
A RATE FUNCTION APPROACH TO COMPUTERIZED ADAPTIVE 
TESTING FOR COGNITIVE DIAGNOSIS

Jingchen Liu, Zhiliang Ying, and Stephanie Zhang
COLUMBIA UNIVERSITY

Abstract

Computerized adaptive testing (CAT) is a sequential experiment design scheme that tailors the 

selection of experiments to each subject. Such a scheme measures subjects’ attributes (unknown 

parameters) more accurately than the regular prefixed design. In this paper, we consider CAT for 

diagnostic classification models, for which attribute estimation corresponds to a classification 

problem. After a review of existing methods, we propose an alternative criterion based on the 

asymptotic decay rate of the misclassification probabilities. The new criterion is then developed 

into new CAT algorithms, which are shown to achieve the asymptotically optimal 

misclassification rate. Simulation studies are conducted to compare the new approach with 

existing methods, demonstrating its effectiveness, even for moderate length tests.
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1. Introduction

Cognitive diagnosis has recently gained prominence in educational assessment, psychiatric 

evaluation, and many other disciplines. Various modeling approaches have been discussed 

in the literature both intensively and extensively (e.g., Tatsuoka, 1983). A short list of such 

developments includes the rule space method (Tatsuoka, 1985, 2009), the reparameterized 

unified/fusion model (RUM) (DiBello, Stout, & Roussos, 1995; Hartz, 2002; Templin, He, 

Roussos, & Stout, 2003), the conjunctive (noncompensatory) DINA and NIDA models 

(Junker & Sijtsma, 2001; de la Torre & Douglas, 2004), the compensatory DINO and NIDO 

models (Templin & Henson, 2006), the attribute hierarchy method (Leighton, Gierl, & 

Hunka, 2004). Tatsuoka (2002) discussed a model usually referred to as the conjunctive 

DINA model that has both conjunctive and disjunctive components in its attribute 

specifications to allow for multiple strategies and a discussion of identifiability is also 

provided. See also Rupp, Templin, and Henson (2010) for more approaches to cognitive 

diagnosis.
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Another important development in educational measurement is computerized adaptive 

testing (CAT), that is, a testing mode in which item selection is sequential and 

individualized to each subject. In particular, subsequent items are selected based on the 

subject’s (e.g., examinee’s) responses to prior items. CAT was originally proposed by Lord 

(1971) for item response theory (IRT) models as a method through which items are tailored 

to each examinee to “best fit” his or her ability level θ. More capable examinees avoid 

receiving problems that are too simple and less capable examinees avoid receiving problems 

that are too difficult. Such individualized testing schemes perform better than traditional 

exams with a prefixed set of items because the optimal selection of testing problems is 

examinee dependent. It also leads to greater efficiency and precision than that which can be 

found in traditional tests. For the traditional CAT under IRT settings, items are typically 

chosen to maximize the Fisher information (MFI) (Lord, 1980; Thissen & Mislevy, 2000) or 

to minimize the expected posterior variance (MEPV) (van der Linden, 1998; Owen, 1975).

It is natural to consider incorporating CAT design into cognitive diagnosis. The sequential 

nature of CAT could conceivably bring major benefits to cognitive diagnosis. First, 

diagnostic classification models are multidimensional with simultaneous consideration of 

different attributes. To fully delineate each dimension with sufficient accuracy would 

certainly demand a large number of items to cover all attributes. Thus, the ability to reduce 

test length in CAT can be attractive. Second, it is often desirable to provide feedback 

learning or remedial training after diagnosis; see Junker (2007). The CAT design can serve 

as a natural framework under which a feedback online learning system may be incorporated.

A major difference between classical IRT models and diagnostic classification models 

(DCM) is that the parameter space of the latter is usually discrete, for the purpose of 

diagnosis. Thus, standard CAT methods developed for IRT (such as the MFI or MEPV 

method) do not apply. Several alternative methods have already been developed in the 

literature. The parameter spaces of most DCMs admit a partially ordered structure (von 

Davier, 2005). Under such a setting, Tatsuoka and Ferguson (2003) developed a general 

theorem on the asymptotically optimal sequential selection of items for finite partially 

ordered parameter spaces. In particular, the asymptotically optimal design maximizes the 

convergence rate of the parameters’ posterior distribution to the true parameter. Xu, Chang, 

and Douglas (2003) investigated two methods based on different ideas. One method is based 

on the Shannon entropy of the posterior distribution. The other method is based on the 

Kullback–Leibler (KL) information that describes the global information of a set of items 

for parameter estimation. The concept of global information was introduced by Chang and 

Ying (1996). Cheng (2009) further extended the KL information method by taking into 

account the posterior distribution and the distances between the alternative parameters and 

the current estimate when computing the global information. Arising from such extensions 

are two new methods known as the posterior-weighted KL algorithm (PWKL) and the 

hybrid KL algorithm (HWKL). See Tatsuoka (2002) for a real-data application of CAT.

A key component in the study of CAT lies in evaluating the efficiency of a set of items, i.e., 

what makes a good selection of exam problems for a particular examinee. Efficiency is 

typically expressed in terms of the accuracy of the resulting estimator. In classic IRT, items 

are selected to carry maximal information about the underlying parameter θ. This is reflected 

Liu et al. Page 2

Psychometrika. Author manuscript; available in PMC 2015 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by the MFI and the MEPV methods (Lord, 1980; Thissen & Mislevy, 2000; van der Linden, 

1998; Owen, 1975). On the other hand, for diagnostic classification models, parameter 

spaces are usually discrete, and the task of parameter estimation is equivalent to a 

classification problem. In this paper, we address the problem of CAT for cognitive diagnosis 

(CD-CAT) by focusing on the misclassification probability. The misclassification 

probability, though conceptually a natural criterion, is typically not in a closed form. Thus, it 

is not a feasible criterion. Nonetheless, under very mild conditions, we show that this 

probability decays exponentially fast as the number of items (m) increases, that is, P(α̂ ≠ α0) 

≈ e−m×I, where α̂ is an estimator of the true parameter α0. We use the exponential decay 

rate, denoted by I, as a criterion. That is, a set of items is said to be asymptotically optimal if 

it maximizes the rate I (instead of directly minimizing the misclassification probability). The 

rate I is usually easy to compute and often in a closed form. Therefore, the proposed method 

is computationally efficient. In Section 3.3, we derive the specific form of the rate function 

for the Bernoulli response distribution that is popular in cognitive diagnosis. Based on the 

rate function I, we propose CD-CAT procedures that correspond to this idea. Simulation 

studies are conducted to compare our procedure with several existing methods for CD-CAT.

