Stork et al. 2006). The other Dutch study (Newson et al. 2010)
did not estimate the increase in AUC associated with the seven biomarkers (i.e., diastolic
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blood pressure, CRP, number of carotid plaques, and several other markers) compared with
a model that included only the control variables.

As noted by Pencina et al. (2012), the gain in AUC depends heavily on the strength of the
baseline model used for comparison. All of the studies mentioned above controlled for sex,
age, smoking, and some self-reported measures of baseline health status. Haring et al. (2011)
adjusted for the most extensive list of covariates including multiple measures of
socioeconomic status, health behaviors, disease history, self-assessed health status,
perceived quality of life, and waist circumference. They had the strongest baseline model
(AUC=0.88) among the six studies considered here. The limited set of selected biomarkers
combined with an extensive set of control variables may explain why the incremental value
attributable to biomarkers was much smaller in the Haring et al. (2011) study than the
others. Not surprisingly, the largest gain in AUC (0.15) was generated by the study with the
weakest baseline model (AUC=0.62) (Stork et al. 2006).

Studies Using Multi-System Biomarker Summary Scores—The allostatic load
framework (McEwen and Stellar 1993) helped promote the use of composite measures of
biological function across multiple systems (although not all multisystem scores are
predicated on the allostatic load framework). A number of prior studies in the U.S. and
Taiwan have found that multi-system measures consistently predict all-cause mortality
(Goldman et al. 2006a, Seeman et al. 2001, Seeman et al. 2004, Gruenewald et al. 2006,
Karlamangla, Singer, and Seeman 2006, Borrell, Dallo, and Nguyen 2010, Crimmins, Kim,
and Seeman 2009, Wang et al. 2006, Levine 2013)—see Table 1 for more details. Early
formulations of such scores incorporated standard cardiovascular/metabolic markers as well
as neuroendocrine markers. More recent versions typically include at least one inflammatory
marker and often include some “other” marker(s) (e.g., serum albumin, creatinine clearance,
homocysteine).

In most cases the magnitude of the association between the multi-system score and mortality
was substantial even among the studies that controlled for self-reported indicators of
baseline health status (Goldman et al. 2006a, Seeman et al. 2004, Seeman et al. 2001, Wang
et al. 2006). For example, Seeman et al. (2001) showed that the odds of dying within seven
years were more than six times as high for someone with high-risk levels for at least 7 of the
10 biomarkers compared with someone with no high-risk markers. Wang et al. (2006)
reported that the mortality rate was four times as high for individuals with high multi-system
scores (i.e., top quintile) relative to those with low scores (i.e., bottom two quintiles)
adjusted for age, sex, and conventional risk factors, although the multi-system score yielded
only a small improvement in predictive ability (C-statistic increased from 0.80 to 0.82).
However, standard clinical biomarkers were included as control variables rather than being
incorporated into the multisystem score. None of the other studies quantified the predictive
ability of the multisystem score.

With one exception, prior studies investigating the link between a multi-system score and
mortality relied on markers measured at only one survey wave. Karlamangla et al. (2006)
were the only researchers that evaluated the contribution of changes in markers across
multiple systems: they found that both starting levels and changes in biomarkers over a 2.5
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year period were associated with subsequent mortality. However, this study did not control
for any self-reported health indicators, nor did it evaluate whether changes in biomarkers
provided significantly better discriminatory ability than a one-time measurement.

What this study adds

In sum, existing prognostic indexes for predicting mortality among community-based
populations of older adults have achieved C-statistic/AUC values ranging between 0.66 and
0.84 (Yourman et al. 2012). Our study extends prior studies by quantifying the incremental
improvement in discrimination associated with measurement of change in biomarkers
compared with one-time measurement.

METHODS

Data

The data come from a cohort study in Taiwan (SEBAS), augmented by the 2003 wave of its
parent study, the Taiwan Longitudinal Study of Aging (TLSA). Taiwan provides a good
context for study because the level of life expectancy (ep = 79.2 in 2010) is similar to that of
other industrialized countries such as the U.S. (eg = 78.9 in 2010) (Human Mortality
Database 2013), and the cause of death structure is also similar to that of high income
Western countries. For example, 9 out of the top 10 causes of death in 2011 were the same
in Taiwan (Department of Health, Executive Yuan, R.O.C. (Taiwan) 2012) and the U.S.
(Hoyert and Xu 2012). Many of the factors (e.g., age, sex, education, marital status, self-
reported measures of health) that predict mortality in Taiwan are consistent with those
observed in Western countries (Zimmer, Martin, and Lin 2005).

The SEBAS cohort was based on a nationally representative sample of Taiwanese aged 54
and older in 2000, selected randomly using a multi-stage sampling design with oversampling
of older persons (71+) and urban residents (Chang et al. 2012). In 2000, in-home interviews
were completed with 1497 respondents, 1023 of whom also completed the physical
examination. Exam participants did not differ significantly from nonparticipants in ways
likely to introduce serious bias (Goldman et al. 2003). Six years later, a follow-up was
conducted with those who completed the 2000 exam and survived to 2006: 757 completed
the in-home interview and 639 participated in the physical examination. Details regarding
response rates, sample attrition, and exam participation are provided elsewhere (Chang et al.
2012).

The physical examination followed a similar protocol in both waves. Several weeks after the
household interview, participants collected a 12-hour overnight urine sample (7pm to 7am),
fasted overnight, and visited a nearby hospital the following morning for a physical
examination that included collection of a blood specimen and measurements of blood
pressure, height, weight, waist and hip circumference. Compliance was high: in 2000, 96
percent fasted overnight and provided a urine specimen deemed suitable for analysis; the
comparable figure was 88 percent in 2006.

Union Clinical Laboratories (UCL) in Taipei analyzed the blood and urine specimens. In
addition to the routine standardization and calibration tests, triplicate sets of specimens were
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contributed by individuals outside the target sample (n=9 in 2000; n=10 in 2006): two sets
were sent to UCL and the third set was sent to Quest Diagnostics in the US (San Juan
Capistrano, CA). The results indicated high intra-lab reliability for duplicates sent to UCL
(2000: > 0.71; 2006: > 0.85). With a few exceptions (glycoslyated hemoglobin, HbAlc;
Cortisol; Urinary Creatinine), inter-lab correlations between results from UCL and Quest
Diagnostics exceeded 0.90 in both waves.

