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Abstract

X-chromosome inactivation (XCl) is the epigenetic transcriptional silencing of an X-chromosome during the early stages of
embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation
for dosage-sensitive X-linked genes between females (XX) and males (XY). DNA methylation at the carbon-5 position of the
cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5™CpG) in promoter regions is a key epigenetic
marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat
230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5™¢CpG status
correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5™°CpG-based PCR assay
that is highly concordant with the human androgen receptor (AR) exonic tandem CAG repeat-based standard HUMARA
assay in discriminating active (Xa) from inactive (Xi) X-chromosomes. The RP2 onshore tandem GAAA repeat contains
neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates
approximately 0.8) and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is
approximately 0.97, and this assay excels at determining the 5™¢CpG status of alleles at the Xp (RP2) and Xq (AR)
chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of
XCl in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the
naturally occurring chimeric New World monkey marmoset (Callitrichidae) and found it to be informative. The RP2 onshore
tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked
diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related
hematopoietic malignancies and the clonality of cancers in human and nonhuman primates.
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embryonic developmental stage-specific gene expression, preser-
vation of chromatin structure and chromosomal integrity, aging of
the hematopoietic system, carcinogenesis, random autosomal
monoallelic gene expression, parent-of-origin-dependent mono-
allelic gene expression (genomic imprinting) and X-chromosome
inactivation (XCI) [3].

XCI is the stable, (nearly) chromosome-wide transcriptional
silencing of either the maternal MX) or the paternal *X) X-
chromosome in the inner cell mass of female eutherian mammals
[4]. XCI entails selecting (normally at random), targeting and
driving cither ™X or "X in each early stage embryonic female cell
into a facultative heterochromatin configuration of sustained
transcriptional gene suppression [5,6].

Overall, XCI ensures monoallelic gene expression in each cell
and compensation for dosage-sensitive X-linked genes between
females (XX) and males (XY) [7]. In human females, there is
extensive variability in X-linked gene expression, with approxi-
mately 15% of genes resisting XCI and being expressed from both
active X (Xa) and inactive X (Xi) chromosomes and an additional
10% being expressed to varying degrees from some Xi chromo-
somes [8]. Thus, while most genes on Xi are stably silenced, a
discrete yet significant subset of genes escape transcriptional
suppression by being excluded from the condensed heterochro-
matic body of Xi [9]. Escape genes (e.g., active genes on Xi) may
exhibit tissue-specific differences in the escape from inactivation
[10]. Escape genes have distinct evolutionary implications for sex
differences in specific phenotypes [10,11].

The 5™°CpG-sensitive restriction endonuclease-based PCR
assay targeting the polymorphic trinucleotide tandem CAG repeat
(microsatellite, short tandem repeat - STR) in exon 1 of the human
androgen receptor (AR) gene (MIM 313700) in the Xql2 region,
known as the HUMARA assay, is a standard readout method for
determining the methylation statuses of alleles on Xa and Xi and is
widely used as a marker of X-chromosome activity [12]. The AR
tandem CAG repeat yields heterozygosity rates of approximately
0.85 worldwide, and it is therefore uninformative in a significant
proportion of females. The AR tandem CAG repeat genotype is
not neutral, with threshold numbers of repeat units being positive
and negatively correlated with Kennedy disease (KD [MIM
313200]) [13] and prostate cancer [14,15], respectively. Moreover,
the AR CAG-repeat locus is monomorphic in the small nonhuman
primate species used in biomedical research [16], which precludes
its use in studies of XCI in these important experimental models.

We sought to identify X-linked repeats that are conserved in
primates and consist of neutral features to accurately assess the
methylation statuses of alleles in Xa and Xi. We aimed to develop
a method that is highly concordant with the AR disease-linked
tandem CAG repeat assay, but with minimal MX/"X variation
due to lesser in vitro replication slippage by Taq polymerase
across repeat units greater than triplets. This goal has not been
realized to date in either humans or nonhuman primate species.