This paper is organized as follows. Section 2 provides a general introduction to the problem 

of CD-CAT, including an overview of existing methods. In Section 3, we introduce the idea 

of asymptotically optimal design and the corresponding CD-CAT procedures. We examine 

the connection of our new approach to previously developed methods in Section 4. Further 

discussion is provided in Section 5. Finally, Section 6 contains simulation studies.

2. Computerized Adaptive Testing for Cognitive Diagnosis

2.1. Problem Setting

Let the random variable X be the outcome of an experiment e. The distribution of X depends 

on the experiment e and an underlying parameter α. We use α0 ∈  to denote the true 

parameter and e1, …, em ∈  to denote different experiments. In the context of cognitive 

diagnosis, α corresponds to the “attribute profile” or “knowledge state” of a subject, e is an 

item or an exam problem, and X is the subject’s response to the item e. Suppose that 

independent outcomes X1, …, Xm of experiments e1, …, em are collected. For each e ∈  and 

α ∈ , let f(x|e, α) be the probability density (mass) function of X. Throughout this paper, 

we suppose that the parameter space α takes finitely many values in  = {1, …, J} and that 

there are κ types of experiments  = {1, …, κ}.

Let superscripts indicate independent outcomes, e.g., Xi is the outcome of the ith experiment 

ei ∈ . The experiments are possibly repeated, i.e., ei = ej (i.e., i.i.d. outcomes can be 

collected from the same experiment). Suppose that the prior distribution of the parameter α 

is π(α). Given the observed responses X1, …, Xm, the posterior distribution of α is

(1)

To simplify the notation, we let Xm = (X1, …, Xm) and em = (e1, …, em), e.g.,
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(2)

Thus, a natural estimator of α is the posterior mode

(3)

For any two distributions P and Q, with densities p and q, the Kullback–Leibler (KL) 

divergence/information is

(4)

For two parameter values α0 and α1, let De(α0, α1) = Ee,α0{log[f(X|e, α0)/f(X|e, α1)]} be the 

KL divergence between the outcome distributions of experiment e, where the notation Ee,α0 
indicates that X follows distribution f(x|e, α0). We say that an experiment e separates 

parameter values α0 and α1 if De(α0, α1) > 0. Note that De(α0, α1) = 0 if the two 

distributions f(x|e, α0) and f(x|e, α1) are identical and statistically indistinguishable. 

Otherwise, if De(α0, α1) > 0 and independently and identically distributed (i.i.d.) outcomes 

can be generated from the experiment e, the parameters α0 and α1 are eventually 

distinguishable. An experiment with a large value of De(α0, α1) is powerful in 

differentiating α0 and α1. To simplify the discussion, we assume that for each pair of distinct 

parameters α0 ≠ α1 there exists an experiment e ∈  that separates α0 and α1; otherwise, we 

simply merge the inseparable parameters and reduce the parameter space. This is discussed 

in Appendix B; see also Chiu, Douglas, and Li (2009), Tatsuoka (1991), Tatsuoka (1996) for 

discussions of parameter identifiability for specific models. To illustrate these ideas, we 

provide two stylized examples that are frequently considered.

Example 1 (Partially ordered sets, Tatsuoka and Ferguson (2003)): Consider that the 

parameter space  is a partially ordered set with a binary relation “≤”. The set of experiment 

is identical to the parameter space, i.e.  = . The outcome distribution of experiment e and 

parameter α is given by f(x|e, α) = f(x) if e ≤ α0, and f(x|e, α) = g(x) otherwise.

The following example can be viewed as an extension of Example 1 where the distributions 

f and g are experiment-dependent.

Example 2 (DINA model, Junker and Sijtsma (2001)): Consider a parameter space α = 

(a1, …, ak) ∈  = {0, 1}k and e = (ε1, …, εk) ∈ {0, 1}k. In the context of educational testing, 

each ai indicates if a subject possesses a certain skill. Each experiment corresponds to one 

exam problem and εi indicates if this problem requires skill i. A subject is capable of solving 

an exam problem if and only if he or she possesses all the required skills, i.e., e ≤ α, defined 

as εi ≤ ai for all i = 1, …, k. The outcome in this context is typically binary: X = 1 for the 

correct solution to the exam problem and X = 0 for the incorrect solution. We let ξ = 1(e ≤ α) 

be the ideal response. The outcome follows a Bernoulli distribution
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The parameter se is known as the slipping parameter and ge is the guessing parameter. Both 

the slipping and the guessing parameters are experiment specific. The general form of DINA 

model allows heterogeneous slipping and guessing parameters for different exam problems 

with identical skill requirements. Thus, in addition to the attribute requirements, the model 

also specifies the slipping and the guessing parameters for each exam problem.

In practice, there may not be completely identical items. For instance, one may design two 

exam problems requiring precisely the same skills. However, it is difficult to ensure the 

same slipping and the guessing parameters. Thus, we can only expect independent (but not 

identically distributed) outcomes. In the previous discussion, we assume that i.i.d. outcomes 

can be collected from the same experiment. This assumption is imposed simply to reduce the 

complexity of the theoretical development, and is not really required by the proposed CAT 

procedures (Algorithm 1). More discussion on this issue is provided in Remark 2.

2.2. Existing Methods for the CD-CAT

2.2.1. Asymptotically Optimal Design by Tatsuoka and Ferguson (2003)—
Tatsuoka and Ferguson (2003) proposes a general theorem on the asymptotically optimal 

selection of experiments when the parameter space is a finite and partially ordered set. It is 

observed that the posterior probability of the true parameter α0 converges to one 

exponentially fast, that is, 1 − π(α0|Xm, em) ≈ e−m×H as m → ∞. The authors propose the 

selection of experiments (items) that maximize the asymptotic convergence rate H.

