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Abstract

In this work we discuss a spatial evolutionary model for a heterogeneous cancer cell population.

We consider the gain-of-function mutations that not only change the fitness potential of the mutant

phenotypes against normal background cells but may also increase the relative motility of the

mutant cells. The spatial modeling is implemented as a stochastic evolutionary system on a

structured grid (a lattice, with random neighborhoods, which is not necessarily bi-directional) or

on a two dimensional unstructured mesh, i.e. a bi-directional graph with random numbers of

neighbors. We present a computational approach to investigate the fixation probability of mutants

in these spatial models. Additionally, we examine the effect of the migration potential on the

spatial dynamics of mutants on unstructured meshes. Our results suggest that the probability of

fixation is negatively correlated with the width of the distribution of the neighborhood size. Also,

the fixation probability increases given a migration potential for mutants. We find that the fixation

probability (of advantaged, disadvantaged and neutral mutants) on unstructured meshes is

relatively smaller than the corresponding results on regular grids. More importantly, in the case of

neutral mutants the introduction of a migration potential has a critical effect on the fixation

probability and increases this by orders of magnitude. Further, we examine the effect of

boundaries and as intuitively expected, the fixation probability is smaller on the boundary of

regular grids when compared to its value in the bulk. Based on these computational results, we

speculate on possible better therapeutic strategies that may delay tumor progression to some

extent.
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1. Introduction

Cancer can be viewed as an evolutionary process, where a collection of pre-neoplastic

clones acquire genetic and epigenetic changes over a period of time [1]. During the process

of carcinogenesis, it is commonly believed that mutant cells with a gain-of-function fitness

advantage take over a small neighborhood of host cells through a selection process and

initiate a clonal area, leading to invasion into the proximal tissue. The fitness rates of

preneoplastic clones are effected by a mutation-selection mechanism and various micro-

environmental factors, and as a result a growing tumor has a high level of heterogeneity at

the cellular level. Both initiation and progression stages have been proposed to follow an

evolutionary stochastic model and different authors have observed the effect of a fitness

advantaged mutant introduced into the system and the probability that this takes over a finite

compartment of the cellular tissue. In recent years (see [2]–[9]), these models have been

successfully applied to both one-hit and two-hit mutation-selection processes. During the

final stages of malignancy, the mutant phenotype gains a relative advantage through

motility. The evolutionary theory of these complex phenomena has not yet been addressed

in the literature.

For the past three decades, there have been several attempts to understand the process of

fixation in spatially homogeneous systems. It was found that many spatially structured

models such as lattices models have little or no effect on the selection process [10]–[13].

More recently, Lieberman et al [14] generalized this to arbitrary graphs and found the exact

symmetry conditions under which the fixation probability for an advantaged mutant,

evolving on a graph, is the same as that for a mixed population model. Houchmandzadeh et

al [15] demonstrated that fixation probability of a beneficial mutation in a geographically

structured population is almost the same (or, slightly smaller) compared to the unstructured

population for a Voter framework.

Many authors have studied the spatial dynamics of cancer invasion using cellular automata/

agent based models, partial differential equation models, and hybrid models including

multiscale modeling techniques [16]—[36]. In these models, it is possible to incorporate

progressively more complex cellular mechanisms and biological phenomena [20]. In the

current paper, we adopt a simpler approach. In an attempt to understand and analyze the

dynamics of invasion, we focus on only two forces, namely, proliferative and migrative

potentials that influence the inherited genetic behavior of mutants.

Our approach builds on spatial evolutionary modeling of cancer initiated in [6], where the

process was described as a linear chain (1D). In this spatial model, cells were placed linearly

at different positions, and restricted to replicate only to a neighboring point after a cell death.

In this model, the fixation probability of single hit and double hit mutants was investigated.

In particular, it was found that in the spatial case, the probability of fixation of advantaged

and disadvantaged single mutants is lower compared to that in the space-free model. An

extension of this 1D model is presented in [8], where the spatial dynamics on a 2D lattice is

analyzed. Two genetic factors are considered: replicative potential and cellular motility. The

overall conclusion is that migration has a major impact on the probability of a single mutant
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cell's ability to invade an existing colony, something that had not been investigated in

previous modeling efforts to understand cancer progression.

