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Abstract

The rapid growth of the number of protein sequences that can be inferred from sequenced

genomes presents challenges for function assignment, as only a small fraction (currently <%) of

have been experimentally characterized. Bioinformatics tools are commonly used to predict

functions of uncharacterized proteins. Recently there has been significant progress in using protein

structures as an additional source of information to infer aspects of enzyme function, which is the

focus of this review. Successful application of these approaches has led to the identification of

novel metabolites, enzyme activities, and biochemical pathways. We discuss opportunities to

systematically elucidate protein domains of unknown function, orphan enzyme activities, dead-

end metabolites, and pathways in secondary metabolism.
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The challenge of protein function assignment

The rapid advances in genome sequencing technology have created enormous opportunities

and challenges in defining the functional significance of encoded proteins. While the

number of genome sequences continues to grow rapidly, experimentally verified functional

annotations lag well behind and grow at a much slower pace. As of May 2014, the

UniProtKB (TrEMBL and Swiss-Prot) database contained 56,010,222 sequences, but only

545,388 sequences (~%) are listed in Swiss-Prot, the manually annotated and reviewed

portion of UniProtKB [1, 2], where experimental information about function is reported.

High-throughput bioinformatics methods are clearly needed to bridge this gap, but many

significant challenges remain for reliably predicting the functions of proteins using the most
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common approaches, which are based primarily on transferring the relatively small number

of experimentally determined functions to large collections of proteins based on sequence

similarity. The rates of misannotation in the major repositories of protein sequence

information, such as GenBank and TrEMBL, are unknown but estimated to be large [3, 4].

One fundamental challenge is that there is no universal criterion sufficient to determine

when a pair of proteins are likely to have the same or different functions; even if two

proteins are highly homologous to one another and have similar structures, a change of only

a few residues in the active site can change the functional specificity [5]. A second

fundamental challenge is that annotation transfer, by definition, cannot identify new,

uncharacterized protein functions. These challenges have motivated the development of

diverse approaches to protein functional characterization and prediction. Such approaches

use additional types of information beyond protein sequence, such as high-throughput

metabolomics [6], RNA profiling [7-9], proteomics [10, 11], and phenotyping experiments

[12], and orthogonal types of bioinformatics information such as genome organization

(operons and gene clusters; domain fusions) and metabolic systems analysis [13].

In this review, we focus on the use of protein structure, in conjunction with other types of

information, to aid function assignment, including the determination of novel functions and

pathways. Structural information has been used to help elucidate many aspects of function

including protein-protein interactions (e.g., scaffolding) and regulation, but our focus here is

biochemical function; that is, the determination of enzymatic activities in vitro and in vivo.

Using structure to infer small molecule binding

From structure to function

Structural genomics (see Glossary) efforts have generated a large number of structures for

proteins with uncertain function. In the case of enzymes, these structures can be used to

make inferences about function, either qualitatively, through inspection by an expert, or in

more quantitative and automated ways. One class of methods generates functional

hypotheses based on physicochemical similarity of the putative active site to the active sites

of structurally and functionally characterized enzymes [14-18]. A second class of methods

exploits computational tools developed primarily for computer-aided drug design to predict

the substrates, products, or intermediates of an enzyme. Specifically, the strategy consists of

docking (see Glossary) an in silico metabolite library against an enzyme active site and

experimentally testing the top ranking metabolites to determine in vitro biochemical activity

(Figure 1). A number of excellent reviews are available describing the algorithms used in

docking programs and their limitations [19, 20], including their highly approximate

treatment of key forces driving binding such as electrostatics, solvation, and entropy losses.

Although such algorithms have been extensively benchmarked, and demonstrated their

practical utility for computer-aided drug design, significant effort was required to test

docking for enzyme-substrate recognition, resulting in various modifications to improve

performance in this application [21-34]. Many metabolites are more highly charged than

typical drug-like molecules; one successful approach for metabolite docking uses molecular

mechanics-based scoring functions that treat electrostatics and solvation in a more realistic

(and computationally expensive) [21, 35]. Shoichet and co-workers introduced the concept
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of docking "high energy intermediates" rather than substrates or products of enzymes, and

demonstrated that this approach improved the ability to predict the binding mode of

metabolites, and the ability to distinguish true substrates from false positives [30, 36].

