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Abstract

During cell migration, local protrusion events are regulated by biochemical and physical processes

that are in turn coordinated with the dynamic properties of cell-substratum adhesion structures. In

this chapter, we present a modeling approach for integrating the apparent stochasticity and spatial

dependence of signal transduction pathways that promote protrusion in tandem with adhesion

dynamics. We describe our modeling framework, as well as its abstraction, parameterization, and

validation against experimental data. Analytical techniques for identifying and evaluating the

effects of model bistability on stochastic simulations results are shown, and implications of this

analysis for understanding cell protrusion behavior are offered.

Introduction

Cell crawling over an adhesive surface is a mechanical phenomenon marked by coordinated

protrusion at the cell front and retraction at the rear (Parsons et al., 2010). Fibroblasts and

other migratory cells of mesenchymal lineage exhibit discrete, micron-sized adhesive

contacts that are nucleated by transmembrane adhesion receptors and which form as the

leading edge of a migrating cell protrudes over the surface. These adhesions are dynamic,

responsive to external and intracellular forces, and conducive to assembly of molecularly

diverse protein complexes. Although protrusion, adhesion, and retraction are clearly

mechanical processes, they are apparently organized by the timing and partitioning of

biochemical signaling pathways. This handoff from chemical regulation to mechanical

actuation, together with the ability of cells to sense and respond to mechanical forces,

creates a bi-directional feedback mechanism that is thought to play a critical role in

controlling cell migration (Welf and Haugh, 2011). In this chapter, we discuss development

and simulation of a computational model representing adhesion dynamics and adhesion-

mediated signaling as both a cause and consequence of localized protrusion.

How do diverse cellular protrusion behaviors arise from the interplay among physical and

biochemical subprocesses? As with any complex system, the variety of interacting

molecular components and processes at work during cellular protrusion demand analytical

approaches for parsing their influence on cellular behaviors, and the apparently random

nature of those events suggests that stochastic computational modeling is well-suited for
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representing them. The key challenges include how to model the components that are not

fully understood at a mechanistic level, and, for those components that are better

understood, deciding how much detail to include (Mogilner, 2009). As we discuss, our

approach for dealing with these challenges has been to simplify (coarse-grain) certain

aspects of the system while employing phenomenological assumptions to balance the scope

and desired detail of the model with computational tractability and physical understanding.

Model Synthesis

Adhesion dynamics

During active membrane protrusion in cells of mesenchymal origin, actin polymerization at

the leading edge of the cell applies force on the membrane, which is balanced by immobile

adhesion structures that couple with the actin network and transmit force to the substrate.

These cell-matrix adhesions thus serve as mechanical linkages that enable the cell to pull

itself along, but they also mediate the localization of numerous intracellular signaling

proteins. The signaling properties of adhesion structures differ according to their sizes and

intracellular locations. The small nascent adhesions that form at the leading edge of a cell

protrusion facilitate actin polymerization through activation of Rac and certain other

signaling intermediates (Cox et al., 2001); however, when these nascent adhesions mature to

form larger, more stable focal adhesions, they accumulate actomyosin activity and inhibit

protrusion and cell shape change either by biochemical means or by acting as firm anchors

for the actin cytoskeleton (Vicente-Manzanares et al., 2007, 2011). Thus, within a local

region at the cell periphery, spontaneous transitions between predominantly protrusive and

adhesive phenotypes are observed.

Observation of adhesion dynamics by live-cell microscopy directly illustrates why a

stochastic framework, in which adhesions are treated as discrete entities, is well suited for

modeling adhesion and migration (Figure 1a). In tandem with adhesion formation and

turnover, protrusion is rarely smooth with respect to time and space; it is most common to

see leading edges bulge in transient, localized bursts (Machacek and Danuser, 2006;

Tsukada et al., 2008). Likewise, the process of adhesion maturation occurs infrequently, and

as a result there are relatively low numbers of stable adhesions that nonetheless have

dramatic phenotypic effects.

