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Abstract

A model-based gating strategy is developed for sorting cells and analyzing populations of single cells. The strategy, named
CCAST, for Clustering, Classification and Sorting Tree, identifies a gating strategy for isolating homogeneous subpopulations
from a heterogeneous population of single cells using a data-derived decision tree representation that can be applied to
cell sorting. Because CCAST does not rely on expert knowledge, it removes human bias and variability when determining
the gating strategy. It combines any clustering algorithm with silhouette measures to identify underlying homogeneous
subpopulations, then applies recursive partitioning techniques to generate a decision tree that defines the gating strategy.
CCAST produces an optimal strategy for cell sorting by automating the selection of gating markers, the corresponding
gating thresholds and gating sequence; all of these parameters are typically manually defined. Even though CCAST is
optimized for cell sorting, it can be applied for the identification and analysis of homogeneous subpopulations among
heterogeneous single cell data. We apply CCAST on single cell data from both breast cancer cell lines and normal human
bone marrow. On the SUM159 breast cancer cell line data, CCAST indicates at least five distinct cell states based on two
surface markers (CD24 and EPCAM) and provides a gating sorting strategy that produces more homogeneous
subpopulations than previously reported. When applied to normal bone marrow data, CCAST reveals an efficient strategy
for gating T-cells without prior knowledge of the major T-cell subtypes and the markers that best define them. On the
normal bone marrow data, CCAST also reveals two major mature B-cell subtypes, namely CD123+ and CD123- cells, which
were not revealed by manual gating but show distinct intracellular signaling responses. More generally, the CCAST
framework could be used on other biological and non-biological high dimensional data types that are mixtures of unknown
homogeneous subpopulations.
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Introduction

Understanding cancer heterogeneity is increasingly being

regarded as critical in understanding cancer progression and

overcoming therapeutic resistance [1–4]. Different types of

heterogeneity are commonly observed among the cells composing

a single tumor, including genetic [5,6], epigenetic [7], and

phenotypic heterogeneity [3,4]. Although technological challenges

have limited our ability to fully characterize intra-tumor hetero-

geneity, in recent years characterizing heterogeneous populations

of cells at the single-cell level using multidimensional fluorescence

and mass flow cytometric data, combined with novel computa-

tional tools, has greatly improved our understanding of the extent

of cellular heterogeneity [8,9]. Moreover, by sorting out homo-

geneous subpopulations, researchers can measure and compare

genomic and other functional properties of different subpopula-

tions. However, in spite the high-throughput nature of these single

cell measurements, current methods for sorting specific cell

subpopulations rely on a low dimensional, often user-defined,

process known as gating. Gating on a fluorescence-activated cell

sorting (FACS) machine commonly refers to a manual process,

performed by sequentially selecting regions from bivariate graphs

that depict the expression of two markers at a time across all the

cells. The gating strategy often relies on an expert’s assessment of

the choice of gating markers, the order of gating and cut points to

identify each gated region; this assessment is often based on a

subjective analysis using packages such as flowJo and FlowCore

[10]. It is well documented that minor differences in gating

strategy can lead to significantly different quantitative conclusions

[11,12]. We present a gating strategy that is optimized for cell

sorting. Because our gating strategy is data derived, we argue that

is optimal compared to manually-derived gating strategy which

can be biased and highly variable. In our work, we make a

distinction between gating algorithms that are optimized for

sorting single cells versus analyzing a heterogeneous population of

single cell data. Even though our gating strategy is optimized for

cell sorting, it also has value when used in analysis of population

data at the single cell level.

When analyzing a population of single cells, several gating

algorithms have been developed to reduce the technical, biological

and human sources of variation involved in identifying and

analyzing clusters of similar cell subpopulations [8,9,13–17].
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Bashashati and Brinkman provide a comprehensive overview of

analysis tools for flow cytometry (FCM) data [18]. More recently,

the FlowCAP-II project [12] compared the accuracy and

reproducibility across several gating algorithms in terms of

identifying cell clusters. All gating algorithms, including ours,

have some form of a clustering algorithm, which is used to identify

homogeneous subpopulations, as a major component. Many

unsupervised clustering algorithms take into account the uncer-

tainty in cluster assignments by modeling the data as mixtures of

parametric distributions [18]. Although parametric mixture

models have been developed to analyze FCM data [14],

computational, as well as estimation errors, in clustering could

still arise from outliers and skewness in the data which may not

reflect the underlying assumptions of the parametric model. As an

alternative, we propose a modified version of the non-parametric

multivariate mixture modeling approach by Benaglia et al. [19] for

clustering FCM data, where our modification includes the use of

silhouette measures. This clustering algorithm handles uncertainty

regarding to which cluster an event should be assigned as well as

the uncertainty in the number of underlying cell states in the

heterogeneous parent population and makes little or no prior

assumptions on the underlying model structure. In addition, we

implement an alternative clustering algorithm, namely hierarchi-

cal clustering [20], to show that the results from our gating strategy

are independent of the particular clustering method used. The

goal of our study is not to provide an optimal clustering strategy,

but instead to provide an optimal gating strategy for sorting

homogeneous cell subpopulations given any reasonable clustering

algorithm.

A commonly neglected area in studying populations of single

cells is identifying an optimal gating strategy for cell sorting.

Sorting cells for downstream analysis relies not only on the

identifying the clusters but also on the gating strategy, which is

defined by the gating markers, thresholds and sequence. For

manual gating at the FACS machine, typical gating strategies

are organized like a family tree. For example, from mature bone

marrow cells, lymphocytes are gated from the parent cells and

from that gate, T-cells or B-cells are gated, and from those

gates, specific T-cell and B-cell types are gated [9]. In

particular, sorting out T-cells is equivalent to isolating a

CD4+/CD8+ population; the user would first isolate the

lymphocytes, then derive the CD3+ cells and from there, would

draw a gate around the CD4 positive and CD8 positive

subpopulations. This approach assumes prior knowledge of the

underlying set of markers that define cell types, the gating

hierarchy and relative boundaries for isolating pure cell

subpopulations of interest. Selecting these parameters based

solely on literature and human perspective introduces bias and

variability and could result in contamination among the cell

subpopulations. We make this process data-driven and fully

automated by applying a recursive partitioning technique that

generates a decision tree representing a reproducible gating

strategy for all subpopulations of interest.