In particular, the asymptotically optimal selection of experiments can be represented by the 

KL divergence in the following way. Let he be the proportion of experiment e among the m 

experiments. For each alternative α1 ≠ α0, define Dh(α0, α1) =  heDe(α0, α1), where h = 

(h1, …, hκ) and Σj hj =1. Then the asymptotically optimal selection solves the optimization 

problem h* = arg maxh[minα1≠α0 Dh(α0, α1)]. The authors show that several procedures 

achieve the asymptotic optimal proportion h* under their setting.

2.2.2. The KL Divergence Based Algorithms—There are several CD-CAT methods 

based on the Kullback–Leibler divergence. The basic idea is to choose experiments such that 

the distribution of the outcome X associated with the true parameter α0 looks most dissimilar 

to the distributions associated with the alternative parameters. The initial idea was proposed 

by Chang and Ying (1996), who define the global information by summing the KL 

information over all possible alternatives, i.e.,

(5)

If an experiment e has a large value of KLe(α0), then the outcome distributions associated 

with α0 and the alternative parameters are very different. Thus, e is powerful in 
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differentiating the true parameter α0 from other parameters. For a sequential algorithm, let 

α̂
m be the estimate of α based on the first m outcomes. The next experiment is chosen to 

maximize KLe(α̂
m) (Xu et al., 2003).

This idea is further extended by Cheng (2009), who proposes the weighting of each De(α̂m, 

α1) in (5) by the posterior probability conditional on Xm, that is, each successive experiment 

maximizes PWKLe(α̂
m) = Σα≠α0 De(α̂m, α)π(α|Xm, em). An α with a higher value of π(α|

Xm, em) is more difficult to differentiate from the posterior mode α̂m. Thus, it carries more 

weight when choosing subsequent items. This method is known as the posterior-weighted 

Kullback–Leiber (PWKL) algorithm. The author also proposes a hybrid method that adds to 

De(α̂
m, α) further weights inversely proportional to the distance between α and α̂

m, so that 

alternative parameters closer to the current estimate receives even more weight.

2.2.3. The SHE Algorithm—The Shannon entropy of the posterior distribution is defined 

as

where  is the uniform distribution on the set  and D(·||·) is the KL divergence defined in 

(4). Thus, the experiment that minimizes the Shannon entropy of the posterior distribution 

makes the posterior distribution as different from the uniform distribution as possible. In 

particular, let f(xm+1|e, Xm, em) be the posterior predictive distribution of the (m + 1)-th 

outcome if the (m + 1)-th experiment is chosen to be e. The sequential item selection 

algorithm chooses em+1 to minimize the expected Shannon entropy SHE(e), where

The idea of minimizing the Shannon entropy is very similar to that of the minimum expected 

posterior variance method developed for IRT.

3. The Misclassification Probability, Optimal Design, and CAT

In this section, we present the main method of this paper. For a discrete parameter space, 

estimating the true parameter value is equivalent to classifying a subject into one of J 

groups. Given that the main objective is the estimation of the attribute parameter α, a natural 

goal of optimal test design would be the minimization of the misclassification probability. In 

the decision theory framework, this probability corresponds to the Frequentist risk 

associated with the zero-one loss function; see Chapter 11 of Cox and Hinkley (2000). Let 

α0 denote the true parameter. The misclassification probability of some estimator α̂(Xm) 

based on m experiments is then

(6)
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We write em and α0 in the subscript to indicate that the outcomes X1, …, Xi are independent 

outcomes from f(Xi|ei, α0) respectively. Similarly, we will use Eem, α0 to denote the 

corresponding expectation. Throughout this paper, we consider α̂ to be the posterior mode in 

(3). If one uses a uniform prior over the parameter space , i.e., , then the posterior 

mode is identical to the maximum likelihood estimate. Thus, the current framework includes 

the situation in which the MLE is used. Under mild conditions, one can show that p(em, α0) 

→ 0 as m → ∞. A good choice of items should admit small p(em, α0). However, direct use 

of p(em, α0) as an efficiency measure is difficult, mostly due to the following computational 

limitations. The probability (6) is usually not in an analytic form. Regular numerical routines 

(such as Monte Carlo methods) fail to produce accurate estimate of p(em, α0). For instance, 

when m = 50, this probability could be as small as a few percentage points. Evaluating such 

a probability for a given relative accuracy is difficult, especially this probability has to be 

evaluated many times—essentially once for each possible combination of items. Therefore, 

(6) is not a feasible criterion from a computational viewpoint. Due to these concerns, we 

propose the use of an approximation of (6) based on large deviations theory. In particular, as 

we will show, under very mild conditions, the following limit can be established:

(7)

That is, the misclassification probability decays to zero exponentially fast and it can be 

approximated by p(em, α0) ≈ e−mI. We call the limit I the rate function; it depends on both 

the experiment selection and the true parameter α0. The selection of experiments that 

maximizes the rate function is said to be asymptotically optimal in the sense that the 

misclassification probability based on the asymptotically optimal design achieves the same 

exponential decay rate as the optimal design that minimizes the probability in (6). In 

addition, the rate function has favorable properties from a computational point of view. It 

only depends on the proportion of each type of experiments. Therefore, the asymptotically 

optimal proportion does not depend on the total number of experiments m, which simplifies 

the computation. In addition, the rate I is in closed form for most standard distributions. 

Minimizing the misclassification probability is equivalent to adopting a zero-one loss 

function. In practice, there may be other sensible loss functions under specific scenarios. In 

this paper, we focus on the zero-one loss function and the misclassification probability.

We emphasize that the asymptotic optimality discussed in the previous paragraph is 

different from the one in Tatsuoka and Ferguson (2003). In fact, these two criteria often 

yield different “optimal designs.” To make a difference, we refer to the latter as “Tatsuoka 

and Ferguson’s asymptotic optimality” and reserve the term asymptotic optimality, as 

specified momentarily in Definition 1, for designs that maximize the rate function I.

3.1. The Misclassification Rate Function and the Asymptotically Optimal Design

We now consider the misclassification rate function. To facilitate the discussion, we assume 

that m × he independent outcomes are collected from experiment e ∈ . Furthermore, we 

assume that the proportion he does not change with m, except for some slight variation due 

to rounding. We say that such a selection of he is stable. Under the asymptotic regime where 
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m → ∞, the parameter h = (h1, …, hκ) forms the exogenous experiment design parameter to 

be tuned. Under this setting, the rate function (when exists) is

(8)

The limit depends on the proportion of each experiment contained in h and the true 

parameter α0. We establish the above approximation and provide the specific form of Ih,α0 
in Theorem 2.