Even with these methodological improvements, there are numerous caveats to this approach,

both fundamental and practical. A fundamental limitation is that docking methods can, at

best, predict binding interactions, which is necessary but not sufficient for a ligand to be the

substrate of an enzyme. In practice, experimental testing of top hits from metabolite docking

frequently reveals many false positives, including weak substrates with very poor kcat (but

reasonable KM), that is, metabolites that bind to the enzyme but are not efficiently turned

over [27].

An important practical limitation of metabolite docking is that existing databases of

metabolites are incomplete. A second practical limitation is that the structures used for

docking must have ordered active sites, including any metal ions. However, it is possible to

predict relatively small conformational changes associated with ligand binding, especially in

side chains [37].

Another limitation for molecular mechanics-based scoring functions is that the electronic

structures of transition states cannot be accurately described. In principle, combining

quantum mechanics and molecular mechanics methods (QM/MM) can provide more

accurate analysis of the mechanisms and specificities of enzymes. A proof-of-concept study

has shown that such an approach may become practical for studying certain challenging

aspects of enzyme specificity, compared to the more common use of quantum mechanical

methods to investigate reaction mechanisms [38]. In the future, this type of approach may be

particularly important when studying enzymes with intermediates that are radicals (e.g. P450

enzymes and radical SAM enzymes). However, such calculations are currently prohibitively

expensive to be used in large scale.

Despite these limitations, metabolite docking has proven to be useful in practice for

generating testable hypotheses about function, which have proven to be correct in many

cases. Herman et al. [30, 36] and Fan et al. [28, 29, 39] docked the high-energy

intermediates of metabolites and successfully predicted deaminase activity in several

functionally uncharacterized enzymes of the amidohydrolase superfamily. Favia et al. [22]

examined the ability of docking to identify cognate substrates of enzymes belonging to the

short chain dehydrogenases/reductases superfamily. In several of these studies, subsequently

determined co-crystal structures with metabolites confirmed the binding mode predicted by

docking [23, 24, 27, 32, 33].

From sequence to function using homology models

Structural information can also be leveraged to help infer enzymatic function for proteins

lacking structures. Although homology modeling (see Glossary) remains imperfect [40],

models have been successfully used to infer aspects of function in a great many cases,

including models of proteins based on the structures of proteins with which they have

relatively low sequence identity (30% or lower); examples involving metabolite docking are

discussed below [27, 28, 33]. The leverage of a single structure can be large; on average,
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each new structure determined by structural genomics efforts could be used to create models

for hundreds or thousands of homologous sequences [41]. Pre-computed homology models

can be obtained from databases such as SwissModel [42] and ModBase [43], which contain

models for millions of protein sequences.

One of the simplest approaches to infer aspects of enzyme function, when no structure is

available, is to identify putative active site residues in protein sequences by sequence

alignment to proteins with solved structures. Changes in critical active site residues can

suggest changes in the enzymatic reaction (e.g., changes in catalytic amino acids) or

specificity. Constructing homology models can provide additional information about the

predicted three-dimensional arrangement of active site residues. Catalytic and other critical

active site residues are frequently very well conserved across homologs, facilitating accurate

sequence alignment, and hence the accuracy of the models, for regions surrounding the

active site; nonetheless, allowing some degree of receptor flexibility in the docking protocol

can be helpful to address small errors in, for example, side chain positioning [24, 33, 37].

Homology models have been used to accurately predict the substrate specificity of enzymes

in the enolase (Figures 2b and 2c) and isoprenoid synthase (Figure 2d) superfamilies [24, 25,

27, 33]. In each case, a structure of the enzyme was subsequently determined that confirmed

the predicted binding mode, and in vitro enzymology confirmed that the ligands were

proficient substrates. The examples in Figures 2c and 2d are taken from studies in which

predictions were made for dozens of enzymes [27, 33], using homology models constructed

based on template structures with sequence identities as low as 25%. That is, it is

straightforward to automate the process of creating multiple homology models, all based on

a particular template structure, for a series of homologous proteins in a multiple-sequence

alignment and then dock against all of them [28].