The goal of the present study is to develop a better quantitative analysis of the invasion

probability, by avoiding the rigid framework imposed by a regular grid. We introduce a

stochastic death-birth model (i.e., the Moran process [37]) for the spatial evolutionary

system. In order to circumvent the rigidity of a regular grid, we use two different methods.

In the first construction, we start with a regular square lattice and add/remove neighbors in a

random way (the background lattice can be of Moore neighborhood type with 8 neighbors,

or, von-Neumann neighborhood, with 4 neighbors). The important feature of this

construction of the connectivity graph is the notion that we construct the number of

neighbors for each of the nodes on the lattice (where each node is occupied by either a

normal or a mutant cell). This construction is a mixture of both directed and undirected

links, i.e., some nodes and their neighbors are bi-directional and some are uni-directional.

Broadly speaking, any regular grid assumes that the number of neighbors around each cell is

homogeneous at every location in space. This is not a realistic assumption for modeling

biological tissues. An unstructured mesh where the number of neighbors around each nodal

position is a random variable, can be a better approximation to reality. This suggests our

second construction, where we consider an unstructured mesh which is defined as a random

neighborhood graph with longer ranges of connectivities versus the previous case. The

distinguishing feature however, is the main fact that the unstructured mesh does behave

symmetrically between the two type of species in terms of the connectivity graph and the

number of neighbors. The contrasting feature in the unstructured mesh construction is that

every node and its corresponding neighbors are bi-directional compared to the previous

scenario.

Here, we are mainly concerned with the question of fixation probability in the presence of a

migration potential, or cellular motility for either only the mutant phenotype or for both the

normal and mutant phenotypes. We address the effects of a random environment and

migration potential on the fixation probability.

The paper is organized as follows. In Sec. 2 we review the background related to space free

and spatial models, and introduce our spatial model in the presence of a migration potential/

motility. In Sec. 3 we investigate the two spatial models of structured grids with variable

(static and dynamic) neighborhoods and observe the effect of varying the number of

neighbors and/or migration potentials of both cell types. We subsequently turn to the

unstructured mesh to investigate the effect of migration potential on the fixation probability.

The effect of boundaries on the value of the fixation probability is briefly discussed at the

end of Sec. 3. We discuss the biological relevance and connections to the known analytical

limits of the models in the discussion part, Sec. 4.
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2. Methods

2.1. Background

The traditional Moran process is described as follows. Consider a population of N cells

consisting of two phenotypes: A (host cells) and B (mutant cells). We also refer to type B

cells as pre-cancerous or pre-malignant cells throughout the paper. Each cell type has a

proliferative potential. At every time step, one cell is randomly chosen for death and is

replaced by the progeny of another randomly chosen cell from the same population, such

that the population size is constant at every time step. Cells are chosen for death with equal

probabilities, and they are chosen to reproduce according to their relative fitness. We assume

that the two cell types A and B have fitness rates rA = 1 and rB = r respectively. If the

number of B cells is i, then the probability that B is chosen for reproduction is PB+ = ri/(N −i

+ri). The Moran process is a one-dimensional birth-death process which tracks the number

of type B cells over time. Its properties in the context of invasion probability and other

statistical features have been discussed in detail in [2]—[15].

A spatial generalization of the above model is considered as a 1D model in [6], in which a

population of N cells are placed along a line at locations 1, 2, . . . , N. As before, at each

time-step a cell is randomly chosen for death, and the empty spot is subsequently occupied

by the progeny of one of the two neighboring cells, proportional to their fitness.

A second generalization of this model is introduced in [8], where a population of N cells

consisting of cells of types A and B, is placed on a rectangular grid (such that all grid points

are filled). Both division and migration potentials of A and B cells are incorporated in the

model dynamics. Let rA and rB be the division rates and mA and mB the migration rates of

type A and B cells respectively. Each update starts off with a cell chosen randomly to die.

Then one of the following four events might occur: A divides, B divides, A migrates, B

migrates. If a division event of A or B occurs, then the update is complete and the process is

repeated again. If a migration event occurs, then the empty spot is occupied by a migratory

cell, leaving another empty spot behind. Again, a new elementary event is considered till the

empty spot is filled (i.e. until the occurrence of a division event). The grid is always filled up

at the end of each update following the Moran process assumption that the whole population

is constant at every iteration.