Materials and Methods

Ethics Statement

Samples from human subjects were collected with written
informed consent for projects approved by the Ethics Committee
of the Faculdade de Medicina de Campos, Brazil (approval code
FR-278769); Leiden University Medical Center, the Netherlands
(P08.087); Faculdade de Medicina de Ribeirdo Preto, Brazil
(HCRP 5810/2009); and Institutos de la Academia Nacional de
Medicina, Argentina (14/08/2008). The capture of individual
marmosets (wild hybrids of Callithrix jacchus and Callithrix
penicillata), confinement in a captive colony, management, care,
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drawing of biological samples and necropsies were all carried out
under authorizations from the Brazilian Chico Mendes Institute
for the Conservation of Biodiversity — ICMBio (URL: http://
www.icmbio.gov.br/portal/) with license #33965-2 and the
Brazilian Institute of the Environment and Renewable Natural
Resources - IBAMA (URL: http://www.ibama.gov.br/) with
license CGEF AM3301.8101/2013-R]J. The marmoset specimens
were taken into captivity in strict accordance with the recommen-
dations of ICMBio as part of a control program for these invasive
species. They were previously introduced into an industrial zone
belonging to the Brazilian Oil company TRANSPETRO, located
in the State of Rio de Janeiro, inhabited by the endangered, native
golden lion tamarins (Leontopithecus rosalia). The program was
licensed by ICMBio and IBAMA because the presence of the
marmosets increases the risk of extinction of golden lion tamarins
by exposing them to transmissible infectious diseases, predation or
limiting-resource competition. The captive colony was founded in
the Sector of Studies on the Ethology, Reintroduction and
Conservation of Wild Animals (SERCAS, website URL: http://
uenf.br/cbb/sercas/) of the Universidade Estadual do Norte
Fluminense Darcy Ribeiro, Brazil, as a model for management.
Animal management activities were supervised by an IBAMA-
licensed, expert investigator (CRRM). The capture, clinical and
laboratory examinations and handling of animals were conducted
essentially as previously reported [17]. No marmoset specimen was
euthanized to obtain tissue for this study. Marmoset peripheral
blood samples (50 uL) were drawn into EDTA during routine
examination of confined animals. Samples (3-5 mm®) of muscle,
liver, brain and skin/hair tissues were strictly taken from the
frozen remains of necropsies carried out by a licensed veterinarian
(LSS) that were exclusively performed on specimens that died of
natural causes during the process of adapting to confinement
including failure to thrive, wasting syndrome and/or nematode
infestation. Care was taken to alleviate suffering, and measures
were implemented according to IBAMA guidelines for the well-
being of wildlife and the recommendations of the Guide for the
Care and Use of Laboratory Animals of the Universidade Estadual
do Norte Fluminense Darcy Ribeiro, Brazil.

Subjects

To determine heterozygosity rates and allele frequencies, we
genotyped two population subsets, each consisting of sixty healthy,
unrelated women from Brazil and the Netherlands. To analyze the
correlations between random or non-random X-inactivation
patterns and the RP2-extragenic GAAA repeat or the AR exonic
CAG repeat (HUMARA assay), we genotyped a third subset of
fifty unrelated women who had known HUMARA-based meth-
ylation profiles (e.g., Xa/Xi ratios). We genotyped four healthy
male donors as a control for methylation-sensitive restriction
enzyme activity. To demonstrate the power of RP2-extragenic
GAAA repeats in discriminating Xa from Xi in heterozygous
female carriers of an X-linked recessive defect that manifests due
to non-random (skewed) X-inactivation, we genotyped four
confirmed heterozygous carriers of hemophilia A. Two of these
individuals were conventional, non-symptomatic carriers who
screened positive for F8 intron 22 inversions via inverse shifting-
PCR [18] and for random X-inactivation via the AR CAG repeat
assay [12]. The other two were heterozygous carriers of missense
and frameshift mutations in factor VIII domains Al and B,
respectively. They were screened through conformational sensitive
gel electrophoresis [19] and direct sequencing and presented with
a severe hemophilia A phenotype due to extremely skewed XCI.
For the assessment of marmosets, we genotyped necropsy tissues
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Figure 1. Chromosomal and physical map positions and sequence features of the locus encompassing the RP2 onshore tandem
GAAA repeat. The composite image above the DNA sequence is based on screenshots generated using the UCSC Genome Browser (http://genome.
ucsc.edu) [49], with the RP2 onshore tandem GAAA repeat-containing region viewing coordinates chrX:46,695,746-46,696,645 (GRCh37.p5/hg19
primary reference assembly of human X-chromosome; NC_000023.10), centered on the landmark CpG island of the RP2 promoter. The GAAA repeat
element maps within the Xp11.3. The presented features (from top to bottom) are annotated tracks for OMIM genes, UCSC Genes (RefSeq, GenBank,
CCDS, Rfam, tRNAs & Comparative Genomics), reference mRNA, CpG and the tandem (GAAA)n repeat. The line drawing above the DNA sequence
represents the physical map of the target locus, with the RP2 5'coding region highlighted in light green. The locations of the forward and reverse
primer sequences used for genotyping the RP2 onshore tandem GAAA repeat are highlighted in red and pink, respectively. The tandem GAAA repeat
sequence is highlighted in black with white symbols. The 5™¢C-sensitive restriction endonuclease recognition sites analyzed in the XCI experiments