Survival status as of January 1, 2012, was ascertained by linkage to the death certificate file
maintained by the Taiwan Department of Health and to the household registration database
maintained by the Ministry of the Interior. The analysis sample was based on the
longitudinal cohort that completed the exam in both 2000 and 2006 (n=639, 104 of whom
died by December 31, 2011). The mean length of mortality follow-up was 5.1 years (max,
5.3 years). Some (n=89) of the respondents had missing data for at least one covariate,
typically a biomarker. To maximize the use of the data, we followed standard practices of
multiple imputation (Schafer 1999, Rubin 1996) to handle missing data. We created five
imputed datasets using regression techniques to fill in missing values using as predictors all
of the variables in this analysis plus several auxiliary variables that were correlated with
non-response (e.g., interviewed by proxy, cognitive function, limitations in activities of
daily living, walking speed). Then, we estimated the model for each imputed dataset and
combined the five sets of estimates using Rubin’s rules (Royston, Carlin, and White 2009).
All measures of fit and predictive ability were calculated for each dataset and then averaged
following the same rules. In order to test the robustness of the results to treatment of missing
data, we also re-estimated the final models for the sample with complete data (n=550).

Biomarkers—We included 19 biomarkers that have been shown by prior studies to be
associated with all-cause mortality. They comprised four groups of markers: 1) eight
standard cardiovascular/metabolic risk factors—systolic blood pressure, diastolic blood
pressure, total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides,
glycoslyated hemoglobin, body mass index, and waist circumference; 2) four inflammatory
markers—IL-6, CRP, soluble intercellular adhesion molecule 1 (SICAM-1), soluble E-
selectin; 3) four neuroendocrine markers—dehydroepiandrosterone sulfate (DHEAS),
cortisol, epinephrine, norepinephrine; and 4) three other markers that do not represent a
common biological subsystem—creatinine clearance, albumin, homocysteine. See Table 2
for more detailed information about each marker.

We calculated an overall summary score based on these 19 markers and subscores for each
of the four groups of markers. Although the last group comprises three unrelated markers,
we compute the subscore for completeness (i.e., sum of the four subscores equals the overall
score). Each score was calculated by counting the number of markers for which the
respondent exhibited a high-risk level. High-risk was defined by established cutoffs for the
standard cardiovascular/metabolic factors and CRP (see Appendix Table A-1 for a list of
markers and cutoffs). For all other markers—which have no generally accepted clinical
cutoffs—we defined high-risk based on the weighted distribution of the 2000 sample:
bottom quartile for DHEAS, creatinine clearance, and albumin; top quartile for other
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markers. Although other types of summary scores have been proposed (Juster, McEwen, and
Lupien 2010, Seeman et al. 2010), we use a formulation similar to that employed by many
other studies to represent a composite of biomarker values.

Self-Reported Health Indicators—Based on self-reports from 2006, we included six
health indicators: 1) global self-assessed health (“Regarding your current state of health, do
you feel it is excellent, good, average, not so good, or poor?”); 2) an index of mobility
limitations; 3) whether the respondent was ever diagnosed with diabetes; 4) history of
cancer; 5) number of hospitalizations in the past 12 months; and 6) smoking status (never,
former, current). Mobility was based on self-reported difficulty performing eight physical
tasks without assistance, each of which was coded on a four-point scale (0=no difficulty,
1=some difficulty, 2=great difficulty; 3=unable): stand for 15 minutes, squat, raise both
hands overhead, grasp or turn objects with his or her fingers, lift or carry an object weighing
11-12kg, walk 200-300m, run 20-30m, and climb two or three flights of stairs. Based on
the recommendations of Long & Pavalko (2004), we constructed the scale by summing the
eight items (potential range 0-24), adding a constant (0.5), and taking the logarithm of the
result, which allows for relative rather than absolute effects.

Social and Demographic Characteristics—We controlled for key demographic and
social characteristics that are known to be important predictors of mortality. Demographic
variables comprised age, sex, urban residence, and ethnicity (Mainlander vs. Taiwanese).
We also included educational attainment because of the well-established link between
socioeconomic status and longevity both within and across countries. Finally, in light of the
large literature documenting an association between social relationships—including marital
status—and mortality risk (see meta-analysis by Holt-Lunstad, Smith, and Layton 2010), we
adjusted for social integration and perceived social support.

An index of social integration was constructed following the strategy used by Cornwell &
Waite (2009) to develop a social disconnectedness scale. Using 10 indicators from the 2003
TLSA (e.g., network size, network range, marital status, participation in social
organizations; see Appendix Table A-2 for details), we standardized each item and
calculated the mean across valid items if at least 8 items were valid (a=0.72).

An index of perceived social support was based on four questions (coded 0-4) from the
2003 interview: family/friends willing to listen; family/friends make you feel cared for;
satisfaction with emotional support received from family; can count on family to take care
of you when you are ill. We calculated the mean across valid items if at least 3 items were
valid (a=0.84).

Analytical Strategy

Our modeling strategy begins by assessing the incremental contribution of self-reported
health indicators versus biomarkers for predicting mortality relative to a baseline model that
includes only the social and demographic control variables. Thus, we test our first
hypothesis: that biomarkers predict mortality better than self-reported health indicators. In
the second part of the analysis (pertaining to our second hypothesis), we evaluate the added
value of biomarkers above and beyond self-reports. That is, do biomarkers yield prognostic
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value net of self-reported measures? In the next stage (related to our third hypothesis), we
determine whether changes in biomarkers yield more predictive power than one-time
measurements. Finally, with regard to our fourth hypothesis, we explore the prognostic
value of biomarkers representing different systems.

Descriptive statistics are weighted to account for oversampling and for differential response
rates by age, sex, and other covariates. Using unweighted data, we estimate age-specific
mortality using a Gompertz hazards model with time measured in terms of age. Initial tests
(not shown) show no significant evidence that the age slope of mortality varies by sex.
Nonetheless, there is evidence of non-proportional hazards (i.e., the effect varies by age) for
a few covariates: perceived social support, current smoker, and the change (2000-06) in
DHEAS. Therefore, we include interactions between these variables and age.