The model chooses the nearest neighbors around the empty spot taken to be a von-Neumann

neighborhood (i.e. four neighbors). Suppose nA and nB are the number of type A and B cells

around the empty spot, then the probabilities of each elementary event are given by

(1)

(2)
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(3)

(4)

where Δ = nA(rA+mA)+nB(rB+mB). Introducing dimensionless variables, equations (1)–(4)

can be rewritten as:

(5)

(6)

(7)

(8)

where λ = rB/rA,  with kX = mX/rX (for X = A, B). For the spatial

model outlined above, the simulations in [8] were performed on a square grid with periodic

boundary conditions.

3. The effect of variable neighborhoods

It is clearly evident that equations (1)–(4) are dependent on the number of neighboring cells

of type A and B, which is fixed in the approach described in [8]. We now generalize the

above expressions to include random sets of neighbors at each nodal position. This leads to

changes in nA and nB that in turn might affect the cellular dynamics of the whole system. We

explore the possible consequences of this change in two different numerical experiments.

We apply the algorithm outlined above for all the computations in this work by running 5

sets of simulations of 10000 iteration each, and each iteration is performed until, for a fixed

neighborhood, the system reaches fixation and we estimate the invasion probability. The

uncertainty is obtained using the definition of standard deviation and plotted along with the

mean.

3.1. Regular mesh, random neighborhoods

The isothermal theorem for graphs [14] states that, if each node of a graph has the same

number of neighboring nodes, i.e. a symmetric bidirectional graph, then the invasion

probability is equivalent to that of the fixation probability of the traditional Moran process in

the absence of migration. Thus the invasion probability obtained from symmetric graphs

provides no further insight into the complex features of the tissue architecture. As a result of

this, we examine the variation in the invasion probability for two different scenarios by
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introducing randomness so that it specifically introduces asymmetry into the problem

despite the symmetry of the graph.

Static Random Neighborhoods—In the first scenario, we investigate the invasion

dynamics resulting from a random number of neighbors chosen from a fixed distribution at

each node on a regular lattice. This simulation is carried out by fixing the mean number of

neighbors and varying the width of the distribution. The neighborhood size for each grid

point is assumed to be a random, integer-valued variable distributed uniformly over a given

interval. We varied this distribution from a delta-function to a distribution with a relatively

wide spread. This experiment was carried out to investigate the correlation between the

invasion probability and the distribution width. We considered a regular, square lattice

comprised of 21 × 21 = 441 cells with reflecting boundary conditions. Random numbers of

neighbors are generated from a uniform distribution, in such a way that the average number

of neighbors is always 4, but the width varies.

The algorithm used for the experiments can be summarized as follows. The following

construction is carried out such that the delta distribution follows a background mesh, i.e., a

lattice with four neighbors. For each nodal point on the grid, we generate a random number

of neighbors from a given distribution, say D = [1, 7]. The number of neighbors for each

node will then be 1, 2, . . . , or, 7. Then, distances are computed from every node to all other

nodes on the lattice. The nearest set of neighbors for a particular node is then considered

depending on the nodes that are located closest. If two or more nodes are located at the same

distance from the given node, then we randomly pick a node. This construction introduces a

mixture of both directed and undirected connections between a node and its neighbors (i.e.

some nodes and their neighbors may be symmetric, while others will be asymmetric). The

set of neighbors generated for each node on the lattice is fixed throughout the experiment.

For a distribution with zero width (on a lattice), the invasion probability of the mutant highly

depends on its migration and reproductive potentials. Simulations were carried out by

applying the algorithm outlined in the previous section with reflecting boundary conditions

for advantaged mutants. We obtain a similar figure with approximate values of invasion

probability captured in Figure 1 in the paper [8]. Also, if the number of neighbors is

uniformly increased or decreased, i.e., each node still consists of the same number of

neighbors, we can intuitively assume that this may not change the invasion probability.

Now, we introduce a variation on the number of neighbors at each nodal position, which can

be attributed to the asymmetry of the lattice.

At the start of each simulation one mutant is introduced at a randomly chosen position in the

lattice, where the remaining cells populating the lattice are type A cells. Simulations are run,

and each iteration is performed until, for a fixed neighborhood, the system reaches fixation

and we estimate the invasion probability.

In the first scenario, simulations were carried out for advantaged mutants (λ = 1.5) assuming

zero migration for both types of cells. The effect of the width of the distribution on the
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invasion probability is captured in Figure 1 for a migration free system. It is clearly evident

that the invasion probability decreases with the width of the distribution.