For two sets of experiments corresponding to two vectors h1 and h2, if Ih1,α0 > Ih2,α0, it 

suggests that the misclassification probability of h1 decays to zero at a faster speed than h2 

and, therefore, h1 is a better design. We propose the use of Ih,α0 as a measure of efficiency.

Definition 1: We say that an experiment design corresponding to a set of proportions h = 

(h1, …, hκ) is asymptotically optimal if h maximizes the rate function Ih,α0 as in (8).

One computationally appealing feature of asymptotically optimal design is that the 

asymptotically optimal proportion h generally does not depend on the particular form of the 

prior distribution. Since asymptotic optimality describes the amount of information in the 

data, item selection is relatively independent from the a priori information of the attributes.

3.2. The Analytic Form of the Rate Function

In this subsection, we present specific forms of the rate function. To facilitate discussion, we 

use a different set of superscripts. Among the m responses, m × he of them are from 

experiment e. Let Xe,l be the lth (independent) outcomes of type e experiments for l = 1, …, 

m × he. Note that the notation e includes all the information about an experiment. For 

instance, in the setting of the DINA model, e includes the attribute requirements (the Q-

matrix entries) as well as the slipping and the guessing parameters.

We start the discussion with a specific alternative parameter α1. The posterior distribution 

prefers an alternative parameter α1 ≠ α0 to α0 if

We insert the specific form of the posterior in (1) and the above inequality implies that

(9)

For each e, define
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(10)

that is the log-likelihood ratio between the two parameter values α0 and α1. For a given e 

and different l, ’s are i.i.d. random variables. Therefore, the right-hand side of (9) is the 

weighted sum of κ sample averages of i.i.d. random variables. Due to the entropy inequality, 

we have that . If equality occurs, experiment e does not have 

power in differentiating α1 from α0. This occurs often in diagnostic classification models 

such as the DINA model (Section 2.1, Example 2).

In what follows, we provide the specific form of the rate function for the probability

Let ge(s|α1) be the distribution of  under e and α0, and let

(11)

be its associated natural exponential family where φe,α1 (θ) = log[∫ eθs ge(s|α1)ds] is the log-

moment-generating function. The exponential family is introduced for the purpose of 

defining the rate function. It is not meant for the data (response) generating process. In 

addition, it implicitly assumes that φe,α1 is finite in a neighborhood of the origin. Let

(12)

where  is the derivative. We define

(13)

where the infimum is subject to the constraint that . Furthermore, we 

define a notation

(14)

if all the elements of h are zero except for the one corresponding to the experiment e, that is, 

Ie(α1) is the rate if all outcomes are generated from experiment e. Further discussion of 

evaluation of I(α1, h) is provided momentarily in Remark 1.
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The following two theorems establish the asymptotic decay rate of the misclassification 

probabilities. Their proofs are provided in Appendix A. Recall that the vector h = (he: e ∈ ) 

represents the asymptotic proportions, i.e.,  as m → ∞.

Theorem 1: Suppose that for each α1 ≠ α0 and each e ∈ , equation  has a 

solution. Then for every α1 ≠ α0, e ∈ , and h ∈ [0, 1]κ s.t.  he = 1, we have that

(15)

Note that both I(α1, h) and Ie(α1) depend on the true parameter α0. To simplify the notation, 

we omit the index of α0 in the writing I(α1, h) and Ie(α1) because all the discussions are for 

the same true parameter α0. Nonetheless, it is necessary and important to keep the 

dependence in mind. The rate function (15) has its root in statistical hypothesis testing. 

Consider testing the null hypothesis H0: α = α0 against an alternative HA: α = α1. We reject 

the null hypothesis if π(α1|Xm, em) > π(α0|Xm, em). Thus, the misclassification probability is 

the same as the Type I error probability. Its asymptotic decay rate I(α1, h) is known as the 

Chernoff index (Serfling, 1980, Chapter 10).

Remark 1: Without much effort, one can show that the constraint for the minimization in 

(13) can be reduced to , that is, the infimum is achieved on the 

boundary. Let ( : e ∈ ) be the solution to the optimization problem. Using Lagrange 

multipliers, one can further simplify the optimization problem in (13) to the case in which 

the solution satisfies . Thus, the rate function can be equivalently defined as 

I(α1, h) =  heLe(θ|α1), where θ satisfies . Using the specific form of 

Le in (12) and the fact that φe,α1’s are convex, we obtain that

(16)

Thus, the numerical evaluation of I(α, h) is a one-dimensional convex optimization problem 

that can be stated in a closed form for most standard distributions.

While Theorem 1 provides the asymptotic decay rate of the probability that the posterior 

mode happens to be at one specific alternative parameter α1, the next theorem gives the 

overall misclassification rate.

Theorem 2: Let p(em, α0) be the misspecification probability given by (6) and define the 

overall rate function

(17)
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Then under the same conditions as in Theorem 1, Ih,α0 = infα1≠α0 I(α1, h).

Here, we include the index α0 in the rate function Ih,α0 to emphasize that the 

misclassification probability depends on the true parameter α0. Thus, the asymptotically 

optimal selection of experiments h* is defined as

(18)

An algorithm to compute h* numerically is included in Appendix C.

3.3. Intuitions and Examples

According to Theorem 1, for a specific parameter α1, the probability that the posterior 

favors α1 over the true parameter α0 for a given asymptotic design h admits the 

approximation P(α̂(Xm, em) = α1|e1, …, em, α0) ≈ e−m×I(α1,h). Thus, the total 

misclassification probability is approximated by

(19)

Among the above summands, there is one (or possibly multiple) α′ that admits the smallest 

I(α′, h). Then the term e−mI(α′,h) is the dominating term of the above sum. Note that the 

smaller I(α1, h) is, the more difficult it is to differentiate between α0 and α1. According to 

the representation in (17), upon considering the overall misclassification probability, it is 

sufficient to consider the alternative parameter that is the most difficult to differentiate from 

α0. This agrees with the intuition that if a set of experiments differentiates well between 

parameters that are similar to each other, it also differentiates well between less similar 

parameters. Thus, the misclassification probability only considers the most similar 

parameters to α0. Similar observations have been made for the derivation of the Chernoff 

index, i.e., one only considers the alternative models most similar to the null. In practice, it 

is usually easy to identify these most indistinguishable parameters so as to simplify the 

computation of (17). For instance, in the case of the DINA model, the most indistinguishable 

attribute parameter must be among those that have only one dimension misspecified.