In order to compare effect size across predictors, we standardize—to have a mean of zero
and standard deviation (SD) of one—each of the continuous measures prior to fitting the
hazards models. Thus, the coefficient represents the effect per SD. Many of the biomarkers
have a skewed distribution, which influences the mean and the SD. Therefore, for models
that employ the markers in continuous form, we transform markers with a skewed
distribution taking logs or using a power transformation (see Table A-3) in order to better
approximate normality. These transformations substantially improve the fit of the model.

To compare various models, we use measures of relative goodness of fit and discrimination.
We use Akaike’s information criteria (AIC) to measure relative goodness of fit. The AIC
compares the fit of one model relative to another (whether nested or not) based on the
maximized log-likelihood with a penalty for the number of parameters estimated (StataCorp
2011, Akaike 1974).

To measure discrimination, we use the AUC (described earlier). We calculate the AUC by
comparing the model-based predicted probability of dying by the end of follow-up (see
Appendix for details) with the observed binary outcome (death vs. survival). One drawback
of the AUC measure is that it can be misleading if the ROC curves cross (i.e., the model
with higher AUC is not superior for all values of the classification threshold; that is, it does
not have better sensitivity at all levels of specificity) (Hand 2010). In such cases, one must
be cautious about concluding that the model with higher AUC is “better” because this
assessment depends on the tradeoff between specificity and sensitivity. In light of this
potential problem, we inspect the ROC curves for all the comparisons presented here.
Among nested models in which the change in AUC is significant, we find no appreciable
crossover of the ROC curves; thus, we can conclude that the model with the higher AUC is
better. However, in cases where the change in AUC is not significant and for some
comparisons of non-nested models, we find a slight crossover of some of the ROC curves. In
these cases, we have qualified our discussion of the results.

The mean within-individual change (2006 — 2000) in overall biological risk (i.e., in the
biomarker summary score) is 0.6 (Table 3), but there is considerable variation across
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individuals. Nearly half the respondents exhibit an increase, while one-third display a
decrease. Sizeable percentages demonstrate an increase or decrease of at least two points in
overall biological risk.

Table 4 shows comparisons among models in terms of relative model fit (AIC) and
discrimination (AUC). We begin with a baseline model that includes only social and
demographic characteristics. Panel 1 shows a model that assesses the contribution of self-
reported health indicators, while Panel 2 shows a series of models that evaluates the gain
attributable to biomarkers. Panel 3 presents a set of models that tests the incremental value
of biomarkers net of self-reported health indicators. The coefficients from selected models
are presented in Table 5; results from the remaining models are given in the Appendix
(Tables A-4, A-5, and A-6). The key comparisons of interest are summarized in Figure 1 in
terms of AUC improvements over the baseline model.

Do biomarkers predict mortality better than self-reported health indicators?

In the first stage of the analysis, we evaluate the incremental prognostic value of self-
reported health indicators versus biomarkers by comparing the respective models with the
baseline model, which yields good discrimination (AUC = 0.75, Table 4, Model 0).i Net of
the social and demographic characteristics, self-reported health indicators greatly improve
the discriminatory ability of the model (Figure 1). Among the self-reported health indicators,
mobility limitations and number of hospitalizations in the past year significantly predict
higher mortality (Table 5).ii In auxiliary analyses (not shown), we test the association
between changes (2000-06) in self-reported health indicators and mortality. Net of the 2006
levels, changes in self-reports do very little to improve model fit or discrimination.

The models presented in Panel 2 of Table 4 test various specifications for the biomarkers.
Model 2 includes the biomarker summary score from 2006. Model 3 adds the change (2006
—2000) in biomarker risk. Models 4a and 5a substitute individual biomarkers for the
biomarker summary scores. As shown graphically in Figure 1, levels of biomarkers in 2006
(as measured by the summary score or individual markers) account for a substantial
improvement in the AUC, but changes in biomarkers also contribute incremental gains.
Individual biomarkers (Models 4a and 5a) generate larger gains in discriminatory ability
than the biomarker summary scores (Model 2 and 3), although there appears to be slight
crossover of the ROC curves in some cases. Compared with the gain in the AUC attributable
to the self-reported health indicators (0.07, Model 1), individual biomarkers (including both
the levels in 2006 and the changes between 2000 and 2006) yield a higher gain in AUC
(0.10, Model 5a), whereas the biomarker summary score (including level in 2006 and
change 2000-06) demonstrates a smaller improvement (0.05, Model 3). Although there is
slight crossover among these three ROC curves in some regions, the model with higher
AUC is usually better (i.e., for most tradeoffs between sensitivity and specificity), and it is
never appreciably worse. In sum, our findings suggest that the two types of data — health

iAlthough there is some disagreement about benchmarks for the C-statistic/AUC, Yourman et al. (2012) use the following
categorization: values below 0.60 = poor, 0.60-0.69 = moderate, 0.70-0.79 = good, 0.80-0.89 = very good, and 0.90 or higher =

excellent.

I'The effect of current smoking varies by age: at age 60, current smokers appear to have lower mortality than those who never smoked

(HR=e 197

=0.14, p<0.05), but by age 90, smoking is associated with higher mortality (HR = e~1-97+30x0.11= 3 78 1~0.02).
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information reported by the respondent and biological measures based on physical
examination and analyses of blood and urine specimens — are both valuable for estimating
whether or not an individual is likely to die in the next five years. In most cases, individual
biomarkers perform better than the biomarker summary score.

Do biomarkers yield prognostic value net of self-reported measures?

Do changes

Given the comparative ease of collecting self-reports, a more important question is whether
biomarkers retain discriminatory ability after we take into account the self-reported health
indicators. In this second stage of the analysis, we evaluate the added value net of all the
self-reported measures (see Panel 3 of Table 4); thus, all comparisons are relative to Model
1.

In the presence of controls for self-reported indicators, the biomarker summary score (Model
7) yields a 0.03 gain in the AUC.111 Individual biomarkers (Model 9a) generate a 0.06
increase in the AUC, but at the cost of many additional parameters. Indeed, among the 19
markers included, very few exhibit a significant net effect for either the 2006 level or the
change, and the magnitude of the effects are generally small (see Appendix Table A-5,
Model 9a).