are highlighted in blue and brown in white symbols.
doi:10.1371/journal.pone.0103714.g001

from twenty-two adult subjects (fourteen females and eight males

from different social groups).

Cells

The THP-1 cell line was cultured in RPMI-1640 medium, 10%
fetal bovine serum, penicillin/streptomycin, 10 mM HEPES,
I mM sodium pyruvate and 50 pM 2-mercaptoethanol [20].
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DNA and RNA extraction

Human genomic DNA was extracted from either peripheral
blood or mouth epithelial cells (swabs) utilizing a commercial
Illustra blood genomic Prep Mini Spin kit (GE Healthcare, Little
Chalfont, UK) [21]. Genomic DNA from blood samples from
female carriers of the I8 defect, the Dutch population subset and
the marmoset necropsy tissues (blood, muscle, liver, brain and
skin) was extracted via phenol-chloroform and ethanol precipita-
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Figure 2. Reverse transcription-PCR across the GAAA repeat-containing region. RP2 onshore tandem GAAA repeat-specific steady-state
RNA is not detected in mononucleated blood cells from two healthy female donors (21 years old) or a male donor (33 years old) or from the THP-1
male cell line. RNA samples were either reverse (+) or mock (—) transcribed (RT) prior to PCR amplification across the RP2 onshore tandem GAAA
repeat-specific region (A) or the GAPDH-specific region (B). Corresponding samples of genomic DNA were used as positive controls for the PCR
assays. The amplification products were separated via electrophoresis in an 8% acrylamide: bis-acrylamide gel and silver-stained for detection. Lane
L50 shows a standard 50-bp ladder (Invitrogen); lane H,0 is the negative PCR amplification control. The range of the RP2 onshore tandem GAAA
repeat-specific DNA amplimer is 350 to 391-bp. The GAPDH-specific DNA amplimers are as follows: 130-bp for GAPDHP63 (6:80663360-80663489) and
GAPDHP1 (X:39647022-39647151) and 220-bp for GAPDH (12:6646089-6646308). The processed (mature) GAPDH-specific cDNA-derived product is
130- bp.

doi:10.1371/journal.pone.0103714.g002

tion [22]. Total cellular RNA from human nucleated blood cells endonuclease activity was assessed by genotyping DNA from four
and the THP-1 cell line was extracted using TRIzol reagent healthy males (not shown).
(Invitrogen, Carlsbad, CA, USA).
Analysis of allele-specific methylation

Digestion with methylation-sensitive restriction enzymes DNA genotyping was carried out in quantitative fluorescence