To model the spatial aspects of local adhesion formation, turnover, maturation, and

signaling, we consider a control volume comprising a region starting at the leading edge of a

protruding region of the cell and extending rearward toward the cell center, terminating just

following the boundary between the lamellipodium (LP) and the lamella (LM), as shown in

Figure 1b. The LP is the region of dense, dynamic actin starting at the leading edge of the

cell and extending several microns into the cell body, terminating at the location where actin

depolymerization thins the dense actin network of the LP to form the LM. As the boundary

between the LP and the LM moves forward relative to immobile adhesions, nascent

adhesions that reach the LM-LP boundary either turn over (i.e., disintegrate) or mature to

form stable adhesions (Nayal et al., 2006). As the front of a protruding region moves

forward, adhesions move rearward relative to the leading edge, which is the frame of

reference for the model; increases in protrusion velocity directly affect adhesion turnover by
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increasing the rate at which nascent adhesions reach the LM-LP boundary (Choi et al.,

2008). Likewise, the effects of stable adhesions are assumed to fade with increasing distance

from the cell front.

Nascent adhesions form at a rate proportional to the rate of local protrusion (Choi et al.,

2008), thus placing them within the positive feedback loop, protrusion → nascent adhesion

formation → Rac signaling → protrusion, which we term the core protrusion cycle (Figure

2). As explained below, nascent adhesions are assumed to mediate localized activation of

Rac by one of two mechanisms, which differ in mathematical form (rate law). It is further

assumed that the velocity of leading edge protrusion is a monotonically increasing function

of the local Rac concentration.

Experimental observations indicate that formation of stable adhesions coincides with local

pauses in protrusion, and the myosin-dependent contractile processes stimulated by stable

adhesions encourage adhesion maturation (Choi et al., 2008). Thus, the core protrusion cycle

is subject to an opposing feedback loop whereby stable adhesions reduce the rate of nascent

adhesion formation whilst enhancing the probability of nascent adhesion maturation (Figure

2). Although the effects of stable adhesions on local protrusion have not been characterized

in mechanistic detail, their importance demands that these effects be included at least

phenomenologically in our model.

Adhesion-mediated signaling

A host of scaffolding proteins and kinases are recruited to cell-matrix adhesions, and our

focus here is on adhesion-associated signaling pathways that promote local protrusion.

Paxillin is a scaffold protein recruited to nascent adhesions shortly after their formation, and

once phosphorylated on specific sites, paxillin mediates binding of guanine exchange factors

(GEFs) that activate Rac, which in turn enhances actin polymerization (Deakin and Turner,

2008). The Rac effector p21-activated kinase (PAK) phosphorylates paxillin on serine 273,

providing a binding site for the recruitment of the scaffold protein GIT1, which forms a

complex with both the Rac-GEF βPIX and PAK; this positive feedback loop involving local

Rac activation, embedded within the core protrusion cycle, is apparently required for

maintenance of protrusion, at least in certain cell contexts (Nayal et al., 2006). In parallel,

paxillin phosphorylated on tyrosine residues 31 and 118 by focal adhesion kinase (FAK)

recruits the CrkII adapter and the unconventional Rac-GEF DOCK180, further amplifying

Rac activation in response to paxillin localization and phosphorylation (Smith et al., 2008;

Kiyokawa and Matsuda, 2009). Paxillin phosphorylated on tyrosines 31 and 118 also

mediates binding of the tyrosine kinase Src, which opposes myosin function and may thus

attenuate adhesion maturation (Tsubouchi et al., 2002).