Recognizing the current reliance on human perspective and

intuition in manual gating, Ray and Pyne [17] recently developed

a gating framework which emulates the human perspective in

FCM data analysis based on a mathematical map of the high

dimensional data landscape. They propose flexible, sample-specific

templates for extracting features of interest, which may have

unusual shapes and distributions. An alternative approach by Lee

et al [21] uses transfer learning technique combined with the low-

density separation principle; this approach transfers expert

knowledge on training FCM data sets to a new data. A more

recent study by Aghaeepour et al. [22] developed a supervised

learning computational framework that automatically reveals cell

subsets that correlate strongly with clinical outcome and identifies

their relevant set of markers for gating. In a follow-up study,

Aghaeepour et al. [22] developed a computational tool, RchOpti-

myx [23], that uses dynamic programming and optimization

techniques from graph theory to construct a cellular hierarchy,

providing a gating strategy to identify target populations to a

desired level of purity. One might argue that our work is most

similar to RchOptimyx. However, as will be shown later,

RchyOptimyx provides multiple approaches for gating a specific

subpopulation, whereas our approach aims to find a single,

optimal gating strategy in a fully automated manner without

relying on qualitative judgement.

We present an algorithm, named CCAST for Clustering,

Classification and Sorting Tree, to identify and sort homogeneous

subpopulations from a heterogeneous parent population using a

decision tree representation for a gating strategy that can be used

to sort for homogeneous cell subpopulations. The gating strategy

derived from CCAST is data-driven and fully automated and it

does not rely on expert knowledge. While CCAST is optimized for

cell sorting, CCAST also has value when applied to data analysis

by filtering and retraining the decision tree to produce more

homogeneous subpopulations. In addition, when used for data

analysis, CCAST may identify new subpopulations among the

initial clusters. We apply CCAST on populations of single cell

measurements made on breast cancer and normal human bone

marrow. On the breast cancer SUM159 cell line, CCAST reveals

at least 5 distinct cell states based on two surface markers (CD24

and EPCAM). When applied to normal bone marrow data,

CCAST reveals an efficient strategy for gating T-cells. In addition,

CCAST reveals two new mature B-cell subtypes, which were not

found by manual gating but show distinct intracellular signaling

behaviors.

Results

We demonstrate the performance of CCAST on simulated and

actual populations of single cell data. The details of the CCAST

algorithm are provided under Materials and Methods. In Figure 1,

CCAST is summarized in a flowchart alongside its application to

simulated data. Briefly stated, starting with a population of single

Author Summary

Sorting out homogenous subpopulations in a heteroge-
neous population of single cells enables downstream
characterization of specific cell types, such as cell-type
specific genomic profiling. This study proposes a data-
driven gating strategy, CCAST, for sorting out homoge-
neous subpopulations from a heterogeneous population
of single cells without relying on expert knowledge
thereby removing human bias and variability. In a fully
automated manner, CCAST identifies the relevant gating
markers, gating hierarchy and partitions that isolate
homogeneous cell subpopulations. CCAST is optimized
for cell sorting but can be applied to the identification and
analysis of homogeneous subpopulations. CCAST is shown
to identify more homogeneous breast cancer subpopula-
tions in SUM159 compared to prior sorting strategies.
When applied to normal bone marrow single cell data,
CCAST proposes an efficient strategy for gating out T-cells
without relying on expert knowledge; on B-cells, it reveals
a new characterization of mature B-cell subtypes not
revealed by manual gating.

A Model-Based Gating Strategy for Single Cell Sorting and Analysis
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cell data (Figure 1A), CCAST performs a cell clustering algorithm

to identify groups of similar cells (Figure 1B). The clustering can

be performed in a variety of ways. We implement a nonparametric

mixture model denoted as ‘‘npEM’’ (see Materials and Methods),

but show that other clustering algorithms, such as hierarchical

clustering (HCLUST), produces similar gating strategies within the

CCAST framework. Once the cell clusters (aka ‘‘cell types’’) are

established, CCAST derives a gating strategy that is represented

by a decision tree (Figure 1C), where the nodes specify the gating

markers and their thresholds (aka ‘‘split points’’) as edges. The

terminal leaves of the decision tree represent the final gated

subpopulations. Often the final number of gated populations is

greater than the number of cell clusters. When this happens some

of the subpopulations capture cells from only one cluster, but

others capture cells from multiple clusters. For the subpopulations

which contain cells from multiple clusters, all but the cells from the

dominant cluster are removed and CCAST is retrained on the

remaining population, producing a more robust gating strategy

because it is less influenced by ‘‘contaminating’’ cells (Figure 1D).

The final decision tree can be used for cell sorting (Figure 1E) or

data analysis (Figure 1F). Although not shown in Figure 1, it is

possible that a single cluster may be distributed across multiple

subpopulations, where each subpopulation only contains cells from

that cluster; in those cases, the cluster may have more

subpopulations than derived by the clustering algorithm. This

feature and all other mentioned features of CCAST are

demonstrated below.

We implemented CCAST as an R package and it has been

made available as a zip file in the Supplement.

CCAST is robust to the clustering algorithm, as evidenced
on simulated data

To illustrate the basic properties of CCAST, we applied it to a

simulated dataset of 850 single cells comprised of a mixture of 5

cell types, as illustrated in Figure 1A. On each single cell, 3

markers are measured; the distributions of marker values for each

cell type are summarized in Supplement Table S1. We sampled

100, 300, 150, 100, 200 cell vector expression values for each cell

type respectively. Figure 1B shows the 3D scatter plot of the cell

measurements with the 5 cell types color coded; from this figure,

it is not automatically apparent how to optimally sort out these 5

clusters. Figure 1C shows the first CCAST-derived decision tree

based on the entire dataset; this tree partitioned the data into 5

clusters as evidenced from the leaf nodes (5,6,9,10 and 11) of the

tree. Nodes 9, 10 and 11 represents pure subpopulations of

clusters 4, 3 and 5, respectively; node 8 shows a mixture of

clusters 1 and 4; nodes 5 and 6 are dominated by cells from

clusters 2 and 1 respectively. After CCAST removed the

contaminating cells from the subpopulations that have more

than one cluster and re-ran the decision tree algorithm, it

generated the final decision tree in Figure 1D. Note also that

these subpopulations were gated using only two markers even

though 3 markers were measured. Figure 1E shows the applica-

tion of the final decision tree (Figure 1D) on the entire dataset.

When this gating strategy was applied to the filtered dataset for

downstream analysis, the resulting subpopulations are shown in

Figure 1F, represented with bar plots of the markers’ expression

and labeled by their corresponding cell cluster. Figure 1G shows

the application of the gating strategy using the estimated cut-offs

on the entire data using hierarchical clustering instead of

‘‘npEM’’ clustering. The similar partitions on the 2D data imply

that using different a clustering algorithm results in similar

homogeneous subpopulations.