Genomic DNA (500 ng) was digested with Hpall (Invitrogen, polymerase chain biplex reactions (QF-PCR) in approximately
Carlsbad, CA, USA), BstUI and Hhal (New England Biolabs, 50 ng of digested or undigested DNA using 0.8 pM (AR) and
Ipswich, MA, USA) for 6 h at 37°C (Hpall and Hhal) or 60°C 1.2 uM (RP2) of each primer pair (Table S1). The thermal cycling
(BstUI), or was mock-digested without the restriction enzymes. conditions were as follows: 95°C for 11 minutes (1 cycle);
The final volume of the reaction mixture was 10 uL. Throughout 94°Cx1 min, 59°Cx1 min and 72°Cx1 min (28 cycles); and
the methylation-based PCR assays, 5™“CpG-sensitive restriction 60°C %60 min (1 cycle) in a Gene Amp PCR system 9700 (Applied
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Figure 3. Allelic distribution of the RP2 onshore tandem GAAA repeat. (A) Electropherogram of alleles observed in 60 unrelated Brazilian
females genotyped via quantitative fluorescent PCR. The intensity of the red line tracing is related to the allele frequency. Smaller peaks preceding
the designated allele peaks represent Taq polymerase stutter products corresponding to a mean of 2.6% of the amount of the true allele. In contrast,
the mean stuttering for the AR disease-linked CAG repeat was 17.6% (not shown). Allele names are the lengths in base pairs of each fluorescence
peak and the intensity of each peak is in relative fluorescence units (RFU). The RP2 onshore tandem GAAA repeat locus exhibited an allelic span (the
difference in length between the longest and the shortest allele per locus) of 41-bp in this population subset. (B) RP2 onshore tandem GAAA repeat-
containing allele frequencies and heterozygosity (Hg) rates observed in the population subsets consisting of Brazilian and Dutch women.

doi:10.1371/journal.pone.0103714.g003

Biosystems, Foster City, CA, USA). The allele profiles and areas
under the curves for each allele were determined in an ABI 310
Prism Genetic Analyzer (Applied Biosystems). The data were
analyzed with GeneScan Analysis 3.7 and Genotyper 3.7 software
(Applied Biosystems). Fluorescent peak areas representing true
alleles were normalized for the occurrence of stutter products
using the approach outlined in the literature [23]. The degree of
assoclation between the percentages of the Xi/Xa referred by the
methylation statuses at the RP2 GAAA onshore and AR CAG
repeat loci across women with varying extents of random and non-
random XCI was determined by calculating the Spearman
correlation coefficient, C195% and p value and visualized with a
scatterplot using Graph Pad Prism 5.0.

Reverse transcription-PCR (RT-PCR)

Samples of 500 ng of total RNA were digested using 1 U of
DNAse I (Invitrogen) at room temperature for 15 min and then
inactivated by the addition of 1 ul of EDTA (25 mM) and
incubation at 65°C for 5 min in a final volume of 10 pL. The
DNase I-treated RNA was reverse transcribed to single-stranded
c¢DNA using a High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems) according to the manufacturer’s protocol. To
test for possible transcription spanning the RP2 GAAA repeat, the
primer pair used for QF-PCR typing was employed on target
cDNA samples (diluted 10-fold) from nucleated blood cells and the
THP-1 cell line. As a positive control, cDNA samples were tested
for GAPDH expression using the primer sequences shown in
Table S1. These primers align to three different locations in
reference genomic sequences: GAPDH (chr12:6646089-6646308)
and two pseudogenes, GAPDHP63 (chr6:80663360-80663489)
and GAPDHPI (chrX:39647022-39647151). In GAPDH, the
primers anneal to exons 5 and 6 (the RNA-specific cDNA product
is 130-bp in length). In all experiments, mock RT-PCR assays
(without Reverse Transcriptase) were included.

Conservation of the RP2-extragenic GAAA repeat in
nonhuman primates

The extent of conservation of the GAAA repeat-containing
locus in nonhuman primates was investigated computationally
using the MegaBLAST search algorithm [24] with the in silico-
generated human PCR amplimer as the query reference sequence,
followed by multiple sequence alignment of the target regions in
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the Molecular Evolutionary Genetics Analysis (MEGA) stand-
alone program [25].