Model formulation

We are concerned with both biochemical signaling and physical processes governing

adhesion dynamics and extension of the cell membrane, and how stochastic fluctuations in

these processes are coupled. The appropriate level of detail therefore involves biochemical

interactions and reactions at the molecular level; however, as with many biochemical

systems we employ simplifying assumptions to reduce the number of adjustable model
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parameters and decrease the computational burden. A compromise in the degree of coarse-

graining was reached by including abbreviated descriptions of biochemical mechanisms that

are relatively well characterized while employing phenomenological descriptions of other

important processes. For example, we model the phosphorylation of different amino acid

residues on paxillin as distinct events but assume that the subsequent binding and

modifications of adapter proteins and GEFs are implicit in the activation of Rac (for a

discussion of kinetic model simplification, see Cirit and Haugh, 2011). Adhesion maturation

is an example of a process that is less well understood, and our phenomenological approach

was to treat nascent and mature adhesions as discrete entities and cast the transition between

the two in terms of a probability that increases according to the local myosin activity.

The locations of adhesions relative to the leading edge and laterally along the cell contour

determine the degree to which the two adhesion types influence protrusion or adhesion

maturation (Figure 1b). The mechanical effects of adhesion formation and maturation are

widely speculated to involve force-responsive proteins (i.e. mechanotransduction) and

propagation of stress within the heterogeneous actin network (Anderson et al., 2008; Gardel

et al., 2010; Parsons et al., 2010). While the molecular and physical details involved in these

mechanical processes form the basis of continuing theoretical and experimental work, it

seems reasonable to focus the details of a coarse-grained model on either the signaling or

mechanical aspects of the system. Whereas other studies have dealt primarily with the

mechanical side (Chan and Odde, 2008; Li et al., 2010; Sabass and Schwarz, 2010;

Zimmermann et al., 2010; Barnhart et al., 2011), we chose to emphasize the properties of

adhesion-mediated signaling.

As described above, our approach for dealing with the spatial relationships between model

variables is to define a control volume that moves along with the leading edge of a cell;

within a control volume, molecular species are assumed to be well mixed, and the width of

the control volume is set so that the validity of this approximation is ensured. We

investigated the possibility of spatial propagation along the one-dimensional leading edge

contour by performing spatially extended simulations (described in detail under

Computational Methods).

Model Analysis

The performance of the model was evaluated in part by comparing the qualitative behavior

of model simulations at different values of the parameter representing the effect of

extracellular matrix (ECM) to experiments assessing protrusion of CHO.K1 cells on

different densities of the ECM protein fibronectin ([Fn]). An intermediate [Fn] (2 μg/mL

coating concentration) fosters optimal cell migration speed of this cell line (Palecek et al.,

1997), and the relative abundance of nascent and stable adhesions at different [Fn]

apparently contributes to this optimality. As shown in both experiments and simulations,

intermediate [Fn] supports maximal protrusion in conjunction with a high abundance of

nascent adhesions, whereas high [Fn] supports mostly stable adhesions, and low [Fn] does

not support many adhesions of either type (Cirit et al., 2010).
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Although values for some of the model parameters were chosen based on experimental

evidence, other parameters representing phenomenological relationships were varied

systematically (Table 1). Figure 3a shows stochastic simulation results for the model with

βPix/no DOCK180 signaling and different values of the parameters In and Es, which

characterize the phenomenological effects of protrusion inhibition by stable adhesions and

enhancement of adhesion maturation by myosin, respectively. Qualitative characterization of

the stochastic simulation behaviors, as shown in Figure 3b, facilitates comparison of

simulation results across different combinations of parameter values. The effect of myosin-

mediated adhesion strengthening, modeled by the Es parameter, can be seen clearly in the

spatially extended simulations shown in Figure 4 – when Es is low, protrusion dominates,

but when Es is higher, the formation of stable adhesions inhibits protrusion yet allows for

stochastic protrusion bursts that propagate laterally as active Rac diffuses. Another approach

for characterizing stochastic simulation results is to calculate the mean lifetimes of

protrusion and adhesion events occurring during an extended simulation period (1000 min

was used). Protrusion events were identified as periods of time during which the

dimensionless protrusion velocity v > 0.5, and adhesion events were identified as periods of

time during which the number of stable adhesions was nonzero (S ≥ 1). Figure 5 shows the

effect of changes to En and Cs for different values of ka,n and Es, respectively, in the model

with DOCK180/no βPix signaling.