Secondly, the simulations were run only for advantaged mutants (λ = 1.5) assuming the

migration of A cells is zero, i.e. kA = 0. This experiment is done in order to understand the

effect of migration on the invasion probability. The effect of the width of the distribution on

the invasion probability is plotted in Figure 2, where zero width corresponds to the results

reported in [8]. From the figure, we clearly observe that the invasion probability is

negatively correlated with the width of the distribution, i.e., as we increase the width of the

distribution the invasion probability decreases. In the presence of migration which is

captured in Figure 2, we do not observe a significant change in the invasion probability for

the distribution [3, 5] compared with a migration free system. However, for distributions [2,

6] and [1, 7], migration suppresses the invasion probability, due to the chaotic architecture.

The invasion probability drops to the order of 10−3 when neighbors are selected from the

distribution [1, 7].

The invasion probability decreases with increasing distribution width. The randomness of

the architecture pushes the generated random mesh far away from the isothermal graph

(whose invasion probability is equivalent to that of the Moran process fixation probability).

This has been earlier studied on scale free networks [38]. For a high variance of the

distribution of neighbors, we can possibly have several clusters of cells which are very

poorly connected to each other (due to the unidirectional construction of the random mesh).

These poorly connected clusters increase as the variance increases, leading to mutant

extinction implying a smaller invasion probability.

Dynamic random neighborhoods—The second experiment is similar to the one

described above, except that we generate a new random set of neighbors at every iteration.

This experiment is carried out to examine the effect of the change in tissue geometry after

every iteration. Simulations were run, and each iteration is performed until, for a fixed initial

neighborhood, the system reaches fixation and we estimate the invasion probability. The

effect of the width of the distribution on the invasion probability is similar to the plot

presented in Figure 1 for a migration free environment (because, averaging over a dynamic

random neighborhood gives a static random neighborhood). To observe the effect of

migration of B cells on the invasion probability, we assumed the migration potential of A

cells to be zero, i.e. kA = 0. The simulations were run only for advantaged mutants (λ = 1.5),

kB = 5.0, and the invasion probability is computed for varying distribution widths is

presented in Figure 2.

In the first experiment (static neighborhood), the number of neighbors are static throughout

the whole set of iterations, which can be thought of as a fixed set of neighborhood clusters

over time for every node. However, in the second experiment (dynamic neighborhood) the

number of neighbors changes for every iteration, i.e., this can be understood as the change in

the neighborhood size over time. In order to appreciate the effect of the distribution width on

the invasion probability, consider the following comparison. For simplicity, let us take kA =

kB = 0, a case of no migration. In the case of the lattice model with a fixed grid (which

corresponds to the zero-width distribution, [4, 4]), the invasion probability of an
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advantageous mutant with λ = 1.5 is given by 0.2969. When we use a random neighborhood

model and increase the distribution width to that of [2, 6], the fixation probability drops to

0.2267. This clearly indicates that for a migration free system, proliferative potential is

hindered due to the increase in the width of the distribution, thereby decreasing the invasion

probability. Another interesting observation from Figure 2 is that, we notice that for the

distribution [1, 7] the invasion probability is close (i.e., of the same order) to the invasion

probability of a neutral mutant (which is given by ρneutral = 1/N = 0.0022). This suggests that

an increase in the distribution width can eliminate the advantage given by a 50% increase in

the replication potential. By increasing the width of the distribution, the invasion probability

decreases rapidly and approaches the invasion probability of mutants with neutral drift,

which is strongly suggested from a study of lower and upper bounds of fixation probabilities

on a graph [39].

From the biological point of view, the alterations in the neighborhood for each node can be

attributed to tension, stress, and several other micro-environmental factors. These results

strongly suggest that the geometry of the neighborhood (either static/dynamic) plays an

important role in the invasion probability under constrained boundaries, both in a migration

free system as well as in the presence of migration.