For DCM’s, the α′ is generally not unique if h* is chosen to be asymptotically optimal. 

Consider the DINA model and a true parameter α0. Let N0 be the set of attributes closest to 

α0. Each α1 ∈ N0 is different from α0 by only one attribute. Thus, N0 is the set of parameters 

most difficult to distinguish from α0. The asymptotically optimal design h* must be chosen 

in such a way that I(α1, h*) are identical for all α1 ∈ N0. Thus, all α1 ∈ N0 are equally 

difficult to distinguish from α0 based on the item allocation h*. Otherwise, one can always 

reduce the proportion of certain items that are overrepresented and replace them with 

underrepresented items. Thus, the rate can be further improved. Note that the definition of 

N0 may change under the reduced parameter space. See Tatsuoka and Ferguson (2003) for 

such a discussion when the parameter space is a partially ordered set.
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Example 3 (A simple example to illustrate α′): Consider the DINA model with three 

attributes. The true attribute profile is α0 = (1, 1, 0). There are three types of experiments in 

the item bank, e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). Each type of item is used to 

measure one attribute. The corresponding slipping and guessing parameters are (s1, g1) = 

(0.1, 0.1), (s2, g2) = (0.2, 0.2), and (s3, g3) = (0.1, 0.1). Consider a design , that is, 

equal numbers of items are selected for each of the three types. Then the second attribute is 

the most difficult to identify because its slipping and guessing parameters (s2, g2) are larger. 

In this case, the attribute parameter that minimizes I(α, h) over α ≠ α0 and is most 

indistinguishable from α0 is α′ = (1, 0, 0), which differs from α0 in its second attribute. The 

asymptotically optimal design should spend more items to measure the second attribute than 

the other two. We will later revisit this example and compute h*.

Example 4 (Calculations for the Bernoulli distribution): We illustrate the calculation of 

the rate function for models such as the DINA with Bernoulli responses. It is sufficient to 

compute I(α1, h) for each true parameter α0 and alternative α1 ≠ α0. A separating 

experiment e will produce two different Bernoulli outcome distributions 

 and  where p1 ≠ p0. Then the log-

likelihood ratio is

The log-moment-generating function of  under f(x|α0, e) is

(20)

For the purpose of illustration, we compute Ie(α1). The solution to  is

where . Then the misclassification probability is 

approximated by

(21)

The parameter θ* depends explicitly on p1, p0, and φe,α1. Supposing that p0 < p1, the 

parameter p* is the cutoff point. If the average response value is below p*, then the 

likelihood is in favor of α0 and vice versa.
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When there are more types of items, the rate function I(α1, h) is the sum of all the φe,α1 (θ) 

in (20) weighted by their own proportions, i.e., I(α1, h) = − infθ  heφe,α1 (θ). Then take 

the infimum over α1 ≠ α0 for the overall rate function Ih,α0.

Example 3 Revisited: We apply the calculations in Example 4 to the specific setting in 

Example 3, where α0 = (1, 1, 0). We consider the alternative parameters closest to α0: α1 = 

(0, 1, 0), α2 = (1, 0, 0), and α3 = (1, 1, 1). Using the notation in (14) for each individual item 

and the formula in (21), we have that Ie1(α1) = 0.51, Ie2(α2) = 0.22, and Ie3(α3) = 0.51.

For each h = (he1, he2, he3) and i = 1, 2, 3, we have that I(αi, h) = hei Iei(αi). Thus, the 

asymptotically optimal allocation of experiments is inversely proportional to the rates Iei(αi), 

that is,  and .

Comparison with the KL Information: Typically, an experiment with a large KL 

information De(α0, α1) also has a large rate Ie(α1). This positive association is expected in 

that both indexes describe the information contained in the outcome of experiment e. 

However, these two indexes sometimes do yield different choices of items. Consider the 

setting in Example 2. Let experiment e1 have parameters s1 = 0.1 and g1 = 0.5 and let e2 

have parameters s2 = 0.6 and g2 = 0.01. Both e1 and e2 differentiate α0 and α1 in such a way 

that the ideal response of α0 is negative and that of α1 is positive. We compute the rate 

functions and the KL information:

Thus, according to the rate function, e2 is a better experiment, while the KL information 

gives the opposite answer. Thus, the KL information method does not always coincide with 

the rate function. This is also reflected in the simulation study. More detailed connections 

and comparisons are provided in Section 4. A similar difference exists between Tatsuoka 

and Ferguson’s criterion and the rate function. Therefore, the criterion proposed in this paper 

is fundamentally different from the existing ideas.

Remark 2: In practice, it is generally impossible to have two responses collected from 

exactly the same item. The approximation of the misclassification probability can be easily 

adapted to the situation when all the m items are distinct. Consider that a sequence of 

outcomes X1, …, Xm, has been collected from experiments e1, …, em. For α1 ≠ α0, we 

slightly abuse the notation and let  be the log-

likelihood ratio of the ith outcome (generated from experiment ei) and let 

 be the log-MGF. Then an analogue of Theorem 1 would be

where . Furthermore, the misclassification probability can be 

approximated by − log p(em, α0) ≈ infα1≠α0 Iem(α1).
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3.4. An Adaptive Algorithm Based on the Rate Function

We now describe a CAT procedure corresponding to the asymptotic theorems. At each step, 

one first obtains an estimate of α based on the existing outcomes, X1, …, Xm. Then each 

successive item is selected as if the true parameter is identical to the current estimate.

Algorithm 1: Start with a prefixed set of experiments (e1, …, em0). For every m, Outcomes 

Xm = (X1, …, Xm) of experiments em = (e1, …, em) have been collected. Choose em+1 as 

follows:

1. Compute the posterior mode α̂m ≜ α̂(Xm, em). Let α′ be the attribute that has the 

second highest posterior probability, that is, α′ = arg maxα≠α̂
m π(α|Xm, em).