CCAST is reproducible, as evidenced on T-cell mass
cytometry data

We next demonstrate the applicability of CCAST on actual

hematopoietic dataset obtained in the study by Bendall et al. [9].

This study analyzed normal bone marrow at the level of single cells

using mass cytometry (MCM), which is a recently developed high

throughput technology for labeling single cells with metal-chelated

antibodies that reduce auto fluorescence effect. An appeal of this

particular study is that hematopoietic cells have a well-established

set of lineage markers defining their differentiation stages. In this

study, unstimulated and stimulated human peripheral blood

mononuclear cells (PBMCs) from a healthy donor were analyzed

using thirteen surface parameters, namely: CD45, CD45RA,

CD19, CD11b, CD4, CD8, CD34, CD20, CD33, CD123, CD38,

CD90, and CD3. In addition, 18 intracellular signaling molecules

were measured. The manual gating process and the characteriza-

tion of the major cell populations are shown in Supplement Figure

S5 of [9]. One part of this study focused on a T-cell subset that

included naive CD4+ and CD8+ T-cells and mature CD4+ and

CD8+ T-cells. The analysis of the induced intracellular signaling

responses in these subpopulations, as compared with those of an

unstimulated control, relied on a manually-defined gating process.

To demonstrate the robustness of CCAST, we consider a subset

of the data from the study by Bendall et al. [9] in order to assess

both the error and reproducibility of our results in a transparent

manner. We focus on a 20,000 cell T-cell subpopulation which

had been manually gated into 4 subtypes (see Figure 1 in Bendall

et al. [9] for the manual gating scheme). Here we pool this

manually gated T-cell data, then blind the data by removing all

prior knowledge of cell types or marker labels. We then randomly

separate this data into a training and test set of 10,000 cells each.

Pairwise scatter plots across all 13 markers, unlabeled, are shown

in Figure 2. We apply CCAST on the training data to obtain the

final decision tree shown in Figure 3A. These results indicate that

the 4 distinct homogeneous cell states can easily be isolated using

only 2 of the 13 measured markers, namely Marker 5 and Marker

2. We next carried out a sensitivity analysis on the decision tree

parameters, namely the optimal tree height, denoted as L, and the

split points (see Materials and Methods). First we ask the question:

what happens to the purity of the homogeneous subgroups if we

increase the level of pruning the decision tree, L? Figure S1A in

the supplement document shows exactly the same decision tree as

in Figure 3A after increasing L to 3 or more levels. In fact, an L-

sensitivity analysis with the simulated 3D data (described above)

showed that increasing L above 4 produces the expected 5

homogeneous groups but decreases the expected number of cells

per group (results not shown). CCAST automatically determines L

based on the homogeneity of the subpopulations (Materials and

Methods). Next, we performed a bootstrap analysis to assess the

range of values for the split points in the optimal decision tree.

More specifically, we performed a strata-sampling method with

replacement to generate 200 bootstrap datasets of the same sample

size as the training data. We ran CCAST on these samples to

generate 200 decision trees with different split points. The

hierarchy and selected markers for these bootstrap samples were

exactly the same as shown in Figure 3A. We show the confidence

intervals of the split points by minimum and maximum boundary

estimates from our bootstrap analysis (see range located beside

split point estimates in Figure 3A). Note that we could not

calculate the normal confidence intervals for these split point

estimates due to the multi-modal nature of the split point

distributions (Figure 3B). To test the performance of CCAST,

we applied CCAST on the test data using decision tree derived

from the training set (Figure 3A). After data filtering, the final

A Model-Based Gating Strategy for Single Cell Sorting and Analysis
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decision tree on the test dataset is shown in Supplemental Figure

S1B. Note that all split point estimates lie within the previously

estimated confidence intervals shown in Figure 3A. In addition the

hierarchy of the tree remains the same. This result demonstrates

that CCAST yields robust split point estimates and can produce

reproducible results. Finally, we compare the CCAST result

before (Figure 3C) and after data filtering (Figure 3D). Figure 3C

show a 2D scatter plot of the 2 markers that partition the training

data into clearly 4 clusters. Although there is a strong evidence of 4

clusters, it is apparent that sorting out the population in the yellow

cluster without contaminating green cells would be challenging.

Figure 3D show the results after applying CCAST on the training

data for data analysis. Notice the pure subpopulations after

applying the data-filtering step of CCAST. Hence, in addition to

providing a gating strategy, CCAST can also produce a more

homogenous representation of the original data for data analysis.

Figure 1. CCAST flowchart and analysis on a simulated dataset. A Cytometry data represented by 3D scatterplot of simulated FCM data
showing the expression of 3 markers across all cells. B Clustering analysis produces five cell types color coded and denoted as Cell-types 1, 2, 3, 4 and
5. C Initial CCAST decision tree generated showing subpopulations at the leaf nodes. Nodes 9, 10 and 11 contain a single cell type and are considered
as pure subpopulations. Nodes 5 6 and 8 contain a mixture of cell types. D Final CCAST decision tree obtained after filtering the data by removing
contaminating cells in nodes with mixed cell-types. This tree can be used for cell sorting or data analysis. E 2D scatter plot of original (unfiltered) data
showing the 5 clusters color coded and estimated cut-offs with corresponding color-coded thresholds for sorting the 5 cell state populations. Note
that the subpopulations can be sorted using only Marker 1 and Marker 2 even though three markers were initially used to identify the cell types. F Bar
plot the three markers in each subpopulation derived using the final CCAST tree on the filtered data. G 2D scatter plot of the filtered data derived
from CCAST showing the analysis derived from hierarchical (right) versus npEM (left) clustering are similar.
doi:10.1371/journal.pcbi.1003664.g001

A Model-Based Gating Strategy for Single Cell Sorting and Analysis
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CCAST provides an efficient gating strategy for T-cells
Using the T-cell dataset described above, we show that our

CCAST-derived gating strategy reproduces the manual gating

results in Bendall et al. [9] without relying on expert knowledge.

Figure 3E shows that CCAST isolates the 4 distinct T-cell states

using only 2 of the 13 measured surfaces markers. These two

markers turn out to be CD4 and CD45RA. Figure 3F shows the

distribution of the 4 labeled T-cell subtypes based on CD4 and

CD45A expression. This result demonstrates that CCAST can

identify the 2 of 13 markers that are known to be most relevant to

identifying the subtypes of interest without relying on prior

knowledge of the subtypes or the markers that are best known to

define them. Moreover, for data analysis, CCAST provides more

homogeneous subpopulations by filtering out the contaminating

cells; an analogous step was not performed in the manually gated

analysis [9].