A deterministic analysis of the model equations, treating the molecular species as continua

rather than as discrete entities, was also performed. Although a purely deterministic

treatment was not able to produce switching between protrusive and adhesive states, the

calculations proved useful in identifying conditions where the model exhibits bistability,

which is related to the existence of multiple steady states (Cirit et al., 2010). In the context

of our models, bistability is a condition in which both the protrusive and adhesive

phenotypes are stable.. Figure 6 shows identification of regions of model bistability via

phase plane analysis, with the nullclines for nascent adhesions and stable adhesions plotted

in (v,s) space. Intersections of the n and s nullclines indicate fixed points in the system, and

regions of bistability are shown as functions of model parameters in Figure 6b. A method for

comparing regions of model bistability with stochastic model simulation results (in terms of

mean protrusion or stable adhesion lifetimes) is shown in Figure 7.

Biological Insights from the Modeling Approach

In many cell signaling systems, the coupling of multiple feedback mechanisms complicates

the mapping of stimuli to cell responses. Feedback loops can give rise to nonlinear effects

such as amplification, oscillation, and hysteresis (Besser and Schwarz, 2010; López, 2010).

In the context of cell migration, it was of interest to investigate how feedback loops might

amplify or attenuate signaling events to affect the observed stochastic switching between

protrusion and adhesion phenotypes. For example, measurements of the leading-edge

protrusion velocity in migrating CHO.K1 cells clearly show isolated bursts in protrusion that

appear to arise randomly; monitoring the localization of adhesions in these cells confirms

that a lack of protrusion is accompanied by formation of large stable adhesions (Cirit et al.,

2010).
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Based on our modeling studies, we can propose biochemical mechanisms that generate,

through amplification of stochastic fluctuations, transient yet dramatic excursions from a

particular stable state (Cirit et al., 2010; Welf and Haugh, 2010). Such transient behavior

takes the form of accelerations from an otherwise low protrusion state or decelerations

(pauses) from an otherwise persistent protrusion state. Positive feedback amplification via

Rac/PAK signaling and negative feedback attenuation via Src-mediated inhibition of

adhesion maturation are capable of mediating these respective behaviors. If both signaling

mechanisms are in play as we would propose, the same cell could employ one or the other

mechanism at different times and/or at different subcellular locations.

Simulation results show that in order to achieve protrusion under high ECM density or high

myosin activity conditions, the magnitude of the Src-mediated inhibition of maturation must

be of a certain magnitude relative to the inhibition of protrusion by stable adhesions.

Because Src-mediated buffering of adhesion maturation does not prevent adhesion

formation under low ECM/low myosin conditions, this hypothetical mode of regulation

presents an attractive means for maintaining sensitivity to changes in ECM density or

myosin activity across wide ranges of these variables (Welf and Haugh, 2010).

Our original hypothesis held that model bistability would be important for stochastic

phenotype switching. Although such behavior is likely to occur in regions of parameter

space that are close to the bistability envelope, we found that model bistability is not

required for the model to produce switching behavior. Bistable regions of parameter space

usually lie between those regions that give monostable low and monostable high protrusion,

and in the vicinity of the interface between the two, the stochastic model readily produces

transient departures from the stable state.

Open Challenges

A central issue in formulating increasingly useful models of cellular processes is how best to

rectify the increasing molecular-level detail of the biology knowledge base with a desire to

create holistic models encompassing a large set of regulatory interactions. In general, the

granularity of a model should be determined by how well the constituent mechanisms are

understood, balanced by the need to specify values of their corresponding rate parameters

and tempered by the availability of quantitative data (Mogilner et al., 2006; Cirit and Haugh,

2011). In many biological systems, biochemical complexity is combined with the need to

describe mechanical effects and account for spatial concentration and stress gradients.

Particularly in systems where spatial considerations are clearly important, as in cell

migration, inclusion of all known biochemical interactions is computationally intractable.