3.2. Unstructured mesh

Next, the invasion dynamics of pre-cancerous cells is explored on an unstructured mesh. The

construction of an unstructured (or, a Voronoi) mesh is completely different from the

construction of the static and random neighborhood lattices in Sec. 3.1. An unstructured

mesh is constructed using QHull in Matlab software. In the static and random neighborhood

scenarios, the links or connections between a node and its neighbors are either unidirectional

or bi-directional; however, in the case of unstructured meshes the links between a node and

its neighbors are bidirectional. It is well known that on an unstructured grid, the number of

neighbors at each location can vary greatly. The impact of the migration potential on the

invasion probability is analyzed and compared with the corresponding results on a regular

grid structure for two different scenarios. In the first scenario we assume that the migration

potential of B (or mutant) cells is kB > 0 and the migration ability of A cells is chosen to be

kA = 0. In the second scenario we consider migration potentials of both types of cells to be

kA, kB > 0.

Randomly, one mutant (type B) cell is introduced into the mesh whilst the rest of the cells

populating the mesh are type A cells. Our system is now composed of N − 1 type A or host

cells and a single mutant or type B cell. The algorithm outlined in the previous sections is

applied with reflecting boundary conditions, again until one of the cell types becomes

extinct. For all three cases of mutants, we observed that the invasion probability is much

smaller when compared to the corresponding results on a lattice. Figure 3 is a plot of the

invasion probability against the migration potential of type B cells assuming zero migration

potential for type A cells, kA = 0. We ran the simulations for advantaged mutants (λ = 1.5),

neutral mutants (λ = 1.0) and disadvantaged mutants (λ = 0.9) and the effect of the migration

potential on the invasion probability is plotted for each kB. Simulations are run, and each
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iteration is performed until, for a fixed initial neighborhood, the system reaches fixation and

we estimate the invasion probability.

We then changed the values of λ for several migration potentials kB, and plotted these

against the average invasion probability. A contour plot is presented in Figure 4, clearly

indicating that the proliferative potential plays an important role along with the migration

potential. Another interesting feature worth highlighting is that, for a fixed migration

potential and varying proliferative potential, the invasion probability increases almost

linearly.

Figure 5 displays the invasion probability against the migration potential of type B cells

assuming that the migration potential of type A cells is non zero, kA > 0. The simulations

were run for advantaged mutants (λ = 1.5), neutral mutants (λ = 1.0) and disadvantaged

mutants (λ = 0.9). A significant change was not observed in the invasion probabilities of

mutants with either zero or non zero (and lower) migration potential of type A cells (results

not shown here). This indicates that lower migration potentials of type A cells does not have

a predominant impact on invasion.

From Figures 3 and 5, we observe that in the absence of migration, i.e. when kA = 0 and kB =

0, the invasion probability which is 0.2969 is close to the fixation probability of the classical

Moran process 0.3333. The small change can be attributed to either computational errors or

to the geometry of the mesh. Also, the nodes located at the boundary may play an important

role because of lesser number of neighbors (which can be interpreted as links/connections)

associated with these. Another interesting observation is with respect to the neutral drift of

mutants. In Figures 3 and 5, for the scenario λ = 1.0, i.e., rA = rB and for kA = kB, the

invasion probability is almost equivalent to (i.e., is of the same order as) the fixation

probability for a system (in the absence of boundary effects) with neutral drift which is

ρneutral drift = 1/N = 0.0022. From Figure 5, the change in the invasion probability is clearly

observed around the point kA = kB = 1.0, for a neutral mutant (i.e., λ = 1.0). We observe the

two regimes for a neutral mutant, i.e kB < 1.0 and kB > 1.0 . For kB < 1.0, the invasion

probability is very small and close to zero, while we observe a non-zero invasion probability

in the regime kB > 1.0 . Thus, the change in the invasion probability is around neutral

mutant.

The aforementioned change can be attributed to the asymmetric nature of migration rates

between type A and B cells. This suggests strongly that migration does affect the system

unless there is a higher rate of migration advantage to the mutant cell as compared to the

host cell. The invasion probability is vanishingly small for disadvantaged mutants in the

presence of migration of type A cells, which is captured in Figure 5.

In order to compare with a 21×21 lattice that has 441 nodes, we designed an unstructured

mesh consisting of 441 elements. However, to make a fair comparison with a lattice, we

estimated the average number of neighbors for an unstructured mesh that has 441 elements.