CCAST reveals additional B-cell subtypes in pooled
manually gated subpopulations

We next applied CCAST only on the manually gated B-cell

subpopulations of the Bendall et al. study [9]. In this study, the

manually gated B-cell subtypes were: early Pre-B I cells, late Pre-B

II cells, immature B-cells, naive mature CD38mid B-cells and

mature CD38low B-cells (see Figure 1 in Bendall et al. [9]). To

verify the existence of these 5 major B-cell subpopulations, we

performed hierarchical clustering, with a cutoff of 5 clusters, on

the pooled manually-gated B-cell data, which consisted of about

17,000 cells. The silhouette plot in Figure 4A shows strong

Figure 2. Visualization of 13 markers across heterogeneous population of T-cells. These 13613 scatter plots show pair-wise distribution of
13 markers (unlabeled) per cell from pooled single cell data of 4 T-cell subtypes. Primary data was made publicly available by Bendall et al. [9].
doi:10.1371/journal.pcbi.1003664.g002

A Model-Based Gating Strategy for Single Cell Sorting and Analysis
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evidence of 5 clusters. Figure 4B shows the CCAST-derived gating

strategy as a decision tree whereby the 5 distinct cell types can be

isolated using only 4, of the 13, surface markers (namely CD45,

CD34, CD38 and CD123) with only 3 levels of branching. A cross

classification analysis between the CCAST-derived versus the

manually gated subtypes is summarized as a heatmap in

Figure 4C. Based on Figure 4C, we predict that subpopulations

comprising CCAST-derived Cell-types 1, 4, 3, and 5 are

predominately immature B, mature CD38low B, Pre B II, and

Pre B I cells, respectively. However, there is not a clear one-to-one

mapping between the CCAST-derived and manually gated

subtypes. In particular, Figure 4C shows strong evidence of a

mixture of the mature B-cell subtypes in CCAST Cell-types 2 and 4.

The heatmaps in Figure 4D show evidence of two CCAST-derived

Figure 3. CCAST applied to single cell analysis of T-cells. A The CCAST gating strategy based on the unlabeled T-cell data in Figure 2, post
filtering, showing that 4 cell types can be derived using only Marker 5 and Marker 2 with Marker 5 as the root node. Split points along with the
minimum-maximum range for each split point are provided at each node. B Histogram plots for sample split point for each node is obtained via
bootstrapping. The multi modal nature of the distributions makes it difficult to calculate a true confidence intervals on the split point estimates. C
CCAST result without filtering represented as a 2D scatter plot of the 4 cell types, which each cell type color coded; note that gating the yellow-
colored cells will likely result in contamination of green-colored cells. D CCAST result with filtering represented as a 2D scatter plot of the 4 pure cell
types, with each cell type color coded. Note all contaminating cells mixed with various clusters have been removed. For manual gating purposes,
comparing the two schemes C and D provides a visual evaluation of the expected contamination levels from sorting subpopulations. E CCAST gating
strategy for all Tcell types with labels reveals that the key gating markers are CD4 and CD45RA markers. F 2D scatter plot for the four, labeled T-cell
types based on CD4 and CD45RA.
doi:10.1371/journal.pcbi.1003664.g003

A Model-Based Gating Strategy for Single Cell Sorting and Analysis
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distinct cell types corresponding to Cell-types 2 and 4 which were

considered as one major population, namely mature CD38low B-

cells, by manual gating. Based on surface marker expression, the

most striking difference between Cell-types 2 and 4 is the expression

of CD123, a signaling molecule which promotes proliferation and

differentiation within the hematopoietic cell lines and is associated

with hairy cell leukemia [24]. Figure 5A provides the heatmaps of

BCR, IFNa, FTL3, IL3, IL7, and SCF induced intracellular

signaling responses in the 5 CCAST-derived B-cell subtypes

compared with an unstimulated control. For the purpose of

comparing with the results of Bendall et al. [9] signaling induction

was calculated using the difference of the mean scaled arcsinh value

of unstimulated condition and the mean scaled arcsinh value of a

stimulated condition; moreover, only the 13 surface markers were

used to predict the cell types in the stimulated conditions using the

decision tree from the unstimulated controls. The difference is

calculated as a difference of absolute fold changes. BCR, IFNa, IL7

and SCF stimulations induce strong intracellular signaling across

the B-cells across the different development stages. The heatmap in

Figure 5B provides heatmaps of BCR, IFNa, FTL3, IL3, IL7, and

SCF induced intracellular signaling responses for various B-cell

subtypes derived from the manual gating in [9]. In the manually

gated cells, the strongest signaling differences are limited to mature

B-cells particularly associated with P38 and Ki67. In the CCAST-

gated cells, BCR stimulation induces strong differences in PLC-

gamma2 signaling, STAT3, H3, S6, CREB; IL7 stimulation alters

ERK1/2 and P38 signaling, INFalpha alters STAT3 signaling; and

SCF induces changes in P38 signaling. Overall, compared to the

manually gated cell types, the CCAST-derived cell types exhibit

more differences in stimulated induced signaling, presumably

because the CCAST-gated subpopulations are more homogeneous.

Finally, as an aside, we note that CCAST produces 7 homoge-

neously gated subpopulations, 3 of which belong to Cell-type 3,

suggesting that this cell type may be more heterogeneous than

suggested by the clustering algorithm.

CCAST identifies at least five distinct cell types in SUM159
breast cancer cell line

We applied CCAST on about 1 million cells of a SUM159

(triple negative) breast cancer cell line. We generated primary

FACS analysis on SUM159 cell line for this study based on

expression of EPCAM, CD24 and CD44 (see Materials and

Methods). To assess the likely number of cell clusters in SUM159,

we ran the ‘‘npEM’’ cluster algorithm, assuming 10 clusters, on a

random subsample of about 3,000 cells and obtained 5 clusters.

Using hierarchical clustering with a cut off of 5 clusters, on the

entire SUM159 dataset, CCAST-derived the gating strategy that is

shown in Figure 6. CCAST identified 9 homogenous subpopula-

tions denoted as P1–P9 at the terminal nodes of the tree in

Figure 6. A similar implementation on flowJo showing 9

homogeneous clusters is shown in Supplemental Figure S2.