Finally, certain X-ray crystal structures can be used to help identify small molecule ligands

in a complementary fashion. Almo and co-workers have estimated that 3-5% of all

structures determined by the NYSGXRC structural genomics center contain organic ligands

from the expression host that survived purification [44]. Unassigned electron density, at

sufficient resolution, can be sufficient in some cases to infer the nature of the substrate,

although determining the mass of the metabolite by mass spectroscopy provides a very

useful constraint. This type of detective work led Almo and co-workers to discover a novel

metabolite, carboxy-S-adenosyl-L-methionine, and a pathway that uses it to modify RNA

[44]. In cases where the identity of the ligand remains ambiguous, metabolite docking may

provide a useful way of identifying ligands that match the electron density and are predicted

to have favorable binding interactions [45, 46].

Although the number of protein structures is much smaller than the number of protein

sequences inferred from genome sequencing, and will undoubtedly remain so, a variety of

complementary approaches have emerged to utilize these structures to make inferences

concerning enzymatic function. At the present time, experimental testing remains essential,

but the computational approaches can help guide the design of experiments, and focus

attention on enzymes likely to have novel or unexpected activities. In favorable cases,

homology modeling can be used to extend the use of structure-based methods to large
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numbers of proteins lacking experimental structures. A major challenge is automating the

metabolite docking methods, which remain technically complex; the Metabolite Docker web

resource (http://metabolite.docking.org/) [47, 48], and its application to metabolite docking,

represents important progress in this direction.

Structural information in the context of pathways

As we have shown, a single structure (or model) of an enzyme can be used to make testable

predictions concerning its potential substrate(s). However, in vitro activity does not, by

itself, necessarily imply in vivo biochemical function. When enzymes can be placed into

pathways or networks, additional information is available for predicting both in vitro and in

vivo biochemical function.

In prokaryotes and certain eukaryotes, enzymes involved in pathways are frequently located

in close proximity on the genome. In some cases, functionally related proteins also appear in

certain organisms as gene fusions. A family of genome context analysis techniques takes

advantage of these observations to infer functional relationships among genes, even when

they do not share sequence similarity. These techniques have been exploited by databases

such as Metacyc [49], MicrobesOnline [50], STRING [51], SEED [52] and IMG [53].

Although genome proximity is not a useful source of information for most eukaryotes, other

types of experiments, such as interactome mapping by mass spectroscopy or other methods

[54, 55], can be used in an analogous manner; that is, to develop hypotheses concerning

proteins that have related functions.

Structural genomics efforts have added a structural perspective to biochemical pathways in

certain organisms. The Joint Center for Structural Genomics has determined the structures of

over 100 enzymes in the central metabolism of Thermotoga martima, and created homology

models for hundreds of others [56]. In less well-studied organisms it would be rare to find

entire pathways for which each enzyme has been structurally characterized, but as in the

case of T. maritima it is frequently possible to create models for multiple enzymes in a

putative pathway. In this context, metabolite docking can be expanded to pathway docking;

that is, metabolite docking against multiple structures or models of proteins hypothesized to

participate in a metabolic pathway or network [26, 32]. In addition to potentially increasing

the in vivo relevance of the results, docking metabolites to multiple binding sites in the same

pathway can also increase the reliability of in silico predictions of substrate specificity

because the pathway intermediates are chemically similar even if the proteins involved are

structurally unrelated. Put simply, the product of one enzyme is the substrate for another

enzyme, and comparing the metabolite docking results can help to refine hypotheses

concerning the individual protein functions as well as the overall pathway.

Pathway docking was first introduced by Kalyanaraman et al. to retrospectively ‘predict’ the

intermediates in the glycolysis pathway in Escherichia coli [26]. In this proof-of-concept

study, a large and diverse in silico metabolite library derived from Kyoto Encyclopedia of

Genes and Genomes (KEGG) was docked against structures and homology models of ten

enzymes in the glycolysis pathway. The ranks of the 'correct' substrates were all within the
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top 1% of the hit list, and in six out of ten cases, cognate substrates were ranked within the

top 0.3%, i.e., among the top ~50 ligands.