A set of sample realizations for an unstructured mesh was taken to obtain the average

number of neighbors for an element, which was approximately 6. We took this number 6 as

the nearest number of neighboring locations for each nodal point on a lattice on which a cell
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can give birth/migrate. The shape of the neighborhood of a node on the lattice is the von-

Neumann neighborhood along with 2 diagonal nodes. Figure 6 displays a comparison of the

invasion probabilities on an unstructured mesh and on a lattice with parameters λ = 1.5 and

kA = 0. It is clearly evident that the lattice results overestimate the invasion probability. The

difference in fixation probability grows with the migration parameter kB.

For a high fitness advantage (λ = 1.5 ), the cluster expansion of mutants is increased,

resulting in a non-significant effect of migration potentials on the invasion probability, i.e.,

the proliferation mechanism dominates the migration mechanism. Hence, we observe the

migration potential to have a very minimal effect on the invasion probability for high fitness

advantages.

Figures (7)—(9) display the evolution and invasion of one type B cell to a saturated state

containing all type B cells on an unstructured mesh. A blue color (dark in black and white)

indicates normal or type A cells and a red color (light in black and white) denotes pre-

cancerous or mutant cells (i.e. type B cells).

3.3. Boundary effect on Lattice

We now consider the effects of the lattice boundary on the invasion probability. We

investigate this by first constructing a 21 × 21 regular square grid. Instead of randomly

placing a pre-cancerous cell on the grid, we fix its position on the boundary. Our system is

now filled with 440 type A or host cells placed at every location and one type B cell placed

on the boundary. The algorithm outlines in previous section is run using reflecting boundary

conditions, and each iteration is performed until, for a fixed initial neighborhood, the system

reaches fixation and we estimate the invasion probability.

We investigate the variation in the invasion probability as a function of the initial location of

type B cell, in particular, at the boundary. A lattice of 21 × 21 cells was constructed and the

position of the type B cell was fixed at (i, i) = (1, 1), while the rest of the lattice was filled

with type A cells. different sets of experiments were carried out by varying the initial

position of the B cell along the diagonal, i.e. (i, i) = (2, 2), (3, 3), . . . , (11, 11), . . . , (21, 21).

A sample scenario in which kA = 0 and λ = 1.5 is chosen for this purpose. We observe that

the invasion probability is much smaller when compared to that at the center of the lattice.

There is a sharp increase in the invasion probability when the initial position of the B cells is

changed from (1, 1) to (2, 2), which remains constant as the initial position is moved to the

center of the system (11, 11), and follows a similar pattern as observed in the previous case

till it reaches (21, 21). Figure 10 displays the boundary effect for advantaged mutants and

for various values of kB. Other scenarios with neutral and disadvantaged mutants, kA > 0,

were also investigated and similar behavior of the system was observed. This clearly

suggests that boundary effects have a predominant influence on the invasion probability.

This is in agreement with the earlier, 1D results of [6].

4. Discussion

We have presented a computational approach to investigate an important but poorly

understood phenomenon, phenotypic heterogeneity, which appears to be highly prevalent
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during various stages of tumor growth. The existence and adaptability of pre-cancerous cells

with different fitness rates in human tissues is still far from an established fact. Thus, we

formulated a simplified scenario and investigated mutant dynamics with only two pheno-

types in our system under a confined tissue geometry. We have attempted to understand the

effect of tissue geometry on the invasion probability by generating a random set of

neighbors for each node on a regular grid. Also, we have focused on the use of unstructured

meshes that we believe captures features of real tumors that structured meshes fail to do, and

have analyzed the resulting invasion dynamics of mutants.

Random neighbors on a lattice

From Figure 1, we obtain some insight into the effects of the randomness of neighborhood

sizes on the invasion probability in a migration free system. As noted previously, the

invasion probability is negatively correlated with the width of the distribution of

neighborhood size from Figures 1 and 2. An increase in the distribution width of the

neighborhood size can completely eliminate the advantage given by an increased replication

capacity of mutants, making them behave as if they were neutral. These results provide

further justification for us to conjecture that tissue geometry plays an important role in the

invasion dynamics of pre-cancerous cells within a confined region.

Invasion probability on unstructured mesh

The resulting graphs confirm that the invasion probability is much smaller on unstructured

meshes compared to a regular grid. Interestingly, for the scenarios in which kA = 0 and kA =

1.0, and for a given λ = 1.5, we observe minimal effect on the invasion probability. This

suggests that smaller migration potentials of the wild type has a smaller impact on the

invasion probability. For a neutral mutant, we notice a significant change in the invasion

probability for the scenarios kA = 0 and kA = 1.0. However, when the ratio of the replicative

potentials is altered for various migration potentials, there is a huge impact on the invasion

probability, which was observed from Figure 4. The effect on the trade-off between

replicative and migrative potentials on the invasion probability is captured in Figure 4.