Thus, we conclude that adding the collection of biomarkers to a population-based health
survey that relies on self-report will enhance predictions of 5-year survival. However, the
measured effect of any particular biomarker is likely to be small, and may not be statistically
discernible without a huge sample.

in biomarkers provide better discrimination than one-time measures?

The analyses to this point suggest that changes in biomarkers provide more prognostic value
than one-time measurement of those same biomarkers. In this third stage of the analysis, we
formally test whether this is in fact the case. All of these models include self-reported health
indicators.

Despite a significant coefficient, change in the biomarker summary score yields negligible
improvement in the AUC (0.004, Model 7 versus Model 6). In contrast, changes in
individual biomarkers (Model 9a) generate a larger improvement in AUC (0.02) compared
with individual biomarkers measured only in 2006 (Model 8a). Although a joint Wald test of
all parameters related to changes in individual biomarkers is significant, the gain in AUC is
not significant and a comparison of the two ROC curves shows some overlap. Thus, the
incremental value owing to changes in biomarkers is equivocal. Figure 1 shows graphically
the larger contribution attributable to changes in individual markers compared with changes
in the summary score.

The 2006 level (HR = 0.70 = per SD) was significantly associated with a higher mortality rate, while the change (2006 minus
2000) in the biomarker summary score had a negative effect (HR = 029 per SD) (Table 5). This result implied that respondents
with high levels of biomarker risk throughout the six-year period experienced higher mortality than those who had lower risk in 2000
but reached high levels of risk more recently.
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Overall, we conclude that collecting a second round of biological measures may improve
mortality prediction compared with one-time measurement. Nonetheless, the incremental
gain is likely to be modest.

Are some biomarkers more valuable than others?

Our set of biomarkers covers multiple physiological systems, so the final stage of the
analysis considers whether some biomarkers provide more prognostic value than others after
controlling for self-reports. First, we examine the contribution of subscores that represent
different biological systems (Appendix Table A-6). The inflammation subscore offers the
most prognostic value (Model 7b); higher inflammation in 2006 is significantly associated
with higher mortality, although the gain in the AUC is not significant. Subscores based on
standard cardiovascular/metabolic markers (Model 7a), neuroendocrine markers (Model 7c¢),
and other unrelated markers (Model 7d) make negligible contributions to the AUC. None of
the subscores provides as much prognostic value as the overall summary score (Model 7,
Table 4). When all four subscores are included in the same model (Model 7e, Table A-6),
we find that the 2006 levels for the subscores comprising cardiovascular/metabolic,
inflammation, and other unrelated markers are positively associated with mortality, while
the change (2006 — 2000) is not significant for any of the subscores. Neither the 2006 level
nor change in the neuroendocrine subscore has a significant effect.

Next, we consider the value of individual biomarkers (including the level in 2006 and the
change, 2006 minus 2000). As noted earlier, very few of the 19 markers demonstrate a
significant effect net of self-reports (Model 9a, Table A-5). Given that many of the
individual markers are correlated with each other and that the net effect of any one marker is
likely to be small, it is reasonable to ask whether a smaller set of markers may yield similar
prognostic value. Thus, we fit a model that includes only the best 10 biomarkers based on
the improvement in model fit (AIC) attributable to each marker. The “best 10” biomarkers
comprises all four of the inflammatory markers, all three of the other unrelated markers, two
metabolic markers (HDL & BMI), and one neuroendocrine marker (DHEAS). Nonetheless,
the only individual parameters that reach statistical significance net of self-reports are 2006
levels of IL-6, SICAM-1, and homocysteine as well as changes in DHEAS (Model 9b, Table
5).“’ Overall, the best 10 biomarkers achieve an AUC (0.86, Model 9b) that is higher than
the biomarker summary score (0.85, Model 7), but not as good as the model that includes all
19 biomarkers (0.88, Model 9a). We can conclude that the individual biomarkers as a group
perform better than the summary score (i.e., Model 9a dominates Model 7 at all levels of
specificity), but we cannot say the same for the reduced set (10 best markers) because of
slight crossover of the ROC curves (Model 7 vs. 9b). Nonetheless, the 10 best markers
outperform the summary score at most levels of sensitivity and specificity.

In short, inflammatory markers provide the strongest prediction of 5-year survival, whereas
neuroendocrine markers offer the least value. Nevertheless, it is preferable to measure a

IVL_evels of IL-6 and homocysteine in 2006 have the biggest effect on mortality (HR = 0-55 = 1,73 and 957 per SD, respectively).
The effect of DHEAS declines with age: at age 60, a decline in DHEAS is associated with higher mortality, but by age 80, the effect is
negligible.
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combination of markers drawn from multiple physiological systems than to rely on a single
cluster of biologically-related markers.

Robustness of the results

To determine the robustness of the results to the treatment of missing data, we re-estimate
the models for the sample with complete data (n=550). Most of the coefficients are very
similar to those presented here. One exception is history of diabetes, which appears to have a
stronger effect when we use listwise deletion than under multiple imputation. This result
may be attributable to a relationship between completeness of information, diabetes and
survival that is better handled in the multiple imputation model.

We also investigate the sensitivity of the results to using a Cox (non-parametric) model
instead of the Gompertz (parametric) model. The coefficients and AUC values from the
corresponding Cox models—which include the same set of interactions with age to allow for
non-proportional hazards—are very similar to the results shown here.

DISCUSSION

The past 15 years have witnessed the marriage of biomarker collection with large-scale,
population-based social surveys. Dozens of demographic and health surveys that include
standard measures of self-reported health, social status, social relationships, health
behaviors, exposure to stress, and other aspects of the social environment have also
incorporated biomarkers. Currently, there are more than 30 biosocial surveys in use (Table 5
in Love et al. 2010, Table 9-1 in National Research Council and Institute of Medicine 2013,
The Biomarker Network 2013).

Wachter (2001, p. 330) hinted at the unspoken promise offered by biomarkers when he
noted, “We know so much, but only so much, about ourselves. Self-reports as the mainstay
of social surveys have taken us a long way, but now survey research is stretching itself to
move beyond them.” Now that the field of biodemography has accumulated decades of
research, it is fair to ask whether biomarkers have lived up to expectation. Several biosocial
surveys are embarking on a second round of biomarker collection, so it is especially timely
to consider the value of longitudinal biomarker collection.