Figure 7A summarizes the results for the estimation process for

all the split point statistics on all the inner nodes of the CCAST

Figure 4. CCAST applied to single cell analysis of B-cells. A Silhouette plot showing evidence of 5 B-cell types. B CCAST gating strategy for B-
cell types based on CD45, CD34, CD38, and CD123 markers using 3 levels of gating. The estimated ranges for the split point variables are provided at
each node. Note Celltype 3 is distributed across three gated populations. C Cross classification heatmap of manually gated and CCAST predicted B-
cell types indicates strong evidence that the most abundant Mature CD38low B-cells comprise a mixture of other subtypes (Celltype 2 and 4). D
Heatmaps show evidence of the two derived distinct mature B-cell states corresponding to Celltypes 2 and 4 based mainly on CD123 (label
highlighted in red).
doi:10.1371/journal.pcbi.1003664.g004

A Model-Based Gating Strategy for Single Cell Sorting and Analysis

PLOS Computational Biology | www.ploscompbiol.org 7 July 2014 | Volume 10 | Issue 7 | e1003664



decision tree. The root node corresponding to EPCAM shows one

global maximum indicating a strong split point. Nodes 3, 4, 8, 9,

13 and 14 have clear natural maxima indicating optimal splits for

the data into clearly 9 subpopulations, each corresponding to 9

single mode histograms in the leaf nodes of the tree. Correspond-

ing barplots for all 9 subpopulations with standard deviation

intervals for each marker are shown in Figure 7B. A multivariate

Hotelling’s T square test showed significant differences between

group pairs (p-value: 0), indicating that these 9 nine subpopula-

tions are statistically different from each other. Interestingly,

CCAST splits cluster 1 into the subpopulations P5, P6 and P8; it

also splits cluster 3 into the subpopulations P3, P4 and P7.

Next we compare the results of the CCAST-derived gating

strategy on SUM159 to the manually-defined gating strategy by

Gupta et al. [3] on the same cell line. Gupta et al. identified three

cell states (stem-like, basal-like and luminal-like cells) in SUM159

based on the three markers (EPCAM, CD24 and CD44). Based on

prior knowledge, the stem-like cells were defined as CD44-high,

CD24-neg, and EPCAM-low; basal-like cells were defined as

CD44-high, CD24-neg and EPCAM-neg; and luminal-like cells

were defined as CD44-low, CD24-high, and EPCAM-high.

Figure 7C reproduces the Gupta et al. [3] gating strategy on

FCM file analyzed in Figure 6. Gupta et al. strategy first gates the

cells based on EPCAM high and low then gated the stem, luminal

and basal like subpopulations based solely on CD24 low and high,

as shown in Figure 7C. A cross classification table of our 9

subpopulations and the 3 Gutpa et al. cell states (labeled as stem,

luminal and basal like subpopulations) is shown in Figure 7D. This

analysis indicates that the basal-like subpopulation identified by

the Gupta et al. gating is a combination of all the CCAST-derived

cell states. Furthermore the analysis suggests that a mixture of

basal-, stem- and luminal-cell like populations from the Gupta et al.
sorting actually correspond to a single CCAST subgroup P9. This

results implies that the cell-type specific analysis provided by

Gupta et al. may have reflected the behavior of a single cell type.

The Gupta et al. analysis may have been more informative if it

were to investigate the distinct subpopulations, such as P1, P2, P5

and P7.

Finally, for experimental validation, we applied our CCAST-

derived gating strategy on a SUM159 cell line in real time at a

FACS machine. Supplemental Figure S3 shows the sorting result

from this independent replicate; we are able to recover 5 distinct

CCAST-derived subpopulations in real-time.

CCAST differs from RchyOptimyx
We compare the application of CCAST and RchyOptimyx

algorithm on the FCM data of the SUM159 breast cancer cell line.

As briefly described in the Introduction, RchyOptimyx provides a

gating strategy to identify target populations at various levels of

purity [23]. On SUM159, RchyOptimyx initially generates 27

subpopulations for analysis. Because there is no clinical outcome

variable to filter through these 27 predicted phenotypes using the

RchyOptimyx algorithm, we selected only the phenotypes that

correspond to a combination of CD24 and EPCAM for

comparison to CCAST. Recall that CCAST resulted in 9

homogenous subpopulations that can be characterized in terms

of these 2 markers alone. Based on use of EPCAM and CD24

alone RchyOptimyx yielded 12 subpopulations that can be

targeted by a variety of gating strategies as shown in Supplement

Figure S4. In other words, RchyOptimyx provides several possible

paths to a particular subpopulation; in comparison, CCAST offers

only a single path to target homogenous subpopulations thereby

circumventing any additional interpretation of the output from

RchyOptimyx for choosing the gating strategy. The underlying

formalism of RchyOptimyx and CCAST are different but a full

description of those differences is beyond the scope of this analysis.

Discussion

We presented a model-based gating strategy, CCAST, for

sorting a homogeneous subpopulation from a heterogeneous

population of single cells without relying on expert knowledge. To

identify a hierarchical 2D gating scheme to sort out homogeneous

cells, we propose CCAST as a new approach that addresses three

key and often-neglected questions: (1) How do we select the

optimal markers for gating? (2) What is the optimal ordering of

markers for sorting? (3) How do we estimate the marker cut offs for

drawing the gates? The answers to these questions are usually

decided in a subjective and bias manner making it very difficult to

draw precise conclusions from the resulting sorted data. CCAST is

an automated and unbiased strategy, requiring minimal human

expertise, for optimizing gating of single cell data. While CCAST

is optimized for cell sorting it can be applied for analysis of purified

subpopulations among heterogeneous single cell data.

In all applications of CCAST in the study, we show that it is

possible to characterize and isolate cell types based on a subset of

the measured markers. When applied to normal bone marrow

data, CCAST reveals an efficient strategy for gating T-cells.

CCAST also produced an alternative gating framework for B-cells

that produced a new characterization of mature B-cells into

CD123+ and CD123- cells. The ability to isolate important cell

subpopulations based on limited markers is particularly important

since high-throughput cytometry technologies are increasing the

number of markers they can measure and one will need new

approaches to optimally select important set markers for gating.

Hence CCAST not only provides the relevant marker set,

optimized gating scheme, and reduces the need for human

expertise, it can also reduce the number of antibodies needed for

cell sorting.

We further motivated the need for CCAST as an automatically-

generated gating scheme that does not rely on prior knowledge of

cell states or marker relevance on the SUM159 breast cancer cell

line. On this cell line Gutpa et al. tested the hypothesis that cancer

cells can transition in any of the several possible cell states which

exhibit important functional properties [3]. This study aimed to

demonstrate the evidence of phenotypic switching between stem,

basal and luminal breast cell states, which were defined by CD24

and EPCAM. Establishing strong evidence of cell state transitions

would require pure cell states at onset, however, pure sorting is not

evident by the manual gating scheme used in the study. In an

independent study on the issue of phenotypic switching of cancer

cell states, Zapperi and Porta [4] gave an alternative interpretation

of the Gupta et al. based on an imperfect marker scenario. The

CCAST analysis also infers nonhomogeneous subpopulations

under the Gutpa et al. gating strategy and provided an alternative,

more homogeneous cell states using an alternative gating strategy

based on the same markers, namely CD24 and EPCAM. CCAST

identifies at least 5 distinct breast cancer cell states in SUM159

and sorted out these pure cell states automatically (Figure 6) using

only two surface markers, namely EPCAM and CD24. These

subpopulations warrant further investigation to validate the notion

of phenotypic switching in breast cancer cells as proposed by the

Gupta et al. study.