2. Let α0 = α̂
m. The next item em+1 is chosen to be the one that admit the largest rate 

function with respect to α′, that is, em+1 = arg supe Ie(α′) where Ie(α′) is defined as 

in (14) (recall that Ie(α′) depends on the true parameter value α0 that is set to be 

α̂
m).

The attribute is estimated by the posterior mode based on previous responses. Then α′ is 

selected to have the second highest posterior probability. Thus, α′ is the attribute profile that 

is most difficult to differentiate from α0 = α̂
m given the currently observed responses Xm. 

Thus, the experiment em+1 maximizing Ie(α1) is the experiment that best differentiates 

between α̂
m and α′. Thus, the rationale behind Algorithm 1 is to first find the attribute 

profile α′ most “similar” to α̂
m and then to select the experiment that best differentiates 

between the two. We implement this algorithm and compare it with other existing methods 

in Section 6.

4. Relations to Existing Methods

4.1. Connection to the Continuous Parameter Space CAT for IRT Models

If the parameter space is continuous (as is the case in IRT), the efficiency measure (6) and 

its approximation are not applicable, in that P (θ̂(X) ≠ θ0) = 1, where θ is the continuous 

ability level. To make an analogue, we need to consider a slightly different probability

(22)

This is known as an indifference zone in the literature of sequential hypothesis testing. One 

can establish similar large deviations approximations so that the above probability is 

approximately e−mI (ε). Thus, the proposed measure is closely related to the maximum Fisher 

information criterion and expected minimum posterior variance criterion. For IRT models, θ̂

(X) asymptotically follows a Gaussian distribution with mean centered around θ0. Then 

minimizing its variance is the same as minimizing the probability
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for all δ > 0. One may consider that, by choosing ε very small in (22), in particular ε ≈ 

δm−1/2, maximizing the rate function is approximately equivalent to minimizing the 

asymptotic variance. This connection can be made rigorous by the smooth transition from 

the large deviations to the moderate deviations approximations.

4.2. Connection to the KL Information Methods and Global Information

The proposed efficiency measure is closely related to the KL information. Consider a 

specific alternative α1. We provide another representation of the rate function for P(π(α1|

Xm, em) > π(α0|Xm, em)). To simplify our discussion and without loss of too much 

generality, suppose that only one type of experiment, e, is used and that X1, …, Xm are thus 

i.i.d. The calculations for multiple types of experiments are completely analogous, but more 

tedious. The alternative parameter α1 admits a higher posterior probability if 

 where si = log f (Xi |α1, e) − log f (Xi |α0, e) are i.i.d. random 

variables following distribution g(s). Then the rate function takes the form Ie(α1) = − infθ 

[φ(θ)], where φ (θ) = log ∫ g(s)eθs is the log-MGF of the log likelihood ratio. Let θ* = arg 

infθ φ(θ) and g(s|θ) = g(s)eθs−φ(s). With some simple calculation, we obtain that

which is the Kullback–Leibler information between g(s|θ*) and g(s).

Then the rate function is the minimum KL information between the log-likelihood ratio 

distribution and the zero-mean distribution within its exponential family. An intuitive 

connection between the proposed method and the existing method based on KL information 

is as follows. The KL, or the posterior-weighted KL method maximizes the KL information 

between the response distributions under the true and alternative model. Our method 

maximizes the KL information of the log-likelihood ratio instead of directly that of the 

outcome variable. This is because the maximum likelihood estimator (or the posterior mode 

estimator) maximizes the sum of the log-likelihoods.

The rate function in (17) is the minimum of I (α, h) over all α ≠ 3 α0. This is different from 

the approach taken by most existing methods, which typically maximize a (possibly 

weighted) average of the KL information or Shannon entropy over the parameter space. 

Instead, this approach recalls Tatsuoka and Ferguson’s asymptotically optimal experiment 

selection, which involves maximizing the smallest KL distance.

4.3. Connection to the Tatsuoka and Ferguson’s Criterion

Using the notation in Section 2.2.1, the posterior mode converges to unity exponentially fast 

 almost surely. This convergence implies that
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as m → ∞ where α′ is the largest posterior mode other than α0. The above probability is 

approximately the misclassification probability p(em, α0). TF’s criterion and ours are very 

closely related in that a large H typically implies a small p(em, α0). This is because it is 

unlikely for π(α0|Xm, em) to fall below some level if it converges faster to unity. However, 

these two criteria are technically distinct. As shown later in Section 6.1, they yield different 

optimal designs and the corresponding misclassification probabilities could be different.

5. Discussion

Finite Sample Performance

The asymptotically optimal allocation of experiments h* maximizes the rate function. It can 

be shown that h* converges to the optimal allocation that minimizes the misclassification 

probability as m tends to infinity. However, for finite samples, h* may be different from the 

optimal design. In addition, h* is derived under a setting in which outcomes are 

independently generated from experiments whose selection has been fixed (independent of 

the outcome). Therefore, the theorems here answer the question of what makes a good 

experiment and they serve as theoretical guidelines for the design of CAT procedures. Also, 

as the simulation study shows, the algorithms perform well.

Results Associated with Other Estimators

The particular form of the rate function relies very much on the distribution of the log-

likelihood ratios. This is mostly because we primarily focus on the misclassification 

probability of the maximum likelihood estimator or posterior mode. If one is interested in 

(asymptotically) minimizing the misclassification probability of other estimators, such as 

method of moment based estimators, similar exponential decay rates can be derived and they 

will take different forms.

Infinite Discrete Parameter Space

We assume that the parameter space is finite. In fact, the analytic forms of Ih,α0 and I (α, h) 

can be extended to the situation when the parameter space is infinite but still discrete. The 

approximation results in Theorem 2 can be established with additional assumptions on the 

likelihood function f (x|e, α). With such approximation results established, Algorithm 1 can 

be straightforwardly applied.

Summary

To conclude the theoretical discussion, we would like to emphasize that using the 

misclassification probability as an efficiency criterion is a very natural approach. However, 

due to computational limitations, we use its approximation via large deviations theory. The 

resulting rate function has several appealing features. First, it only depends on the proportion 

of outcomes collected from each type of experiment and is free of the total number of 

experiment m. In addition, the rate function is usually in a closed form for stylized 

parametric families. For more complicated distributions, its evaluation only consists of a one 

dimensional minimization and is computationally efficient. In addition, as the simulation 

study shows, the asymptotically optimal design shows nice finite sample properties.
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6. Simulation

6.1. A Simple Demonstration of the Asymptotically Optimal Design

In this subsection, we consider (nonadaptive) prefixed designs selected by different criteria. 