In this paper, we have attempted to address these issues with respect to mortality prediction.
In terms of this particular benchmark, our results suggest that when biomarkers and self-
reported indicators of health status are compared side by side, both make a substantial
contribution. Yet, when comparing the value of biomarkers with self-reports, we should not
ignore differences in cost, both monetary and non-monetary. Self-reports are much easier
and cheaper to collect and impose less burden on the respondent. Thus, a more crucial
question is whether biomarkers offer incremental value beyond the contribution of self-
reported measures.

Based on our results, the answer is a qualified “yes.” A summary measure of biomarkers
yields an improvement in discrimination compared with self-reports alone, but individual
biomarkers perform better than the summary score. We find that incorporating change in
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biomarkers over a six-year period yields a small improvement in mortality prediction
compared with a one-time snapshot of biomarker levels. One might legitimately argue that
the value of repeated biomarker collection is greater than this comparison suggests. If the
objective is prediction of longer-term mortality (e.g., for a period distant from the biomarker
collection), then an updated set of biomarker values substantially enhances prediction.
Specifically, biomarkers from 2006 predict mortality for the follow-up period 2006-2011
considerably better (AUC = 0.856, Model 8a) than the baseline biomarkers obtained in 2000
(AUC =0.839, not shown). Thus, longitudinal collection of biomarkers may well be
warranted in such instances.

In light of the expense and respondent burden involved in collecting a wide range of
biomarkers, it is important to identify the biomarkers that are most valuable. Since markers
representing the same system may be correlated with one another, we might ask whether a
reduced set of markers performs almost as well. Our results indicate that, with the possible
exception of DHEAS, neuroendocrine markers (i.e., stress hormones) make little
contribution to predicting mortality, whereas inflammatory markers yield the most
prognostic value. Among the 19 individual biomarkers considered here, three appear to be
especially good predictors of mortality: two inflammatory markers (IL-6, sSICAM-1) and
homocysteine, which has been linked with cardiovascular disease and may promote
atherosclerosis (American Heart Association 2012). Compared with a model using the
biological risk summary score (based on all 19 biomarkers), a model that includes the 10
best individual biomarkers performs only slightly better (as measured by the AUC), whereas
the model with all 19 individual markers yields more prognostic value. Although the
summary score formulation used here is similar to that used in many other studies, our
findings underscore the need for a better summary measure, one that captures more of the
information embodied in continuous measures of myriad individual biomarkers.

There are several limitations to this study. First, our statistical power is limited by the
relatively small sample and short-term mortality followup (104 deaths over five years). In
many cases, the improvement in discrimination is not significant even though the magnitude
of the gain in the AUC is well above the level (= 0.01) considered “meaningful” and the
coefficient(s) associated with the biomarkers are jointly significant (Pencina et al. 2008).
Second, although exam participation was high for studies of this type, the subset of
respondents who survived to the second wave (six years later) and completed both the
interview and examination was a select group. The effects of selection and attrition may
explain the counter-intuitive effect of smoking among younger individuals. Among those
who completed the 2000 exam, smokers were more likely to die by 2006 than non-smokers.
Among survivors, those who were still smoking in 2006 had slightly lower mortality than
those who never smoked, but the death rate was much higher for those who had quit
smoking. These analyses suggest that respondents who suffered ill health as a result of
smoking either quit or died before they could be interviewed. Third, measurement of
biomarkers is not always straightforward, especially for markers that vary widely from day
to day or even hour to hour. Some of the observed changes in levels may reflect
measurement error and random variation that is not substantively meaningful. For example,
the negligible effect of neuroendocrine markers on mortality may stem from the way in
which they are measured: overnight urine collection captures only resting levels of markers
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that fluctuate widely throughout the day and in response to stressful conditions. Some
researchers have begun experimenting with using hair samples to obtain retrospective
measures of cortisol levels and sympathetic nervous system activity over the past three
months. This new approach seems promising and may prove to be more powerful and
reliable that current methods based on urine and saliva samples. Fourth, showing that an
indicator has prognostic value does not imply a causal connection. For example, some
markers (e.g., IL-6, homocysteine) may reflect undiagnosed health conditions. To reduce
risk of mortality, we may need to look beyond these “symptoms” to identify the root causes
that could be amenable to intervention.

The cost, complex logistics, and additional burden placed on the respondent posed by adding
biomarkers to large-scale, community-based surveys mean that we must evaluate carefully
the “bio” in medical biodemography. This study has provided one small piece of that
evaluation. Our scope here has—necessarily—been limited; we have focused only on
mortality, and have not accounted for—or compared the results with—other “objective”
measures such as functional assessments. Such measures might be equally powerful in
predicting downstream mortality and health outcomes, potentially less invasive, and
possibly less expensive. We cannot pass judgment on the value of biomarkers based on a
single criterion: the ability to predict mortality. There are other health outcomes, such as
depression or cognitive function, for which biomarkers may hold prognostic value. Another
important use for biomarkers is to explore the biological mediators that account for the links
between social factors and health outcomes. Of course, one prerequisite for demonstrating
that a biomarker acts as a mediator is establishing that the biomarker does in fact predict
health outcomes. Friedman and Kern (2014) caution against using limited-time
measurements of biomarkers as an endpoint because such markers do not necessarily predict
future health and survival, especially since they naturally fluctuate as part of homeostatis.
Thus, biomarkers must pass that initial test, and we would argue that the ability to predict
all-cause mortality is a crucial part of that test. We have provided some evidence to place in
the balance, but the underlying question remains open: Is the blood worth the toil, tears, and
sweat?
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APPENDIX

PREDICTED PROBABILITY OF DYING BY THE END OF FOLLOW-UP

To calculate the AUC using ROC analysis, we use the model coefficients to compute the
predicted probability of dying by June 30, 2011 for each respondent, which is then
compared with the observed outcome (i.e., whether or not the respondent actually died). The
Gompertz proportional hazards model takes the following form:

logA(t)=zB+7t, (1)

where t represents time measured in age, A(t) is the hazard rate at time t (age), y denotes the
age slope, y represents a covariate, and p is the corresponding regression coefficient. In our
case, we fit a model that allows for non-proportional hazards. That is, vy is a function of
(i.e., the covariate y is interacted with age)

Y=Yo+7ZT (2)

For this model, the conditional probability of surviving from the date of the survey (tp) to
the end of follow-up (t;) can be computed as:

S(t1|to)=exp {—ezﬁ(e”’“ — e”t")/fy} . @)

Thus, for each respondent, we: a) calculate the linear prediction (yf) based on the observed
value(s) for the covariate(s) and the model coefficient(s); b) compute y given the observed
value(s) of any covariates that were interacted with time t (age); and c) estimate conditional
survival for using equation (3).