Results

Experimental strategy

To ensure success in the identification of highly polymorphic
candidate repeat loci, we applied a combined comprehensive
computational and empirical strategy consisting of mining the
Homo sapiens chromosome X GRCh37.p5/hgl9 primary refer-
ence genome assembly [26] for repeats that fulfill all of the
following criteria: (z) tetranucleotides or pentanucleotides with at
least twelve repeat units and a match percentage >90 according to
Tandem Repeat Finder [27] (alignment parameters of 2, 7 and 7
for matches, mismatches and indels, respectively); (i) mapping
outside of exons and pseudoautosomal regions [24]; (:¢i) mapping
<300-bp from or residing within landmark CpG islands [1]
relevant to genes expressed only from Xa (e.g., escape genes
excluded) [8]; and (iv) the occurrence of at least one 5™°CpG-
sensitive restriction endonuclease site within 300-bp of the tandem
repeat. Matching these criteria should improve the base-calling
precision of templates and the measurement of true alleles by
effectively limiting Taq polymerase stuttering (the magnitude of
stuttering decreases as the repeat unit length increases [28,29]),
and allow to achieve the power of informativeness of the AR
disease-linked CAG repeat assay regarding the methylation
statuses of X-chromosomes [12] (AR does not escape XCI [8],
and the informativeness of repeats on X correlates with the
number of perfect tandem repeat units [29,30]). The real power of
this combined approach for predicting highly polymorphic STR
loci in promoter regions is its direct applicability to available X-
chromosome sequences of any mammalian species.

Chromosomal and physical map positions and sequence
features of the novel locus

The endeavor rendered only one, albeit suitable, repeat: a
tetranucleotide repeat element (physical location chrX:46695765-
46695834) near RP2 (MIM 300757) (Figure 1), the gene corre-
sponding to X-linked retinitis pigmentosa 2 (MIM 312600), which
maps to Xpl1.3 [31] and does not escape XCI [8,31]. Using the
alignment parameters 2, 7 and 7 for matches, mismatches and
indels, respectively, Tandem Repeats Finder marks the repeat unit

July 2014 | Volume 9 | Issue 7 | e103714
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Figure 4. Methylation statuses at CpG sites near the RP2 onshore tandem GAAA repeat. Random (A) and non-random (B) X-inactivation
patterns generated for different CpG-containing 5™¢CpG-sensitive restriction endonuclease sites obtained using the 5M¢CpG-based PCR RP2/AR
biplex assay across the restriction sites. Electropherograms of alleles observed in either undigested genomic DNA or DNA digested with Hpall, Hhal or
BstUl from females genotyped via quantitative fluorescent PCR are shown. The boxed numbers correspond to the areas under the allele peaks and

the intensity of each peak is in relative fluorescence units (RFU).
doi:10.1371/journal.pone.0103714.g004

as AAAG. However, comparison of three public reference genomic
sequences showed that the alleles consist of multiple copies of the
GAAA repeat unit (Figure S1). Henceforth, we refer to this repeat
element as GAAA to indicate the physical location of the GAAA
repeat-containing allele in the GRCh37.p5/hgl9 primary reference
assembly of the human X-chromosome.

PLOS ONE | www.plosone.org

The GAAA repeat is positioned -582, -598 or -630-bp
(upstream) of known transcription start sites of RP2 (Figure S2).
The element maps on shore, 230-bp upstream of the RP2 CpG
island  (Genomic  coordinates NC_000023.10  Reference
GRCh37.p5 Primary Assembly X:46695995-46696984), a land-
mark that exhibits differential methylation [1], displaying

July 2014 | Volume 9 | Issue 7 | e103714
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increased methylation on Xi in 46, XX and reduced methylation
in 45, X females [32]. The RP2 onshore tandem GAAA repeat is
therefore positioned approximately 20 Mb upstream of the AR
disease-linked, exonic CAG repeat, which maps to Xql2.

The RP2 onshore tandem GAAA repeat does not overlap with
RP2 ¢cDNAs, known transcription factor binding sites (Figure S2),
cap analysis gene expression promoters (Figure S3) or microRNA
precursors (Figure S2) that are predicted or annotated in public
repositories (see Web Resources) [24,33].

Reverse transcription-PCR across the RP2 onshore
tandem GAAA repeat

We performed reverse transcription-PCR experiments on total
RNA from peripheral blood (normal women and men) and from the
FANTOM-DB [33] human acute monocytic leukemia THP-1
reference cell line and found no detectable GAAA repeat-specific
steady-state RNA (Figure 2). In silico PCR analyses using public
RNA-Seq expression databases revealed no significant transcription
activity across (or within) the RP2 onshore tandem GAAA repeat
locus in many different cell types and lines (Figure S4). However, the
evidence does support the prediction of long RNA-Seq junctions
based on ENCODE/CSHL, pooled from GM12878 whole-cell
polyA (hgl9 coordinates chrX:46545885-46727348). These long
RNA-Seq junctions encompass multiple genes.