Zhao et al. performed a prospective application of the pathway docking method, which led

to the discovery of new enzymes in the hydroxyproline betaine/proline betaine metabolism

pathways (Figure 3) [31, 32]. The initial focus was an uncharacterized member of the

enolase superfamily, HpbD, the apo structure of which was determined in a structural

genomics effort. The genome contexts are similar for HpbD and its putative orthologs in ~20

organisms, suggesting a conserved pathway, and homology models could be created for

many of these (Figure 3) Metabolite docking against the structure and several homology

models suggested that the pathway involved catabolism of amino acid derivatives, especially

N-modified proline derivatives. A model of a periplasmic binding protein encoded by a gene

located close to HpbD was particularly informative and suggested that the binding site

contained a cation-π cage composed of 3 Trp side chains (Figure 3); docking results strongly

suggested that the cation would be a quaternary amine, specifically a betaine (N-

trimethylated amino acid). The combined results led to the prediction of catabolic pathways

for proline betaine and trans-4R-hydroxyproline betaine (both are important osmolytes in

marine organisms), with HpbD performing inversion of stereochemistry at the Cα position

[31, 32]. Subsequent in vitro enzyme assays and in vivo metabolomics experiments

confirmed these predictions and elucidated aspects of the regulation of these pathways.

Challenges and opportunities

No single computational or experimental approach alone is likely to "solve" the problem of

predicting or determining the functions of the millions of currently uncharacterized

enzymes, especially for the most challenging goal of identifying novel enzymatic activities

and biochemical pathways. However, the combination of sequence-based (bioinformatics)

and structure-based computational methods—together with high-throughput protein

expression, enzyme assays, crystallography, metabolomics, phenotyping, and potentially

many other approaches—can provide powerful approaches to generate and evaluate

hypotheses. A major challenge and opportunity is the development of methods to optimally

combine these disparate types of computational and experimental data to make functional

inferences. Even in the context of pathway docking, functional inferences have thus far been

made with the aid of human knowledge and intuition, but certain aspects of the data

integration can certainly be automated and systematized. The scope of the potential

applications of these integrated approaches is vast, and we highlight a few opportunities

here.

Biosynthetic pathways for natural products

Natural products such as polyketides, non-ribosomal peptides, isoprenoids, alkaloids and

ribosomally synthesized and posttranslationally modified peptides are structurally diverse

secondary metabolites (see Glossary), many of which have biological activity and are used

in modern medicine (erythromycin, vancomycin, taxol, morphine, duramycin, etc.). The

biochemical pathways that create these natural products represent a challenge for function

prediction because the chemical space is enormous; that is, the number of possible

intermediates and end products of pathways in secondary metabolism is virtually limitless.
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Moreover, the experimental characterization of the structures of these secondary metabolites

is often challenging due to frequently complex ring structures and stereochemistry. For these

reasons, the elucidation of the biosynthetic pathways of these high value secondary

metabolites remains challenging, even when the genome of the producing organism has been

sequenced; for instance, only a small fraction of the tens of thousands of known alkaloids

have their biosynthetic pathways fully elucidated [57, 58].

One area of rapid progress has been the prediction of templated biosynthetic pathways for

polyketides and non-ribosomal peptides, due to the modular nature of the biosynthetic

enzymes and their frequent occurrence in large gene clusters or operons. Sequence-

structure-function relationships have been well characterized for certain classes of enzymes

in these pathways, such as polyketide synthases and non-ribosomal peptide synthetases

[59-61]. This knowledge has been harnessed in efforts to achieve combinatorial biosynthesis

of novel polyketides and non-ribosomal peptides [62-64]. However, elucidating the

biosynthetic pathway of non-templated natural products such as isoprenoids and alkaloids

remains non-trivial.