The probability of dying between tp and t; is simply the complement:

4(t1]to)=1 — S(t1]to). (@)
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m Biomarkers in 2006
Biomarker Summary Score (2 & 3)

Self-report (1) — m Self-report in 2006

B Changes in Biomarkers

Best Individual Biomarkers (4b & 5b) _
All Individual Biomarkers (4a & 5a) [
Self + Summary Score (1, 6, & 7) _
Self + Best Indiv. Markers (1, 8b, & 9b) _
- In

Self + All Indiv. Markers (1, 8, & 9)

o

0.05 0.1
AUC improvement

Figure 1.
Improvement in predictive ability for models based on self-reported indicators of health

status, biomarkers, and changes in biomarkers

Note: The improvement in the AUC is measured relative to the baseline model that controls
for sex, Mainlander ethnicity, urban residence, education, social integration, and perceived
social support (Table A-4, Model 0). The numbers shown in parentheses indicate the model
numbers upon which the AUC improvement is based.
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Table 2

Description of biomarkers included in the analysis

Biomarker

Description

Cardiovascular/Metabolic

Systolic blood pressure

(SBP)

Diastolic blood pressure
(DBP)

Total cholesterol

High-density lipoprotein
(HDL) cholesterol

Triglycerides

Glycosylated hemoglobin
(HbAlc)

Body mass index (BMI)

Waist circumference
Inflammation

Interleukin-6 (IL-6)
C-reactive protein (CRP)

Soluble intercellular
adhesion molecule 1
(sICAM-1) and
Soluble E-selectin
(sE-selectin)

Neuroendocrine

Dehydroepiandrosterone
sulfate (DHEAS)

Cortisol

Epinephrine

Norepinephrine

Other markers

Serum Creatinine

Creatinine Clearance
(CrCl)

Maximum arterial blood pressure after contraction (systole) of the heart’s
left ventricle.

Minimum arterial blood pressure when the heart fills with blood (diastole).

Waxy, fat-like substance that regulates the permeability of cell membranes.
Excess cholesterol in the blood can combine with other substances and
stick to the walls of the arteries forming a plaque. Includes both LDL (bad)
and HDL (good) cholesterol.

Lipoprotein in the blood characterized by a high ratio of protein relative to
triglyceride and cholesterol; helps remove cholesterol from the arteries.

Most common type of fat in the human body; widespread in adipose tissue
and typically circulate in the blood in the form of lipoproteins.

Measures the level of hemoglobin Alc (glycoprotein formed when glucose
binds to hemoglobin A) in the blood; represents average blood sugar
concentrations over the previous 2-3 months.

Measure of body fat computed as the ratio of the body weight (in kg) divided

by height (in m) squared. BMI is typically classified as underweight (<18.5),
normal (18.5-24.9), overweight (25-29.9), or obese (30+), but some
evidence suggests that Asians have increased health risk at a lower cutoff
for obesity.

Marker of abdominal fat content.

Messenger cytokine that stimulates the synthesis of acute phase proteins
(e.g., CRP, fibrinogen) in the liver as part of the inflammatory process.

Protein produced in the liver that increases markedly with acute
inflammation.

Cell adhesion molecules such as ICAM-1 and E-selectin are proteins that
help cells bind to one another. Upon activation by inflammatory cytokines,
ICAM-1 and E-selectin are expressed by endothelial cells that line blood
vessels and facilitate the transfer of leukocytes from the blood to inflamed
tissue. sSICAM-1 and sE-selectin are soluble forms shed by activated cells
and are measurable in blood.

Steroid hormone (androgen) produced by the adrenal gland in both sexes.

Steroid hormone produced by the adrenal gland that has anti-inflammatory
and immunosuppressive properties. It is a metabolite of the primary stress
hormone cortisone and serves as the main glucocorticoid in humans.
Levels may be elevated in response to physical or psychological stress.

Catecholamine secreted by the adrenal medulla as part of the acute stress
response (fight-or-flight). It is the principal hormone that causes increased
blood pressure and also increases the heart rate.

Catecholamine produced by the adrenal medulla. It is a precursor to
epinephrine that narrows blood vessels and raises blood pressure.

Breakdown product of creatine, which is an important part of muscle.
Creatinine is produced from the metabolism of protein (e.g., when muscles
burn energy). Most is filtered out of the blood by the kidneys and excreted
in urine. Used to evaluate kidney function.

Measures the rate at which a waste (creatinine) is cleared from the blood by
the kidneys. Used to estimate the glomerular filtration rate (GFR), which
reflects kidney function. Can be measured by comparing the level of
creatinine in urine (based on 24h collection) with the level in the blood, but
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Biomarker Description

is typically estimated using a prediction equation (e.g., Cockcroft-Gault)
based on serum creatinine, age, sex, and body weight.

Serum albumin The main protein in human blood; helps maintain the osmotic pressure of
the blood. Low levels may be a sign of liver or kidney disease or reflect
insufficient nutrition.

Homocysteine Amino acid produced by the body, usually as a byproduct of meat
consumption. Linked with increased risk for cardiovascular disease;
elevated levels may promote atherosclerosis.

Note: Adapted from Table 1 in Glei et al. (Forthcoming).