We study the performance of the asymptotically optimal design h* for a given α0. We 

consider the DINA model with true attribute profile α0 = (1, 1, 0). We also consider four 

types of experiments with the following attribute requirements:

We compare the asymptotically optimal design proposed by the current paper, denoted by 

LYZ, and the optimal design by Tatsuoka and Ferguson (2003), denoted by TF. We consider 

two sets of different slipping and guessing parameters that represent two typical situations.

Setting 1. s1 = s2 = s3 = s4 = 0.05 and g1 = g2 = g3 = g4 = 0.5. Under this setting, the 

asymptotically optimal proportions by LYZ are  , and ; 

the optimal proportions by TF are , and .

Setting 2. c1 = c2 = c3 = c4 = 0.05, g1 = g2 = g3 = 0.5, and g4 = 0.8. Under this 

selection, the asymptotically optimal proportions by LY are , and 

; the optimal proportions by TF are , and 

.

We simulate outcomes from the above prefixed designs with different test lengths m = 20, 

50, 100. Tables 1 and 2 show the misclassification probabilities computed via Monte Carlo. 

LYZ admits smaller misclassification probabilities (MCP) for all the samples sizes. The 

advantage of LYZ manifests even with small sample sizes. For instance, when m = 20 in 

Table 2, the misclassification probability of LYZ is 13 % and that of TF is 27 %.

6.2. The CAT Algorithms

We compare Algorithm 1 with other adaptive algorithms in the literature, such as the SHE 

and PWKL as given in Section 2.2. We compare the behavior of these three algorithms, 

along with the random selection method (i.e., at each step an item is randomly selected from 

the item bank), in several settings.

General Simulation Structure—Let K be the length of the attribute profile. The true 

attribute α0 is uniformly sampled from the space {0, 1}K, i.e., each attribute has a 50 % 

chance of being positive. Each test begins with a fixed choice of m0 = 2K items with 

slipping and guessing probabilities, s = g = 0.05. In particular, each attribute is tested by 2 

items testing solely that attribute, i.e., items with attribute requirements of the form (0, …, 0, 

1, 0, …, 0). After the prefixed choice of items, subsequent items are chosen from a bank 

containing items with all possible attribute requirement combinations and prespecified 

slipping and guessing parameters. Items are chosen sequentially based on either Algorithm 

1, SHE, PWKL, or random (uniform) selection over all possible items. The misclassification 
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probabilities are computed based on 500,000 independent simulations that provide enough 

accuracy for the misclassification probabilities.

For illustration purposes, we choose the random selection method as the benchmark. For 

each adaptive method, we compute the ratio of the misclassification probability of that 

method and the misclassification probability of the random (uniform) selection method. The 

log of this ratio as test length increases is plotted under each setting in Figures 1, 2, 3, and 4.

A summary of the simulation results is as follows. The PWKL immediately underperforms 

the other two methods in all settings. The SHE and the LYZ methods perform similarly 

early on, but eventually the LYZ method begins to achieve significantly lower 

misclassification probabilities. From the plots, we can see that this pattern of behavior does 

not change as we vary K. However, as K grows larger, more items are needed for the 

asymptotic benefits of the LYZ method to become apparent. In addition, the CPU time 

varies for different dimension and different methods. To run 100 independent simulations, 

the LYZ and the KL methods take less than 10 seconds for all K. The SHE method is 

slightly more computationally costly and takes as much as a few minutes for 100 

simulations when K = 8. The specific simulation setting as given as follows.

Setting 3. The test bank contains two sets of items. Each set contains 2K− 1 types items 

containing all the possible attribute requirements. For one set, the slipping and the 

guessing parameters are (s, g) = (0.10, 0.50); for the other set, the parameters are (s, g) 

= (0.60, 0.01). Thus, there are 2(2K − 1) types items in the bank that can be selected 

repeatedly. The simulation is run for K = 3, 4, 5, 6. The results are presented in Figure 

1.

Setting 4. With a similar setup, we have two different sets of the slipping and the 

guessing parameters (s, g) = (0.15, 0.15) and (s, g) = (0.30, 0.01). The basic pattern 

remains. The results are presented in Figure 2.

Setting 5. We increase the variety of items available. The test bank contains items with 

any of four possible pairs of slipping and guessing parameters: (s1, g1) = (0.01, 0.60), 

(s2, g2) = (0.20, 0.01), (s3, g3) = (0.40, 0.01), and (s4, g4) = (0.01, 0.20); in addition, 

items corresponding to each of the 2K − 1 possible attribute requirements are available. 

Items corresponding to a particular set of attribute are limited to either (s1, g1) and (s2, 

g2) or (s3, g3) and (s4, g4). Thus, combining the different attribute requirements and 

item parameters, there are a total of 2(2K − 1) types of items in the bank, each of which 

can be selected repeatedly. The simulation is run for K = 3, 4, …, 8. The results are 

presented in Figure 3.

Setting 6. We add correlation by generating a continuous ability parameter θ ~ N (0, 1). 

The individual αk are independently distributed given θ, such that

Setting 6 follows Setting 5 in all other respects. The results are presented in Figure 4.
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Appendix A. Technical Proofs

Proof of Theorem 1

The proof of Theorem 1 uses standard large deviations technique and exponential change of 

measure. Consider a specific alternative parameter α1 ≠ α0. We use e ∈  to indicate 

different types of experiments.

Suppose that me independent outcomes have been generated from experiment e. Note that 

me/m → he. The log-likelihood ratios are as defined in (10), and follow joint distribution:

Let A = log π(α0) − log π(α1). We choose θm such that . Let  be 

chosen as in the statement of the theorem. According to Remark 1, we have that 

and further that  as m → ∞. We further consider the exponential change of 

measure, Q, under which the log-likelihood ratios follow joint density

(A.1)

where ge(s|θ, α1) is the exponential family defined in (11).