CCAST enables the possibility to sort out unique underlying

unknown cell states from a heterogeneous parent population in an

optimal and unbiased manner using a gating scheme based on a

decision tree representation. CCAST identifies homogeneous cell

subpopulations using a non-parametric mixture distribution.

A Model-Based Gating Strategy for Single Cell Sorting and Analysis
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Although several other clustering algorithms can also be used,

CCAST can handle the unknown number of true clusters without

the mathematical optimization of a distribution function. Silhou-

ette coefficients are used to optimize the cell subpopulations and a

recursive partitioning technique on the complete data given the

cell states is used to generate the optimal decision tree for isolating

the various subpopulations of interest. The partitioning comes

after a marker selection step, which depends on a non-parametric

test statistic making it completely data driven. CCAST also provides

a confidence interval for marker cut-offs taking into account possible

variability in marker distributions. For future methodological

improvement on CCAST to both the computational cost and the

pruning level L, one might consider multi way splits at each node,

instead of using binary splits. Another methodological direction

could be to use the confidence intervals to further enhance the

decision trees; in particular, methods proposed by Katz et al. [25]

can be adapted for CCAST.

In summary, CCAST is a fully automated model framework to

identify a gating strategy to isolate subpopulations from single cell

data with greater homogeneity compared to manual gating

procedures. More generally, the CCAST framework could be

used on other biological and non-biological high dimensional data

types involving a mixture of unknown homogeneous subpopula-

tions.

Figure 5. Signaling behavior in B-cell subtypes for CCAST vs manual gating strategy. A Heatmap of BCR, IFNa, FTL3, IL3, IL7, and SCF
induced intracellular signaling responses in 5 B-cell CCAST-derived subtypes, compared with those of an unstimulated control. B Heatmap of BCR,
IFNa, FTL3, IL3, IL7, and SCF induced intracellular signaling responses in the five B-cell subtypes obtained from the manual gates in Bendall et al. [9],
compared with those of an unstimulated control. The higher difference implies a stronger signal in the CCAST-derived cell type compared to the
manually gated cell type.
doi:10.1371/journal.pcbi.1003664.g005
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Materials and Methods

CCAST algorithm
CCAST formalizes the gating process of single cells as a

statistical model and provides a simple unbiased hierarchical 2D

gating scheme with the relevant set of marker cut-offs for gating a

homogenous cell subpopulation given FCM data. Following, we

describe the various steps in the non-parametric model framework

of CCAST when applied to single cell data. A typical FCM dataset

comprises simultaneous quantitative signal measurements of

multiple biomarkers of single cells. These measurements can be

fluorescence or atomic mass based. The data are stored in flow

cytometry standard (FCS) files as a data frame with rows

representing the cells or events and the columns corresponding

to the markers of interest. Currently, we assume that the data have

already been compensated to correct for spectral overlap during

data generation and preprocessed using standard preprocessing

steps in analysis of FCM data to remove spurious events. The data

is then transformed using the recommended Arcsinh function [9]

which can handle both positive and negative expression values.

CCAST applies non-parametric multivariate finite

mixture models or hierarchical clustering for identifying

cell subpopulations. The transformed FCM data is visualized

as a high dimensional point cloud of cells, where each cell is a

point in the cloud and each marker is represented as a single

dimension in the cloud space. Different high-density cloud sub

regions reflect abundance of specific cell subpopulations, which

cannot be easily determined in high dimension. The first goal is to

identify the cells that belong to the same cell subpopulation, that is

cell type or state.

We propose a modification of a non-parametric multivariate

mixture modeling approach by Benaglia et al. [19] for identifying

homogeneous cell subpopulations among single cell data. This

particular mixture model algorithm is an EM-like algorithm for

non-parametric finite mixture modeling implemented in the

mixtools R package [19]. It estimates the multivariate mixture

distribution from multivariate random vectors. The vectors are

assumed to have independent coordinates conditional upon

knowing from which mixture component they come from,

however, their density functions remain completely unspecified.

Figure 6. CCAST gating strategy on SUM159 breast cancer cell line. CCAST gating strategy for SUM159 breast cancer cell lines isolates 5 pure
cell states (across 9 bins) based on CD24 and EPCAM. Visualization of these 5 subpopulations is clearly not apparent from the biaxial side scatter (SSC)
vs. biomarker plots. Split point estimates (dotted red lines) go through density contour plot (orange) on the distributed data providing visual
evidence for suitable cut-offs through bimodal contours. Note the split point lines for nodes 3 and 4 concentrate on the zero point mass; this
indicates there are several cells with zero expression values for EPCAM or CD24 staining but with higher expression values with respect to CD44.
doi:10.1371/journal.pcbi.1003664.g006
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The assignments of the random vectors to the most likely mixture

component are done by maximizing aposterior probabilities. This

algorithm is very flexible and can handle any number of mixture

components and any number of vector coordinates of multivariate

observations. Following [19] model specification and annotations,

we denote the cell measurement vectors as Xi,:::,Xn each

comprising of r marker coordinates. We assume that they

represent a sample from a finite mixture of mw1 arbitrary

distributions with each Xi independent, conditional on the

subpopulation (h1,:::,hm) from which it is drawn. In addition,

since some markers could be co-expressed in some cell subpop-

ulations, we can also allow sets of markers to be identically

distributed as well. Let bk denote the set to which the k th marker

belongs, where 1ƒbkƒB with B equal the total number of sets.

The density of each Xi can be written as

gY(Xi)~
Xm

j~1

lj P
r

k~1
fjbk

(xik), ð1Þ

where the function f (:), denotes an unknown univariate density

function condition on the parameter space Y and (l1,:::,lm) are

all positive and sum to one. Thus for purpose of consistency, we

use the indices i,j,k,l to denote a single unique cell, cell

subpopulation, marker coordinate and marker set respectively.