Sources: American Association for Clinical Chemistry (labtestsonline.org, accessed 12 August 2013); American Heart Association (http://
www.heart.org/idc/groups/heart-public/@wcem/@hcm/documents/downloadable/ucm_300308.pdf, accessed 12 August 2013); Libby & Ridker
(1999); Levey et al. (2003); MedicineNet.com MedTerms dictionary (http://www.medterms.com/script/main/hp.asp, accessed 12 August 2013);
MedlinePlus (http://www.nIm.nih.gov/medlineplus/mplusdictionary.html, accessed 8 August 2013); National Heart, Lung, and Blood Institute
(1998); National Kidney Disease Education Program (http://nkdep.nih.gov/resources/quick-reference-uacr-gfr-508.pdf, accessed 12 August 2013);
Walzog & Gaehtgens (2000); World Health Organization (http://apps.who.int/bmi/index.jsp?introPage=intro_3.html, accessed 22 January 2014).
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Table 3

Descriptive statistics for social and demographic characteristics, self-reported indicators of health status,

biomarker summary scores, and survival status

Analysis sample

(N=639)
Social and demographic characteristics
Age at the 2006 exam (60-97), mean (SD) 72.0 (7.4)
Female, % 44.4
Mainlander, % 12.9
Urban resident, % 42.3
Years of completed education (0-17), mean (SD) 5.3(4.5)
Social integration (1.5 to 1.6), mean (SD) 0.1 (0.5)
Perceived availability of social support (0.5-4.0), mean (SD) 3.1(0.7)
Self-reported health indicators
Self-assessed health status (1-5, 5=excellent), mean (SD) 3.0 (1.0)
Index of mobility limitations (0.7 to 3.2), mean (SD) 0.7 (1.3)
History of diabetes, % 19.9
History of cancer, % 4.8
Number of hospitalizations in the past 12 months (0-11), mean (SD) 0.3(0.8)
Smoking status in 2006
Never, % 59.1
Former, % 222
Current, % 18.7
Biomarker summary scores
Overall biomarker risk in 2000 (0-13), mean (SD) 45(2.5)
Overall biomarker risk in 2006 (0-14), mean (SD) 5.1(2.6)
Change (2006 — 2000) in biomarker risk (=6 to +9), mean (SD) 0.6 (2.3)
Declined by two or more points, % 17.3
Declined by one point, % 15.2
Not change, % 18.1
Increased by one point, % 15.9
Increased by two points, % 135
Increased by three or more points, % 20.0
Died between the 2006 exam and December 31, 2011, % 16.2
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Table 5

Page 31

Coefficients from selected models predicting mortality using social and demographic characteristics, self-
reported indicators of health status, and biomarkers

Model 1 ~ Model 7 Model 9b
Age slope?
Age 0.08%**  006%*  0.08%*
Age x Perceived social support 0.05%** 0.04** 0.04%**
Age x Current smoker 0.11* 0.13** 0.15**
Age x Change in DHEAS (square-root) 0.04***
Female -0.61* -0.85** -0.11
Mainlander -0.62* -0.65* -0.70*
Urban resident 0.03 -0.09 -0.15
EducationP 0.12 0.19 0.32*
Social integration® -0.10 -0.07 -0.07
Perceived social support? =1.05%**  -0.94%**  —1.02%**
Self-assessed health status? -0.20 -0.19 -0.19
Index of mobility limitationsP 0.38** 0.30* 0.37*
History of diabetes 0.33 -0.04 -0.18
History of cancer 0.34 0.01 0.55
Number of hospitalizations? 0.28%**  0.27***  0.23%*
Former smoker 0.12 -0.01 0.19
Current smoker -1.97* —-2.64** -2.90**
Biomarker risk score in 20060 0.70%**
Change (2006 — 2000) in biomarker riskP -0.29*
HDL (log) in 20060 -0.18
Change (2006 — 2000) in HDL (log)P® 0.3
BMI (log) in 2006° -0.16
Change (2006 — 2000) in BMI (log)P -0.07
IL-6 (log) in 2006° 0.55%**
Change (2006 — 2000) in IL-6 (log)P -0.29
CRP (log) in 2006P 0.02
Change (2006 — 2000) in CRP (log)P 0.00
SICAM-1 (square root) in 20060 0.29*
Change (2006 — 2000) in SICAM-1 (square root)P -0.06
sE-selectin (log) in 2006° 0.07
Change (2006 — 2000) in sE-selectin (log)P -0.02
DHEAS (square-root)in 2006° -0.14
-0.86***

Change (2006 — 2000) in DHEAS (square—root)b
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Model 1 Model 7 Model 9b

Creatinine clearance in 2006P 0.27

Change (2006 — 2000) in Creatinine clearanceb -0.18
Albumin (cubed) in 2006° -0.02
Change (2006 — 2000) in Albumin (cubed)b -0.05
Hcy (log) in 2006P 0.57%*
Change (2006 — 2000) in Hey (log)P -0.06

|nterCeptc —4.86%** —4,32%** —5.2]***

aThe age slope represents the exponential increase in the mortality rate per year of age.

bThis variable was standardized (Mean=0, SD=1) prior to fitting the model; so, the coefficient represents the effect per SD of the specified
variable.

c_. . . .
Time was measured in terms of years after age 60. Thus, the intercept represents the mortality rate at age 60.
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Table A-1

Biomarker summary score: cutoffs used to define high-risk levels for each biomarker

Definition of high risk: Clinical cutoffs (where available);
Otherwise, high risk quartile® (bottom 25% for DHEAS, CrCl, &
Albumin; Top 25% for all others)

Cardiovascular/Metabolic

SBP (mmHg)

>140 (Chobanian et al. 2003, World Health Organization,
International Society of Hypertension Writing Group 2003)

DBP (mmHg)

>90 (Chobanian et al. 2003, World Health Organization,
International Society of Hypertension Writing Group 2003)

Ratio total/HDL cholesterol

>5 (AHA website)

HDL (mg/dL)

<40 (National Cholesterol Education Program, National Heart,
Lung and Blood Institute 2001)

Triglycerides (mg/dL)

>200 (National Cholesterol Education Program, National Heart,
Lung and Blood Institute 2001)

HbATc (%)

>6.5 (Rodbard et al. 2007)

BMI

<18.5 or >27(Department of Health (Taiwan) 2002)

Waist circumference (cm)

> 88cm(F)/102cm(M) (World Health Organization (WHO) 2008)