Further, many important cellular phenomena, such as those mediating mechanotransduction,

remain to be characterized mechanistically (Bershadsky et al., 2006). Although mechanical

and biochemical models of cell migration have been independently proposed, and

integration of biochemical and mechanical phenomena has been achieved recently in the

context of leukocyte rolling and firm adhesion (Caputo and Hammer, 2009), these two

fundamental modes of regulation have yet to be combined in a satisfactory way in a single

model of cell migration.
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In this chapter we have presented one approach for integrating the spatial and mechanical

processes mediated by stable adhesion formation and myosin contractility into the

biochemical framework that regulates cell protrusion. Our treatment of these processes

represents only the most basic relationships between model variables, and these

relationships should be refined as new data, especially those of a quantitative nature, become

available. The recent development of new experimental approaches for perturbing and

analyzing the spatial, temporal, and mechanical aspects of cell signaling will enable

collection of such data (Grashoff et al., 2010; Toomre and Bewersdorf, 2010; Wu et al.,

2009). Hence, as increasingly detailed descriptions of the underlying network are developed,

it will be necessary to evaluate and compare their emergent properties, mapped to the

behaviors encoded by the more coarse-grained or phenomenological treatments used to

construct necessarily less-detailed, holistic models.

Computational Methods

Parameter nomenclature

Certain model parameters are dimensionless and phenomenological; these are classified by

whether they characterize enhancement of species i formation (Ei), inhibition of species i

formation (Ii), or augmentation of species i consumption rate (Ci). Other parameters have

dimensions and include first-order rate constants with units of inverse time, characterizing

assembly/activation or disassembly/deactivation of species i (ka,i or kd,i, respectively), and

diffusion coefficients with units of area/time (Di). Dimensionless parameters Ki denote

ratios of rate constants, characterizing the rate of assembly or activation relative to that of

disassembly or deactivation for species i (Ki = ka,i/kd,i). Definitions of all model parameters

are listed in Table 1.

Model equations

We constructed model equations considering conservation of molecular and adhesion-based

species based on the conceptual model shown in Figure 2. We have explored two variations

of the model, each corresponding to the scaffolding effect of a different phosphorylation site

or sites on paxillin: serine 273 (Cirit et al., 2010) or tyrosines 31 and 118 (Welf and Haugh,

2010). The equations for each instance of the model were identical, except as indicated. The

dimensionless densities of nascent adhesions (n), stable adhesions (s), and recruited myosin

(m) are generally written as follows.

(1)

(2)

and
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(3)

The value of the parameter  maps in some way to the density and character of the

ECM, and v is the dimensionless protrusion velocity. The algebraic function f(m,x31/118)

describes the enhancement of adhesion maturation by myosin and its inhibition by paxillin

phosphorylated on tyrosines 31 and 118, which directs Src recruitment; in the model

considering serine 273 only, the dependence on the x31/118 variable is absent.

Previous theoretical studies have analyzed in detail how the kinetics of actin polymerization

might affect local membrane protrusion (Gov, 2006; Zimmermann et al., 2010; Barnhart et

al., 2011); in this work we employ a simple functional relationship between Rac activity (r)

and membrane protrusion, such that the protrusion velocity increases in response to Rac

signaling until a saturation limit is reached.

(4)

The function g(s) specifies the relationship between stable adhesion density and inhibition of

protrusion.

Although various phenomenological forms of the f and g functions may be proposed, we

adopted simple, linear forms as follows.

(5)

(6)

Again, the variable x31/118 in the f function is effectively fixed at zero in the βPix/no

DOCK180 model (Cirit et al., 2010).