Isoprenoid biosynthesis pathways present both opportunities and challenges with respect to

function prediction [65, 66]. In the biosynthesis of isoprenoids, isoprene units (C5) are

assembled by polyprenyl transferases to give long chain terpenes such as geranyl

pyrophosphate (C10), farnesyl pyrophosphate (C15), geranylgeranyl pyrophosphate (C20),

and squalene (C30), which can then be converted into diverse carbon skeletons by terpenoid

synthases (also called terpene cyclases), which are sometimes further modified by other

enzymes such as S-adenosyl methionine (SAM) dependent methyl transferases. A

paradigmatic isoprenoid pathway, the biosynthesis of cholesterol, is illustrated in Figure 4;

the crystal structures of key enzymes in the pathway have been solved, including farnesyl

pyrophosphate synthase (gold; PDB: 1RQI), squalene synthase (light blue; PDB: 3WEG)

and oxidosqualene-lanosterol cyclase (magenta; PDB 1W6K).

It is relatively straightforward to leverage structural information in order to predict the

product specificities of the polyprenyl synthases. Product chain length has been shown to be

determined primarily by the size of the cavity, and Wallrapp et al. [33] have shown that it is

possible to predict chain length specificity for sequences lacking structures through a

combination of homology modeling and docking. By contrast, predicting the product

specificity of isoprenoid synthases is extremely challenging, because the number of possible

products is enormous, and the enzymes must bind and stabilize several carbocations and

transition states leading to a given product [67]. Despite these challenges, the potential

impact of elucidating the sequence-structure-function relationships of isoprenoid synthases

is very high, given the importance of these enzymes in the biosynthesis of complex,

bioactive natural products and drugs.

Domains of unknown function

A high-value subset of functionally uncharacterized proteins is “Domains of Unknown

Function” (DUFs). As the name suggests, no function is known for any member of a DUF

protein family; thus, annotating even a single member of a DUF can have a large impact, by

defining (in the case of enzymes) aspects of the biochemical capabilities. In Pfam 27.0, 26%
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(3885 out of 14831) Pfam families are DUFs, with "unknown function" or “uncharacterized

protein” in their descriptions [68]. Structures are available in the PDB for proteins in 379

DUF families (as of 2013) [69].

The potential impact of the systematic, structure-guided study of DUFs is suggested by the

recent work of Bastard et al. [70], who determined that the DUF849 Pfam family contains β-

keto acid cleavage enzymes of diverse substrate specificity. In this work, 14 novel in vitro

enzymatic activities of the DUF849 Pfam family have been revealed through an integrated

strategy, combining bioinformatics analysis to cluster the protein sequences and structural

analysis using both crystal structures and homology models. The structural analysis was

primarily qualitative (e.g. whether the substrate is neutral, positively or negatively charged)

but also supported by metabolite docking. High-throughput enzymatic screening confirmed

many of the predictions and resulted in discovery of in vitro activities for 80 enzymes,

including several novel functions; remarkably rapid progress for a protein family that was,

until recently, entirely uncharacterized.

Missing links in metabolism orphan enzyme activities and dead-end metabolites

In addition to the many functionally uncharacterized enzymes, there are also many enzyme

activities that have been identified but are not associated with any protein sequence. In fact,

despite considerable efforts in the past few years [72-78], 20% (1042 out of 5294 [79], as of

Feb 2014) of enzyme commission (EC) numbers are not associated with sequence data in

any of the three major enzyme databases (Metacyc [49], Expasy [80] and Brenda [81]) and

thus are described as orphan ECs. Other terms such as “orphan metabolic activities” and

“orphan enzymes” have also been used to describe the phenomenon. The original

publication dates for orphan ECs ranges from the 1950s to today, with a mean of 1977 [74,

75]. Many orphan ECs play biologically important roles, and could be an unexplored

reservoir of new drug targets [74, 82].

Our incomplete understanding of metabolism is also reflected by "dead-end" metabolites.

Metabolites in biochemical networks are generally linked to at least 2 enzymes; that is, each

metabolite is both the product of one biochemical reaction and the substrate of another.