Inflammation
IL-6 (pg/mL) >3.69
CRP (mg/L) >3(Pearson et al. 2003)
sICAM-1 (ng/mL) >290.9
sE-selectin (ng/mL) >56.5
Neuroendocrine
DHEAS (pg/dL) <42.2
Cortisol (ug/g creatinine) >28.2
Epinephrine (ug/g creatinine) >4.44
Norepinephrine (ug/g creatinine) >26.4
. Othermarkers
CrClI (ml/min)? <52.6
Albumin (g/dL) <44
Homocysteine (umol/L) >16.7

Abbreviations: BMI = body mass index; CrCl = creatinine clearance; CRP = C-reactive protein; DBP = diastolic blood pressure; DHEAS =
dehydroepiandrosterone sulfate; HbAlc = glycoslyated hemoglobin; HDL = high-density lipoprotein cholesterol; IGF-1 = insulin-like growth
factor 1; IL-6 = interleukin-6; SBP = systolic blood pressure; sE-selectin = soluble E-selectin; SICAM-1 = soluble intercellular adhesion molecule 1

aQuartiIe cutoffs are based on the weighted distribution in 2000 among the longitudinal cohort (n=639).

bEstimated using the Cockcroft-Gault formula (Cockcroft and Gault 1976).
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Table A-2

Index of social integration: description and coding of each component

Page 34

network

Indicator Definition Coding

Network size Number of friends and relatives with Recoded <5, 5-7, 8-10, 11-14, 15—
whom the respondent lives or has 19, 20-29, 30+.
regular contact

Network range Number of types of relationships in social One point each for spouse/partner,

kids, other relatives, non-relatives;
range=0-4.

Married/partner

Dummy indicating that the respondent is
married or lives with a companion.

Household size

Does not live alone

Dummy indicating that the respondent
does not live alone.

Number of friends

Number of close friends and neighbors
with whom the respondent has weekly
contact

Recoded 0, 1-2, 3-4, 5-9, 10-19,
20+.

Religious attendance

How often the respondent attends church
or temple

Response categories: never, rarely,
sometimes, often.

Socializing

How often the respondent socializes with
friends, neighbors, or relatives.

Response categories: never, less
than once a month, two to three
times

a month, once or twice a week,
nearly

daily.

Participation in social
organizations

Whether respondent participates in the following activities/organizations:
1 Group activities (e.g., singing, dancing, tai chi, or karaoke)

2 Neighborhood association (e.g., women’s association or arts
& crafts classes)

3 Religious organization (e.g., church or temple committee)

4 Occupational associations for farmers, fishermen, or other
professional group, civic group, Lion’s Club, etc.

5 Political association (e.g., political party)

6 Social service groups (e.g., Lifeline, relief association,
benevolent societies, charities, etc.)

7 Village or lineage association

8 Elderly club (e.g., Elderly Association, Evergreen Recreation
Club, etc.)

One point for each type of
organization in which the
respondent

participates; range = 0-7.
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Table A-3

Summary statistics for individual biomarkers and changes in biomarkers

Mean (SD) for the Transformed Markers:

Units Transformation Level in 2006 Change (2006 — 2000)
SBP mmHg log 4.90 (0.15) -0.01 (0.16)
DBP mmHg log 4.27 (0.15) -0.13 (0.15)
Ratio TC/HDL ratio log 1.44 (0.27) 0.00 (0.23)
HDL mg/dL log 3.83(0.27) -0.02 (0.22)
Triglycerides mg/dL log 4.57 (0.51) -0.08 (0.42)
HbA1lc % -1/(HbA1C)? -0.03 (0.01) 0.01 (0.01)
BMI weight(kg) log 3.19 (0.15) 0.00 (0.08)
(height(m))?
Waist circumference cm none 84.90 (9.94) -0.54 (5.96)
IL-6 pg/mL log 1.06 (0.79) 0.26 (0.89)
CRP mg/L log -2.01 (1.12) 0.53 (1.50)
sICAM-1 ng/mL square root 16.54 (2.87) 1.12 (2.28)
sE-selectin ng/mL log 3.57 (0.58) -0.17 (0.43)
DHEAS ug/dL square root 8.88 (3.20) 0.25 (2.06)
Cortisol ug/g log 2.68 (0.87) -0.28 (0.96)
Epinephrine ug/g log 1.25 (0.58) 0.12 (0.62)
Norepinephrine ua/g log 3.17 (0.53) 0.21 (0.53)
Creatinine Clearance ml/min none 58.11 (19.98) -5.25 (11.24)
Albumin g/dL cubed 83.56 (17.26) -9.06 (15.21)
Homocysteine umol/L log 2.48 (0.39) -0.20 (0.31)
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Table A-4

Biomarker summary scores: coefficients from models predicting mortality using social and demographic
characteristics, self-reported indicators of health status, and biomarker summary scores

Model 0 Model 2  Model 3 Model 6

Age slope@

Age 0.11%**  0.09***  0.09*** 0.06**

Age x Perceived social support 0.04%** 0.03** 0.03** 0.04%**

Age x Current smoker 0.14** 0.14**
Female -0.46* -0.67** =0.77** -0.82**
Mainlander -0.55* -0.58* -0.57* -0.64*
Urban resident -0.06 -0.18 -0.21 -0.08
Educationb 0.03 0.12 0.16 0.16
Social integra’(ionb -0.14 -0.12 -0.09 -0.09
Perceived social supportb -0.96*x*  -0.82*  -08Ll**  -0.98***
Self-assessed health statusP -0.18
Index of mobility limitations? 0.34*
History of diabetes 0.07
History of cancer 0.11
Number of hospitalizationsb 0.28**
Former smoker -0.02
Current smoker —2.73**
Biomarker risk score in 2006° 0.60%** 0.80%** 0.53*x*
Change (2006 — 2000) in biomarker riskD -0.35%
InterceptC SBABKRX 4 83XRK 4 TTHRK 4 35xrk

aThe age slope represents the exponential increase in the mortality rate per year of age.

bThis variable was standardized (Mean=0, SD=1) prior to fitting the model; so, the coefficient represents the effect per SD of the specified
variable.

C_. . . .
Time was measured in terms of years after age 60. Thus, the intercept represents the mortality rate at age 60.
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