In general, we do not know apriori which marker sets define

particular cell subpopulations. In this case we assume the more

general model with bk~k: Equation 1 becomes

gY(Xi)~
Xm

j~1

lj P
r

k~1
fjk(xik), ð2Þ

Figure 7. CCAST analysis on SUM159 breast cancer results. A Results for the estimation process for all the split point statistics in all the inner
nodes in Figure 6. The root node corresponding to EPCAM shows one local maxima and one global maximum. Gating the data from this global
maximum results in 9 distinct subpopulations. Nodes 3, 4, 8, 9, 13 and 14 have clear natural maxima indicating optimal splits for the data into these 9
homogenous subpopulations (see Figure 6) corresponding to the 9 bar plots in B. B Bar plots of the 9 homogenous subpopulations from Figure 6
across all 3 markers with standard deviation intervals for each marker. The values on the bars on the left side of each plot correspond to the minimum
value for all 3 bar heights. Each side bar gives a sense of the relative difference between bar heights. The main title for each plot shows the
corresponding leaf node bin on the tree in Figure 6. Predicted Celltypes 3 and 1 correspond to P3, P4, P7 and P5, P6, P8 respectively indicating more
homogeneous sub populations than expected. The bar plots show evidence of at least 5 distinct sub populations i.e. P1, P2, P5, P7 and P9. C Gupta
et al. [3] gating strategy isolated 3 cell states (Basal, stem, and luminal) using EPCAM as the major marker. They further use CD24 to sort out these 3
states. We also automatically identify EPCAM as the major marker but use a combination of multiple splits from CD24 and EPCAM to produce 9
homogeneous bins. D Comparison of predicted breast cancer subpopulations comparing the CCAST versus Gupta et al. [3] gating strategy shows
potential evidence of contamination after sorting. This analysis indicated the CCAST subpopulation P9 is clearly a mixture of basal, stem, and luminal
subpopulations from Gutpa et al. [3]. Unique CCAST subpopulations P1 and P2 were not even identified by Gupta et al. [3].
doi:10.1371/journal.pcbi.1003664.g007
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Estimating all model parameters in Equation 1 is based on an EM-

like algorithm [19] implemented in the mixtools R package using

the ‘‘npEM’’ function. Similar to the EM Algorithm, this function

defines a Bernoulli random variable Zij[f0,1g indicating that cell i

belongs to cell state j: Hence
Pm

j~1 Zij~1 and the complete data

becomes (Xi,Zi),1ƒiƒn: We first initialize all model parameters

y0~(l0,f (:)0): For every iteration t~1,2,:::

1. E-step: The posterior probabilities of cell assignment to a

particular state condition on the data is given by,

pt
ij~Pyt (Zij~1DXi)

~
lt

j P
r
k~1 f t

jk(xik)Pm
j’~1 lt

j’ P
r
k~1 fj’ k(xik)

ð3Þ

2. M-step: The proportion of cell states is given by,

ltz1
j ~

1

n

Xn

i~1

pt
ij ð4Þ

for j~1,:::,m:

3. KDE-step: Given any real expression value u, the non-

parametric density estimate for some bandwidth parameter h and

kernel density function K(:) is given by,

f tz1
jk (u)~

1

nhltz1
j

Xn

i~1

pt
ijK

u{xik

h

� �
ð5Þ

The above algorithm is deterministic and in practice, the first

iteration involves only an M-step with the P0 matrix obtained

from a deterministic algorithm such as k-means clustering

algorithm which assigns every cell a unique cell state. Note that

the KDE-step depends on the kernel density K(:) and a user

defined bandwidth h: Following the recommendations by [19], the

standard normal density function is used for K(:) and a simple

density dependent bandwidth rule given as

h~0:9(nr){1=5 min SD,
IQR

1:34

� �
ð6Þ

is used, where SD and IQR are the standard deviation and

interquartile range of the pooled data. This method could either

over estimate or under estimate the bandwidth. An updated

iterative approach, which varies the bandwidth for each mixture

component is also implemented in the mixtools R package. Note

that any other clustering algorithm can also be used.

CCAST uses silhouette coefficients to refine cluster

assignments. Another important issue involved in mixture

modeling is selecting the number of components or in the context

of FCM data, identifying the number of homogeneous cell

subpopulations. We propose the initial use of a reasonable larger

number of subpopulations than expected. The model provides the

posterior distribution of cell subpopulation assignments whose

MAP estimates in general result in a smaller number of cell

subpopulation assignments corresponding to modes of high-

density regions in the data space. Note that maximizing such a

density function could result to wrong assignments of boundary

cells to wrong cell states. Silhouette coefficients have been

proposed as a diagnostic tool for evaluating the performance of

clustering algorithms [26]. To improve on the sensitivity of the

assignment of cells to their true subpopulation, we first estimate

the silhouette coefficient s of all the cells. Starting from the initial

m cluster assignments from the mixture model, cells with negative

s values are reassigned to the most likely neighbors. The

memberships of cell subpopulations are updated and s values

associated with individual cells are recomputed. The same process

is then repeated in the next iteration resulting in a new set of s
values, and so forth. This process converges to a stable number of

cell subpopulations. We define a cost function by the absolute

value of summing the negative silhouette values in each iteration.

Minimizing the cost function optimizes the partition of the

clusters. This process gives us a refined cell subpopulation

distribution, which is required for generating the optimal gating

scheme for the FCM data. Note that the silhouette step can be

applied to any clustering output as well.

CCAST estimates a gating scheme for all cell

subpopulations using a decision tree. Recursive partitioning

is a well-established statistical technique that aims to correctly

classify members of a certain population based on several

dichotomous dependent variables in the form of a decision tree.

This provides a decision rule for targeted classifications with more

sensitivity or specificity. In the context of FCM data we formulate

the gating process as a decision tree model with the vertices (nodes)

corresponding to unknown markers of interest and the leaves of

tree corresponding to the classification density of all the cell

subpopulations. The root of the tree is the marker, which separates

the cell subpopulations best. It has unique paths to all the leaves of

the tree. A path gives a sequence of optimized rules leading to a

given cell state subpopulation based on binary decisions on

selected markers represented on the edges. The structure of the

tree is determined by model based recursive partitioning technique

by Horthon et al. [27]. This approach overcomes the variable

selection bias and over-fitting problem, associated with most

related techniques. A general framework of the algorithm works as

follows:

1. Step 1. Test the global null hypothesis of independence

between any of the continuous marker signal variables and the

nominal response (which in this case is the distribution of the

cell subpopulations from the mixture model described above).

Stop if this hypothesis cannot be rejected. Otherwise select the

marker signal with strongest association to the response. This

association is measured by a p-value corresponding to a test for

the partial null hypothesis of a single marker variable and the

response.