The equations for the signaling circuit variables are as follows. The variable xi (i = 273 or

31/118) represents the subset of n harboring phosphorylated paxillin (and, implicitly, GIT1/

βPIX/PAK or CrkII/DOCK180 complexes), r is the density of active Rac (activated by βPIX

or DOCK180), and p is the subset of x273 harboring Rac-activated PAK. For the case where

we consider phosphorylation of serine 273 (Cirit et al., 2010), we write:

(7)

The small basal paxillin phosphorylation activity, p0, is included so that x273, r, and p can

evolve in time when all initial values are zero. Likewise, the fraction of nascent adhesions

harboring paxillin phosphorylated on tyrosine 31/118 (Welf and Haugh, 2010) is written
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(8)

The equation for the activation of Rac is written

(9)

or

(10)

In spatially extended simulations, the conservation of active Rac also includes lateral

diffusion. For the βPix/no DOCK180 model, an additional equation describes the activation

of PAK on paxillin/GIT1/PAK complexes.

(11)

Specification of stochastic models

To specify the stochastic model, we convert dimensionless model variables to numbers of

molecules via scaling factors, indicated with an asterisk, e.g. N = N*n, where N is the

absolute number of nascent adhesions in the control volume and n is the corresponding

dimensionless variable. Based on the scaling of the conservation equations listed in the

previous section, the other scaling factors are related to N* as follows.

(12)

(13)

(14)

Because our model contains certain phenomenological rate laws, the stochastic formulation

is not automatically specified as in the case of a mass action model. Our reaction propensity

functions, in units of number of molecules per minute, are specified as follows.

(15)

(16)
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(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

Stochastic simulations were performed using the Next Reaction Method (Gibson and Bruck,

2000), a modification of the Gillespie algorithm (Gillespie, 1977), implemented in

MATLAB (MathWorks, Natick, MA). These methods simulate trajectories of the chemical

master equation describing discrete stochastic systems, such as those encountered in cells

where small numbers of reacting species or rare reaction events dominate system dynamics.

Spatially extended simulations

Spatially extended stochastic simulations were performed using the Next Subvolume

Method (Elf and Ehrenberg, 2004), whereby diffusion of species i between adjacent

compartments is modeled as a “hopping” reaction with first-order rate constant Di/L2, where

Di is the diffusivity of species i, and L is the node spacing between adjacent compartments.
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A compromise between numerical accuracy and computational expense is achieved by

setting the node spacing L equal to the smallest of the dynamic length scales, ,

where τi is the mean lifetime of diffusible species i. In most of our spatially extended

simulations (Cirit et al., 2010), we assumed that only active Rac is diffusible, with τr = 1/

kd,r. Estimates of Dr and kd,r were obtained from the literature (Moissoglu et al., 2006),

yielding L = Lr ≈ 2 μm. We assumed a one-dimensional geometry, corresponding to the

contour of a leading edge, with periodic boundary conditions.
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Figure 1. Stochastic nature and spatial representation of adhesions
(a) Inverted grayscale image of a CHO.K1 cell expressing GFP-paxillin, monitored by TIRF

microscopy, showing regions of nascent adhesion formation/turnover (red arrowheads) and

the discrete nature of the larger, mature adhesions (adapted from (Cirit et al., 2010)). (b)

Diagram illustrating the control volume for the model system and the locations of adhesions

therein. Nascent adhesions are formed and move rearward relative to the leading edge as the

cell protrudes, and they either mature or turn over when they reach the back edge of the

lamellipodium.
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Figure 2. Conceptual model framework
The rate of formation of nascent adhesions depends on the ECM concentration, and the rates

of nascent adhesion formation and turnover depend on the velocity of membrane protrusion.

Nascent adhesions promote protrusion via Rac activation, either via a pathway utilizing βPix

that is reinforced by positive feedback through PAK, or through a pathway involving

DOCK180. Those nascent adhesions that are not turned over mature to form stable

adhesions, a process that is reinforced by myosin-mediated feedback and attenuated by Src.

Stable adhesions directly antagonize protrusion, disassemble over a relatively long time

scale, and have a diminishing influence on processes at the leading edge as a function of

their growing distance from the leading edge during protrusion.
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Figure 3. Characterization of protrusion/adhesion phenotypes via stochastic simulation
The model system was simulated starting with all species numbers initialized at zero. a.