Note that under Q or equivalently under the joint density (A.1), the ’s are jointly 

independent. For a given experiment e, the ’s are i.i.d. Following the standard results for 

natural exponential families, for each e, , where EQ denotes the expectation 

with respect to the density (A.1). The total sum has expectation
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To simplify the notation, we use Σe,l and Πe,l to denote the sum and the product over all the 

outcomes. We write

We plug in the forms of ge(s|α1) and ge(s|θ, α1) and continue the calculation:

where Le is defined as in (12). Note that . We continue the above 

calculation and obtain that

(A.

2)

Thus, we have shown an upper bound.

For the lower bound, by the central limit theorem, there exists ε, δ > 0 such that for m large 

enough, we may write the expectation term in the above display as

Thus, we obtain a lower bound that

(A.3)
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Combining (A.2), (A.3), and the fact that , we conclude the proof of Theorem 1 

using the definition of I(h, α1) in (13).

Proof of Theorem 2

Based on the proof of Theorem 1, the proof of Theorem 2 is simply an application of the 

Bernoulli’s inequality. Thus, we only lay out the key steps. First,

Let α′ be an alternative parameter admitting the smallest rate, that is, I (α′, h) = Ih, α0. Thus, 

we have that

We take the log on both sides and obtain that

Appendix B. Identifiability Issues

Throughout this paper, we assume that all the parameters are separable from each other by 

the set of experiments. In the case that there are two or more parameters that are not 

separable, we need to reduce the parameter spaces as follows. We write α1 ~ α2 if De(α1, 

α2) = 0 for all e ∈ . It is not difficult to verify that the binary relationship “~” is an 

equivalence relation. Let [α] = {α1 ∈ : α1 ~ α} be the set of parameters related to α by ~. 

Then, the reduced parameter set is defined as the quotient set

To further explain, if α1 ~ α2, then the response distributions are identical f (x|e, α1) = f (x|e, 

α2) for all e. We are not able to distinguish α1 and α2. If [α1] ≠ [α2], then there exists at 

least one e such that f (x|e, α1) and f (x|e, α2) are distinct distributions. Therefore, all 

equivalence classes in the new parameter space  are identifiable.
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Appendix C. Computation of the Asymptotically Optimal Design

For some true parameter value α0 ∈ , we wish to optimize

over all nonnegative h such that Σj hj = 1. Combine Equations (16), (17), and (18) to rewrite 

the problem as that of finding

(C.1)

Consider the innermost quantity as a function of h and θ. For any particular α, fα (h, θ) = Σj 

hj(−φj,α(θ)) is linear in h, and so I (α, h) = supθfα(h, α) is convex in h. Additionally, the set 

{ } forms a (d − 1)-simplex with its d vertices at the standard basis 

vectors; a (d − 1)-simplex is simply a (d − 1)-dimensional polytope formed from the convex 

hull of its d vertices. By convexity, for each α, I (α, h) must attain its maximal value at one 

of these vertices. Let sv be a generic notation for a d -dimensional simplex with vertices at v 
= {v1, …, vd }. Based on the above discussion, we can find supper and lower bounds for 

suph∈sv infα∈A I (α, h). In particular, we have that

and that

Furthermore, as I (α, h) is a continuous function of h, the two bounds converge to each other 

as the size of the simplex sv converges to zero. With these constructions, now consider the 

following algorithm for finding h* and Ih*,α0. In the algorithm, we use L to denote a set, 

each element of which is a simplex, and “←” to denote value assignment.

Algorithm 2

Set ε > 0 indicating the accuracy level of the algorithm. Let

and L = {sv0}, i.e., . Set LB ← LB(sv0) and UB ← UB(sv0)
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Perform the following steps:

1. Let sv* ∈ L be the simplex with the largest UB(sv*), i.e.,

Divided sv* into 2κ−1 smaller simplexes, with their vertices at either the original 

vertices v* or their midpoints  (Edelsbrunner & Grayson, 2000). Denote these 

2κ−1 subsimplexes by sv1, …, sv2κ−1. A simple example for the κ = 3 case is 

illustrated in Figure 5.

2. Remove sv* from L and add sv1, …, sv2κ−1 to L, i.e.,

3. Let .

4. For each sv ∈ L, if UB(sv) < LB then remove sv from L, that is, L ← L\{sv}.

5. Set UB ← supsv∈L UB(sv).

Repeat the above steps until UB – LB < ε and output

This algorithm will efficiently solve the problem of finding the optimal h, with easily 

controllable error in both the objective function and h. This algorithm can in fact be used to 

find the maximum over the simplex of the minimum of any assortment of convex functions. 

In particular, this can be used to solve Tatsuoka and Ferguson’s algorithm, since the KL 

distance is linear (and hence convex) in h.
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Figure 1. 
This plot shows the log-ratio of the misclassification probabilities of the given method and 

those of the random selection method. The x-coordinate is the test length, that is counted 

beginning with the first adaptive item (beyond the buffer).
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Figure 2. 
This plot shows the log-ratio of the misclassification probabilities of the given method and 

those of the random selection method. The x-coordinate is the test length, that is counted 

beginning with the first adaptive item (beyond the buffer).
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Figure 3. 
This plot shows the log-ratio of the misclassification probabilities of the given method and 

those of the random selection method. The x-coordinate is the test length, that is counted 

beginning with the first adaptive item (beyond the buffer).
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Figure 4. 
This plot shows the log-ratio of the misclassification probabilities of the given method and 

those of the random selection method. The x-coordinate is the test length that is counted 

beginning with the first adaptive item (beyond the buffer).

Liu et al. Page 28

Psychometrika. Author manuscript; available in PMC 2015 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
This figure depicts the 2-simplex sv with vertices v and their midpoints vmdpt. This simplex 

has 4 subdivisions associated with the following sets of vertices: {v1, v4, v5}, {v2, v5, v6}, 

{v3, v4, v6}, and {v4, v5, v6}.
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Table 1

The misclassification probabilities (MCP) under Setting 1.

m LYZ TF

20 6.5E–02 8.5E–02

50 3.2E–03 1.0E–02

100 4.5E–05 3.7E–04
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Table 2

The misclassification probabilities (MCP) under Setting 2.

m LYZ TF

20 1.3E–01 2.7E–01

50 2.2E–02 3.7E–02

100 1.1E–03 5.5E–03
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