Allelic distribution for the RP2 onshore tandem GAAA
repeat

The RP2 GAAA onshore repeat-containing locus encompasses
the reference wupstream gene deletion/insertion variations

rs6151299, 1rs373239539, rs201864594, rs201168201 and

PLOS ONE | www.plosone.org

rs71950018. No validation had been reported for these variants
(dbSNP build 138). We employed both the RP2 onshore tandem
GAAA repeat and the AR disease-linked, exonic CAG repeat in
developing a biplex 5™“CpG-based quantitative fluorescent PCR
surrogate assay of human X-chromosome activity. For the
determination of heterozygosity rates and allele frequencies, we
genotyped two population subsets of sixty healthy unrelated
women from Brazil and the Netherlands. For the RP2 onshore
tandem GAAA repeat, we observed up to twelve alleles with
virtually no stuttering (Figure 3) in either subset. In the Brazilian
subset, the heterozygosity rate for the RP2 onshore tandem
GAAA repeat was 0.85, matching that of the AR disease-linked
CAG repeat (Figure S5). For the Dutch subset, the rate was 0.73,
which was lower than that observed for the AR marker (0.87)
(Figure S6). When the two subsets were pooled, the combined
informativeness (e.g., at least one informative marker) of the RP2/
AR biplex assay was 0.97.

Methylation statuses of CpG sites near the human RP2
onshore tandem GAAA repeat

Each RP2 onshore tandem GAAA repeat-containing allele
comprises eight CpG sites, corresponding to five 5™°CpG-sensitive
restriction endonucleases (Ac¢il, BstUI, Faul, Hhal and Hpall) and
is therefore liable to multipoint 5™“CpG interrogation. We used
Hpall, BstUI and Hhal in XCI experiments, applying the
5M°CpG-based PCR assay targeting the polymorphic repeat.
The random (Figure 4A) and non-random (Figure 4B) patterns of
X-inactivation obtained using these restriction enzymes were
similar. We note, however, that the Xa/Xi lyonization ratios
obtained using the Hhal and BstUI enzymes were not always
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doi:10.1371/journal.pone.0103714.9g006

highly corresponding. This result may be related to the fact that in
this particular target sequence the Hhal site overlaps the CpG
within the BstUI site and that overlapping CpG sites may block or
impair cleavage if methylated (New England Biolabs usage
guidelines). Therefore, this is a case where the overlapping CpG
methylation cannot be predicted accurately.

RP2 and AR repeat-based methylation results are
concordant

To correlate random and non-random X-inactivation patterns
from the RP2 onshore GAAA and AR CAG repeats, we
genotyped a third subset of fifty unrelated women from Brazil
and Argentina (Figure S7) and analyzed the CpG methylation
statuses within the Hpall sites. These women had known AR
CAG repeat 5™CpG allele-specific profiles and, hence, known
XCI ratios. The patterns of X-inactivation obtained using the
RP2/AR repeat biplex assay were highly concordant (Spearman
r=0.9404; p<<0.0001) (Figure 5).

To address the question of whether the RP2 GAAA-containing
alleles are located on the same Xa/Xi chromosomes identified
based on the AR CAG-containing repeat, we determined the
parent-of-origin of Xa and Xi in a nuclear family in which the
normal daughter exhibited extremely skewed XCI in peripheral
blood leukocytes (Figure 6). The segregation analysis demonstrat-

PLOS ONE | www.plosone.org

ed that the AR CAG and the RP2 GAAA polymorphisms refer to
the same X-chromosome based on correctly identifying the
maternal origin (MX) of the preferential Xi in this nuclear family.