Protrusion velocity v is plotted as a function of time for , N* = 3, and a

matrix of Es and In values as indicated. b. The same (Es, In) matrix was repeated for different

values of  and N* as indicated, and the apparent phenotype of each simulation is

categorized qualitatively. The matrix framed with a thicker border corresponds to the

simulations shown in a.
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Figure 4. Spatially extended simulation results
Spatially extended simulations were performed using the Next Subvolume Method to

account for lateral diffusion of active Rac; the virtual leading edge is subdivided into 20

subvolumes, each 1.94 μm in size. Protrusion velocity is indicated in grayscale (white: v = 0;

black: v = 1) as a function of time and position for a range of Es values. Adapted from (Cirit

et al., 2010).
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Figure 5. Characterization of stochastic simulation results

Mean lifetimes of protrusion and adhesion events at various values for , Es, En, Cn, Cs,

and ka,s were calculated. Protrusion events were identified as periods of time during which

the dimensionless protrusion velocity v > 0.5, and adhesion events were identified as periods

of time during which the number of stable adhesions was nonzero (S ≥ 1). Adapted from

(Welf and Haugh, 2010).
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Figure 6. Determination of regions of bistability by phase plane analysis
In the upper panels, the nullclines for n (green) and s (magenta) are plotted in (v, s) space.

For the n-nullclines, the values of the ECM parameter are 0.03 (light green), 0.1 (green), and

0.3 (dark green) min-1. Intersections of the n- and s-nullclines are fixed points of the system.

In the lower panels, the shaded region of ( ,Es) parameter space indicates where there

are multiple fixed points (  values given in units of min-1). Adapted from (Cirit et al.,

2010).
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Figure 7. Regions of bistability overlaid on stochastic simulation results
Mean lifetimes of protrusion and adhesion events were calculated as described in the caption

for Figure 5, and regions of bistability were identified by finding the steady state(s) of the

deterministic model equations numerically using different combinations of initial conditions

(upper panels). Stochastic simulation results corresponding to the parameter values indicated

by the symbols in the upper panels are shown in the lower panels. Results are adapted from

(Welf and Haugh, 2010) with In = 10, Is = 1, and Cs = 100.
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Table 1
Model parameters

Parameter Description Comment

Rate constant, N assembly Model input; varied from 0.01–100 min-1

En Rac → protrusion coupling Set to 100 (≫ 1)

Kv Saturation of protrusion velocity Set to 1; moderate saturation

In S → protrusion inhibition Varied from 0–10

Is Src → maturation inhibition Varied from 0–100

kd,n Rate constant, basal N turnover Set to 0.1 min-1; same value as kd,s

Cn Protrusion → N turnover coupling Set to 20 (Nayal et al., 2006)

ka,s Rate constant, basal S growth Set to 0.01 min-1 (≪ kd,s)

Es Myosin → S growth coupling Varied from 0–100

kd,s Rate constant, S disassembly Set to 0.1 min-1 (Nayal et al., 2006)

Cs Protrusion → S convection Varied from 1–100

kd,xi Rate constant, X dephosphorylation† Set to 10 min-1 (arbitrarily fast)

kxi Saturation of phospho-paxillin† Set to 1; moderate saturation

po Basal paxillin phosphorylation Set at 0.01 (≪ 1)

kd,r Rate constant, Rac deactivation Set at 4 min-1 (Moissoglu et al., 2006)

Kp Saturation of Pak activation Set to 1; moderate saturation

kd,m Rate constant, myosin deactivation Set at 4 min-1; same value as kd,r

N* Scaling factor, N Varied from 1–10

Km Amplification factor, S → Myosin Set to 10

Kr Amplification factor, Paxillin → Rac Set to 10

Dr Mobility coefficient, Rac Next subvolume model; set to 15 μm2/min (Moissoglu et al., 2006)

†
i denotes paxillin phosphorylation on serine 273 or tyrosines 31 and 118

Methods Cell Biol. Author manuscript; available in PMC 2014 July 31.