2. Step 2. Implement a binary split in the selected marker

variable.

3. Step 3. Recursively repeat steps 1) and 2).

One of such a framework has been implemented in the ‘‘ctree’’

function for conditional inference trees in the R party package [27]

with a flexible stopping criteria of the derived tree. We go through

the major steps above in more detail focusing mainly on the

relevant information for implementation.

1. Variable selection and stopping criteria. Testing

independence between a single marker variable and the

derived cell states is equivalent to performing an association

test between the nominal response variable Y for cell states and

an interval variable Xk for each marker. The test statistic

denoted as gk(n,w) is constructed using conditional distribution

A Model-Based Gating Strategy for Single Cell Sorting and Analysis
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of linear statistics in the permutation test framework [27,28]

based on both the permutation transformation of the data of

size n and associated weights w used in every node to build the

tree. Each statistic gk(n,w) is used to generate a P-value Pk: We

select the marker Xk with minimum P-value. The stop criterion

in step 1 in the main text is based on multiplicity adjusted p-

values using multiple testing correction procedures. We reject

the independence assumption when the minimum of the

adjusted P-values is less than a pre-specified nominal level a:
This parameter determines the size of the resulting tree.

2. Splitting criteria. Determining the optimal binary split

point in the selected marker Xk� from the previous step is based

on a goodness of split test using a two-sample linear statistics of

the same form as in step 1 (see [28]). If we partition the selected

marker space into all possible binary subsets M, the optimal

split M� is derived from the maximum of all possible statistics

associated with M: We control the number of subsets M by

restricting the sample size in each daughter node to some

minimum value c:

CCAST optimizes the decision tree by maximizing the

size of the homogenous clusters. In practice the decision tree

can be very large rendering its use almost impossible for manual

gating. For practical purposes we propose the termination of the

tree once we have identified all cell states as maximum in at least

one of the leaf nodes during the partition process. This introduces

a new parameter L, corresponding to a desired level of pruning.

Note that this parameter will depend on the accuracy of the

estimated cluster distribution of the data. We then perform the

following;

1. Step 1. For each leaf node in the tree we select only the cells

corresponding to the maximized cell state.

2. Step 2. Estimate a new decision tree on the updated data with

maximum height L.

3. Step 3. Recursively repeat steps 1) and 2) until we get pure cell

states at the leaf nodes.

This process provides a possible maximum sample size for all

homogenous cell states simultaneously. Note that at the end it is

possible to get more homogenous bins than expected. This could

indicate the possibility of new clusters, which will require further

confirmation. Also note that the removed data points during the

updating process can also be put into an extra bin for further

investigation.

CCAST is available as an R package. CCAST algorithm

has been implemented as an R package with examples and

documentation. It is available as a zip file in the supplementary

information.

FACS analysis of SUM159
Sum 159 cells were cultured in Ham F12 medium supplement-

ed with 5% calf serum, insulin (5 ug/ml), hydrocortisone, Pen/

Strep/L-Glutamine. Cells were grown at 37u C in a 5% CO2

incubator. Stock aliquots of cells were frozen in 10% DMSO and

90% FBS and stored in 280u C liquid nitrogen. The cells were

thawed initially into T25 flasks and allowed to expand in culture

for two weeks prior to sorting (expanded into T75 flasks). The day

of sort, cells were trypsinized, washed with PBS and stained with

antibodies specific for the following human cell surface markers:

EPCAM (ESA)-FITC (AbD Serotec, MCA1870F), CD24-PE (BD

Biosciences), CD44-APC (BD Biosciences), CD49f-PerCP/Cy5.5

(Biolegend). Roughly 16107 cells were incubated with antibody

(20uL antibody per million cells) for 15 min at room temperature

in PBS with 1% BSA. Unbound antibody was washed off and cells

were analyzed on a custom Stanford and Cytek upgraded

FACScan (Beckman Center, Stanford) no more than one hour

after staining. Cell sorting was performed on BD Aria II (Beckman

Center, Stanford). The raw data is available in supplement Dataset

S1 as an FCS file.

Supporting Information

Algorithm S1 CCAST algorithm implemented as an R
package. The algorithm, named CCAST for Clustering,

Classification and Sorting Tree, identifies and isolates homoge-

neous cell subpopulations from heterogenous single cell data in an

optimal and unbiased manner using a decision tree representation

that can be applied to cell sorting and data analysis.

(GZ)

Dataset S1 FCM data for SUM159 breast cancer cell
line. Single cell data for SUM159 breast cancer cell line stored as

an FCS file.

(ZIP)

Figure S1 CCAST decision tree height (L) analysis on
training data. A The CCAST gating strategy based on the

unlabeled T-cell training data shows exactly the same decision tree as

in Figure 3A after increasing L to 3 or more levels. B The CCAST

gating strategy based on the unlabeled T-cell test data shows that all

split point estimates lie within the estimated confidence intervals

shown in Figure 3A derived from the training data.

(TIF)

Figure S2 CCAST gating strategy on SUM159 breast
cancer cell line in flowJo. The implementation of the CCAST

gating strategy based on SUM159 breast cancer cells using flowJo

showing 9 homogeneous clusters.

(TIF)

Figure S3 SUM159 breast cancer cell analyzed on FACS
machine in real-time. Top panel: CCAST-derived unique five

subpopulations, labeled as P1 thru P5 using gating strategy in

Figure 6. Bottom panel: Proof that the CCAST-derived gating

scheme in Figure 6 works on an independent real-time sort of

populations P1 thru P5. See Materials and Methods for

experimental details.

(TIF)

Figure S4 RchyOptimyx analysis on breast cancer cell
line. The implementation of the RchyOptimyx tool on SUM159

Breast cancer cell line yielded 12 subpopulations defined on

EPCAM and CD24. These populations can be targeted by a

variety of gating strategies illustrated here as Strategy 1-12.

(TIF)

Table S1 Simulated single cell data for CCAST. We

simulated 850 cell expression measurements on 3 markers from a

mixture of 5 states whose global expression pattern depict cell state

progression. Celltype 1 is characterized as ‘‘low’’, ‘‘low’’, ‘‘high’’.

Celltype 2 is characterized as ‘‘high low’’, ‘‘low mid’’, ‘‘high’’,

Celltype 3 is characterized as ‘‘mid’’, ‘‘mid’’, ‘‘high’’, Celltype 4 is

characterized as ‘‘low high’’, ‘‘low high’’, ‘‘high’’ and Celltype 5 is

characterized as ‘‘high’’, ‘‘high’’, ‘‘high’’. We use different normal

distributions to quantify these cell states.

(TIF)
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