Dead-end metabolites are those that currently can only be linked to 1 enzyme in an

organism, and these can be readily identified by methods of automated metabolic network

reconstruction [83]. For example, Mackie et al. recently identified, 127 potential dead-end

metabolites in E. coli K-12 [84].

The number of orphan enzyme activities and dead-end metabolites will naturally decrease as

new enzyme functions are discovered. However, the ability to identify holes in our

understanding of metabolism in specific species suggests new structure-based approaches.

Instead of the current approach where a candidate enzyme is studied for functional clues,

one could dock substrates (or intermediates) corresponding to orphan enzyme reactions and

dead-end metabolites to structures or models of many uncharacterized enzymes within the

relevant organism(s).

Although enzyme function can be predicted from protein sequence or, as emphasized in this

review, protein structure, the combination of these approaches with high-throughput
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experimental methods of studying metabolism and methods to computationally interrogate

the metabolic networks of entire organisms is likely to be even more powerful. Integrated

experimental and computational methods have great promise to systematically fill holes in

our understanding of both primary and secondary metabolism.

Concluding remarks

In the sequence-structure-function paradigm, inferring function from structure has proven

challenging, and many approaches to function prediction have not utilized structural

information at all. In the case of enzymes, there has recently been rapid progress in

experimental and computational approaches to inferring aspects of enzymatic activity from

structure. Numerous challenges remain (Box 1), including the limitations of existing

algorithms for metabolite docking and homology modeling, incomplete in silico databases

of metabolites, and incomplete structural coverage of putative enzyme families, despite the

advances made by high-throughput protein expression and structural biology (structural

genomics). Nonetheless, structure-guided approaches have shown promise, particularly for

the most challenging goal of identifying novel metabolites, enzyme activities, and

biochemical pathways. As in drug discovery, where structural information is now routinely

used to guide design, we believe that enzyme structures will prove to be an essential

component of strategies for enzyme function prediction, not in isolation, but rather

integrated with many other experimental and computational methods.

Box 1

Box captions

Outstanding questions

• When the binding site of an enzyme is unknown, and cannot be inferred from

homologous proteins, can we predict the site using sequence- and/or structure-

based methods? Can enzymes be readily identified from sequence or structure,

compared to proteins that lack catalytic function?

• How complete are existing in silico databases of metabolites, for specific

organisms (e.g., E. coli, humans) and for life on Earth in general? Are there

entirely new classes of secondary metabolites that have not yet been discovered?

• How can we define the functions of an enzyme when it catalyzes multiple

reactions? What is the best way to predict functions of such enzymes?

• How can information from high-throughput metabolomics, protein interaction,

and phenotyping experiments be optimally combined with sequence and

structural information to infer enzyme activities and pathways or networks?

• Among the ~50 million protein sequences identified from genome sequences

thus far, how many enzyme activities exist? What fraction of enzymes have

multiple activities in vitro and in vivo?
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Glossary Box

Homology
modeling

A computational technique that builds an atomic model of a target protein

using its sequence and an experimental three-dimensional structure of a

homologous protein (called the “template”). The quality of a homology

model depends on the accuracy of the sequence alignment between target

and template, which varies (loosely) with the sequence identity (roughly

speaking, pairwise identity higher than 40% is ideal, and lower than 25%

is poor).

Ligand
docking

A computational technique that predicts and ranks the binding poses of

small molecule ligands to receptors (e.g. proteins). Docking usually

consists of a sampling method that generates possible binding poses of a

ligand in a binding site, and a scoring function that ranks these poses.

Most scoring functions are empirical, and give only a crude estimate of

the binding free energy of a ligand.

Secondary
metabolism

Biochemical pathways to produce organic molecules (i.e. secondary

metabolites) that are not absolutely required for the survival of the

organism. There are five particularly prevalent classes of secondary

metabolites: isoprenoids, alkaloids, polyketides, non-ribosomal peptides

and ribosomally synthesized and post-translationally modified peptides.

Secondary metabolites are often restricted to a narrow set of species and

have important ecological roles for the organisms that produce them.