To demonstrate the power of the RP2 onshore tandem GAAA
repeat in discriminating Xa from Xi in heterozygote carriers of an
X-linked recessive defect that manifests through non-random
XCI, we genotyped four confirmed heterozygous women affected
by severe hemophilia A. Two of these individuals are convention-
al, non-symptomatic carriers who tested positive for F'§ intron 22
inversions via inverse shifting-PCR [34] and for random XCI
based on the AR disease-linked CAG repeat assay; the other two
are heterozygous carriers of missense and frameshift mutations in
factor VIII domains Al and B, respectively, and they present with
symptoms of hemophilia A through non-random XCI. Again, the
XCI patterns associated with the RP2 onshore tandem GAAA
repeat were highly concordant with those of the AR disease-linked
CAG repeat, as exemplified in Figure 7 for a heterozygous female,
hemophiliac due to highly skewed inactivation of the unaffected
X-chromosome.

The RP2 onshore tandem GAAA repeat locus is conserved

in nonhuman primates
Although the RP2 gene is conserved in mammals (data not
shown), the RP2 onshore tandem GAAA repeat locus is restricted
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to primates, as judged based on comparative in silico analyses
using genomic reference sequences from public databases (Figure
S8). This observation indicates that the insertion of the GAAA
repeat element was a very recent event. The number of
uninterrupted (perfect tandem array) GAAA repeat units varied
from 3 (squirrel monkey) to 16 (humans) (Table S2 and Figure S9).
We used the human RP2 GAAA onshore repeat amplimer
reference sequence, without masking the repeat region, to
computationally search public data for homologs in primates,
and we conducted evolutionary analyses with unmasked, masked
or exclusion of repeat regions to construct a phylogenic tree
(Figure 8). We found no evidence of a linear increase in the
number of uninterrupted GAAA repeat units proportional to the
time of divergence between nonhuman primates and humans.

The RP2 onshore tandem GAAA repeat is polymorphic in
marmosets

We hypothesized that the RP2 onshore tandem GAAA repeat
locus may be useful in XCI studies in nonhuman primate species
in which the AR CAG-repeat locus is not polymorphic [16]. We
therefore tested this possibility in the naturally occurring, pervasive
hematopoietic chimeric New World monkey marmoset (Calli-
trichidae) [35]. We observed only two alleles (318-bp and 327-bp)
in 22 different animals (Figure 9A). All the males were monoallelic
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(hemizygous). The heterozygosity rate in females was 0.35. The
RP2 GAAA repeat-containing amplimer, as validated via in silico
PCR, comprises five CpG sites, the methylation statuses of which
can be determined with the restriction enzymes Acil, BstUI and
Faul. Here, we analyzed the 5™“CpG-sensitive BstUI recognition
site (Figure 9B). For all heterozygote female marmosets tested, the
pattern of methylation at the CpG site linked to the GAAA repeat
of interest was random, with Xa/Xi ratios varying from 38 to
65%. Different tissues (blood, muscle, liver, brain and skin) from
the same animal also yielded random, yet varying, Xa/Xi ratios
(data not shown).

Discussion

Notwithstanding the remarkable advances in understanding
human genome structural variation and rapidly evolving technol-
ogies, the AR disease-linked CAG repeat-based HUMARA assay
has remained the mainstay of XCI diagnosis in the two decades
since it was reported [12]. Despite the elevated heterozygosity
observed worldwide, there are important drawbacks to genotyping
with exonic rather than neutral repeats. CAG repeat-associated
non-ATG translation (RAN translation) can occur across human
genes, and CAG repeat expansions in transcripts without an ATG
result in the accumulation of toxic homopolymeric proteins in all
three reading frames [36]. There is also evidence of bidirectional
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transcription of triplet repeat disease genes [37]. Moreover, PCR XCI patterns generated by pyrosequencing correlate excellently