Graphs (7)–(9) captures the morphology of mutant invasion for a sample realization. Our

model is a generalized version of existing models and better captures the results on invasion

dynamics.

Boundary effect on lattice

One of the results worth highlighting is the effect of the boundary on regular grids. This is

done by fixing the position of a B cell in the system at (i, i) = (1, 1). This resulted in the

invasion probability being smaller when compared to the invasion probability of a B cell

placed at the center of the system. As the position of the B cell is moved inwards from the

boundary, the invasion probability increases.

The models considered here are of course a simplification of reality on many levels. For

example, experimental evidence suggests that more than one phenotype can co-exist during

tumorigenesis [40]–[41], due to which the selection mechanism becomes very complicated.

We do however ignore such complications in the present work.
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We anticipate that our results can be used to better understand some mechanisms in tumor

progression. This includes the effect of the tumor microenvironment, which can alter the

proliferative and migrative potentials of cancer cells. Here, we used a simplified model to

gain insights into the effect of invasion probability on random and unstructured meshes

under two biological mechanisms, i.e. proliferation and migration. This model can be

extended to include the randomness of fitness and migration potentials, as a result of

heterogeneous tumor microenvironment and for distinct cell pheno-types. In addition, it is

biologically known that the epithelial-mesenchymal transition (EMT) is a critical stage in

metastasis, when cells acquire migrative capacity [42]. Our computational approach may be

applied to address questions related to this biological phenomena. For example, we have

shown that the invasion probability depends on the width of the distribution of neighbors.

One might be able to experimentally validate this by inducing cells to undergo EMT and

measuring the invasion probability for different tissue architectures (perhaps using different

cell lines). In addition, we have observed that increasing migration potential (for example,

due to EMT) has a significant effect if proliferative potential is around the neutral drift.

Experimental studies of cells undergoing EMT in different microenvironment conditions

(for instance, under normal and hypoxic conditions) might be used to validate this

prediction. Finally, our results confirm that distortion of the tissue architecture and control

of migration potential of pre-cancerous cells can reduce tumor progression to some degree.

Also, the invasiveness of pre-cancerous cells can be controlled by a therapeutic agent that

can inhibit alterations in the tissue geometry.
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Figure 1.
Invasion probability of mutants as a function of varying distribution width with static

random neighborhood in a migration free system. Parameters: lattice size = 21 × 21, λ = 1.5,

1.3, kA = kB = 0.
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Figure 2.
Invasion probability of mutants as a function of varying distribution width with static and

dynamic random neighborhood. Parameters: lattice size = 21 × 21, λ = 1.5, kB = 5.0 and kA =

0.
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Figure 3.
Invasion probability of various mutants as a function of migration potential of type B mutant

on an Unstructured mesh. Parameters: mesh size = 441 elements, λ = 1.5, 1.0, 0.9 and kA =

0.
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Figure 4.
Contour plot of average invasion probability of various mutants against migration potential

of type B mutant and proliferative potentials λ on an Unstructured mesh. Parameters: mesh

size = 441 elements and kA = 0.
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Figure 5.
Invasion probability of various mutants as a function of migration potential of type B mutant

on an Unstructured mesh. Parameters: mesh size = 441 elements, λ = 1.5, 1.0, 0.9 and kA =

1. Notice that invasion probability is very small when kB ≤ kA, and it is also vanishingly

small in the case of disadvantaged mutant λ = 0.9.
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Figure 6.
Comparison of Invasion probabilities: Unstructured mesh (vs) Lattice. The average number

of neighbors for the lattice are chosen to be approximately 6, i.e., the von-Neumann

neighborhood along with diagonal nodes. Parameters: lattice size = 21 × 21, mesh size = 441

elements, λ = 1.5 and kA = 0.
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Figure 7.
Spatial evolution of B cell on an unstructured mesh.
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Figure 8.
Boundary effect on a Lattice: Invasion probability against the position of B mutant.

Parameters: lattice size = 21 × 21, λ = 1.5 and kA = 0.
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