Many secondary metabolites are bioactive (antibacterial, anticancer,

antifungal, antiviral, antioxidant, anti-inflammatory, anti-parasitic, anti-

malaria, cytotoxic etc.) and have been used as drugs and drug leads.

Structural
genomics

An effort to determine the three-dimensional, atomic-level structure of

every protein encoded by a genome through a combination of high-

throughput experimental and modeling approaches. The determination of

a protein structure though a structural genomics effort often precedes

knowledge of its function, motivating the development of methods to

infer function from structure.
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Highlights

• Of the >50 million protein sequences, <1% have experimentally determined

functions.

• Protein structures can provide clues to function such as the substrates of

enzymes.

• Homology modeling and ligand docking algorithms can help infer function from

structure.

• Recent successes include discovery of novel metabolites, enzymes, and

pathways.
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Figure 1.
Structure based virtual metabolite docking protocol for enzyme activity prediction. When no

structure has been experimentally determined for a protein sequence, a model can be built

using a variety of comparative modeling methods, but only when the structure of a

homologous protein is available that has ~30% of greater sequence identity to the protein of

interest. Whether using a structure of a model, it is critical that active site metal ions and

cofactors are present, and that catalytic residues are positioned appropriate for catalysis.

Virtual metabolites libraries can be constructed and "docked" against the putative active

sites of structures or models using computational tools more commonly employed in

structure-based drug design (e.g., Glide, DOCK). The docking scoring functions can be used

to rank the ligands according to their estimated relative binding affinities. Top scoring

metabolites are typically inspected for plausibility (Is the predicted binding mode

compatible with catalysis? Is the metabolite likely to be present in the relevant organism?),

and then selected for experimental testing (in vitro enzymology). Protocols similar to that

shown here have been used in retrospective and prospective studies [22-25, 27-33, 36, 39].

Jacobson et al. Page 16

Trends Biochem Sci. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Predicted binding poses are in good agreement with subsequently determined experimental

structures. Predicted ligand binding mode (cyan) superimposed with the X-ray crystal

structure (gold) of: (a) S-adenosylhomocysteine deaminase (PDB: 2PLM); (b) N-succinyl-L-

Arg racemase (PDB: 2P8C); (c) D-Ala-D-Ala epimerase (PDB: 3Q4D), and (d) a polyprenyl

synthase (PDB: 4FP4). In (b), (c), and (d), the docking predictions were made using

homology models based on crystal structures with 35%, 39%, and 29% sequence identity,

respectively.
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Figure 3.
Structure-guided discovery of new enzymes in a novel hydroxyproline betaine metabolism

pathway. Panel (a) shows the name, TrEMBL annotation, and most similar homolog in the

PDB for each protein in the pathway. The automated TrEMBL annotations are incorrect or

imprecise for all proteins in the pathway. However, there is rich structural information that

can be used for modeling and docking, as shown in the closest PDB homolog column. The

pathway is shown in (b). Panels c-e show the binding site and/or active site of the three

proteins (HpbD, HpbJ and HpbR, shown in bold in (a)) in the pathway, respectively, along

with the docking-predicted binding mode for the ligand trans-4-hydroxy-L-proline betaine

(ball-and-stick, green color). Both HpbJ and HpbR have a predicted cation-π cage, known

for binding quaternary amines. In HpbD, two catalytic residues (Lys163 and Lys265)

replace aromatic residues, leaving Trp320 as the key aromatic residue forming a cation-π

interaction with the substrate.
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Figure 4.
The biosynthesis of cholesterol: a paradigmatic isoprenoid pathway. Crystal structures of

key enzymes in the pathway have been solved, including farnesyl pyrophosphate synthase

(gold; PDB: 1RQI), squalene synthase (light blue; PDB: 3WEG), and oxidosqualene-

lanosterol cyclase (magenta; PDB 1W6K). These crystal structures provide opportunities to

predict functions of related enzymes of the isoprenoid synthase superfamily. However,

function prediction for the terpenoid synthases (also called terpene cyclases) is extremely

challenging due to the huge product chemical space created by carbocation rearrangements.

Jacobson et al. Page 19

Trends Biochem Sci. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