genotyping involving trinucleotide repeats is prone to template (Pearson r?=0.96) with the XCI ratios reported using the
errors due to in vitro replication slippage by Taq polymerase [38], HUMARA assay [45]. Thus, we feel confident that the analysis
resulting in unwanted n-3 stutter products consisting of multiples using the methylation statuses surrounding the RP2 onshore
of the true template alleles [39] to varying magnitudes, in a repeat tandem GAAA repeat will be as accurate as those obtained using
sequence-dependent manner. Although several dinucleotide re- the AR CAG marker in discriminating Xa from Xi chromosomes
peat loci have been proposed as supplements or alternatives to the in other tissues and population subsets.
AR disease-linked CAG repeat assay [40-42], the greater Evolutionary analyses of the RP2 onshore tandem GAAA
magnitude of n-2 stutter products is an unfortunate shortcoming, repeat locus indicated that the tandem arrangement is well
which can considerably influence the results and confound the conserved in nonhuman primates. Although there is a trend of
analysis, as discrepancies in Xa/Xi ratios relating to the AR directional expansion of the repeat, we see no evidence for a linear
disease-linked CAG repeat assay have been reported [41,42]. continuous increase in the length of a perfect tandem array
In contrast with the AR disease-linked CAG repeat (=38 CAG proportional to the time since divergence from the last common
repeat units are linked to KD [13]), the novel RP2 onshore ancestor. This observation contrasts with findings related to the
tandem GAAA repeat is endowed with neutral features. This AR CAG exonic repeat, for which a linear increase in triplet
observation suggests that expansions of the RP2 onshore tandem repeat length proportional to the time since divergence has been
GAAA repeat will not produce toxic RNAs that might otherwise reported twice [16,46].
influence cell viability, disease penetrance and pathological Because of its proximity to known RP2+1 transcriptional start
severity [43]. sites and its polymorphic nature, the RP2 onshore tandem GAAA
Data from a recent methylome study showed that the amplimer repeat could be regarded as a core promoter STR and may be a
encompassing the human RP2 onshore GAAA repeat spans eight source of variation across species [47]. Whether the GAAA repeat
CpG sites that are differentially hypomethylated in a tissue- expansion plays a role in RP2 gene expression leading to inter-
dependent manner [44]. The same configuration occurs for the individual variation is currently unknown.
AR amplimer, but the levels of methylation are higher because the The RP2 onshore tandem GAAA repeat was less polymorphic
CpG sites are in the gene body. The observation that the Xa/Xi in marmosets than in humans, with only 2 alleles being observed in
ratios inferred by determining the methylation statuses of CpG 22 animals. The marmoset reference genomic sequence bears only
sites near the human RP2 GAAA onshore repeat are highly five uninterrupted GAAA repeat units, represented by the
concordant with the patterns of X-inactivation inferred from the observed major (e.g., the most frequent and oldest) 327-bp allele.

HUMARA assay assuages the concerns related to typing the novel This result suggests that in marmosets, the RP2-extragenic GAAA
extragenic RP2 onshore tandem GAAA repeat in XCI studies. locus may correspond to stable, fixed (GAAA)s~5 deletion/
We also showed that the extragenic RP2 onshore tandem GAAA msertion biallelic variation. Given that the highest possible

repeats and the neighboring CpG methylation statuses refer to heterozygosity rate for any biallelic system is 50%, the observed
exactly the same parental chromosomes identified based on the heterozygosity rate of 35% is highly significant. Alternatively, this
AR CAG repeat. Furthermore, it is known that the transcriptional result can be explained by reduced genetic diversity due to a
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limited number of founder animals in the studied primate colony,
as reported for the CAG AR repeat in nonhuman-primates [16]
and/or functional restriction of the ability of the repeat to expand
in these species. We are currently addressing the latter possibility.
Nevertheless, the observed polymorphism in marmosets enabled
us to develop a molecular genotyping assay to study XCI in a small
nonhuman primate experimental model in which the AR disease-
linked CAG repeat locus is known to be monomorphic [16].

Conclusions

The superior efficacy of the 5™CpG-based RP2/AR repeat
biplex assay in differentiating the parental origins of Xa and Xi
chromosomes in approximately 97% of human females constitutes
a notable advance in the field of XCI, and this assay excels at
determining the 5™°CpG statuses of alleles on the Xp (RP2) and
Xq (AR) chromosome arms in a single reaction. The RP2 onshore
tandem GAAA repeat will facilitate studies on the variable
phenotypic expression of dominant and recessive X-linked diseases
(e.g., Rett syndrome, hemophilia A and B, mental disability),
epigenetic changes in twins, the physiology of aging hematopoiesis,

PLOS ONE | www.plosone.org

1

the pathogenesis of age-related hematopoietic malignancies and
the clonality of cancers in human and nonhuman primates [48].
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