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ABSTRACT Nonequilibrium stability theory is reviewed.
In answer to recent comments by Fox [Fox, R. F. (1979) Proc.
Nat]. Aced. Sci. USA 76,2114-21171, it is pointed out that various
choices of Lyapounov functions are possible in the nonlinear
range of irreversible phenomena.

In 1974, Keizer and Fox (1) published a paper entitled "Qualms
regarding the range of validity of the Glansdorff-Prigogine
criterion for stability of nonequilibrium states" in which they
attributed to us claims that actually were not made. Glansdorff
and the present authors replied to this paper (2) and gave at the
same time a brief review of the stability theory of nonequilib-
rium states. The central quantity in this theory is (62S)s, the
second-order excess entropy around the steady state, which is
used as Lyapounov function to derive linear stability cri-
teria.
A similar situation has again arisen with the recent paper by

Fox (3), entitled "Irreversible processes at nonequilibrium
steady states," in which it is stated: "However, Keizer's work
suggests, as has been demonstrated in this paper, that the 'excess
entropy' does not provide a Liapounov criterion near steady
states, and that, instead, the covariance of the fluctuating
thermodynamic variables does provide such a criterion."

In what follows, we briefly summarize the current status of
stability and fluctuation theory and show that Fox's claim arises
from a misunderstanding of our work.

The status of (82S) ,

In the vicinity of equilibrium (62S)Xq plays a double role (4, 5):
it may be used as a Lyapounov function and at the same time
it generates the probability of fluctuations around equilibrium.
On the other hand, away from equilibrium, (62S).s does not
generate the probability of fluctuations. We proved this state-
ment for reaction-diffusion systems in 1971 (ref. 6; see also ref.
5 for a recent survey of the subject).
Now, this fact about (52S), has nothing to do with the re-

quirements one sets traditionally for a Lyapounov function.
Indeed, as we emphasized in our answer (2) to Keizer and Fox,

the stability criterion

(62S)ss < 0

dt(62S)s> [1]

need not be an identity, because it has to be fulfilled only along
a solution of the conservation equations for given constraints.
In the light of these definitions of stability and of Lyapounov
functions (7), (62S), keeps its significance entirely. As we
pointed out (4, 5), its usefulness is 2-fold: first, it has a macro-
scopic meaning below, at, and across bifurcation points, inde-
pendently of the fine-and often complex-details of the be-
havior of the fluctuations; and second, it enjoys universality,
as it can be applied to a wide class of systems including those
subject to spatially inhomogeneous disturbances, surface effects,
and so forth.

Nonuniqueness of Lyapounov functions
Naturally, the above summarized properties of (625)ss do not
imply that there is an argument against the use of other Lya-
pounov functions. This nonuniqueness is widely recognized in
the mathematical literature. To quote Hirsch and Smale (7):
". . . There is no cut-and-dried method of finding Lyapounov
functions; it is a matter of ingenuity and trial and error in each
case. Sometimes there are natural functions to try."
The covariance of the fluctuating thermodynamic variables

advocated by Fox (3) provides an example of just such another
Lyapounov function applicable to certain classes of systems.
Actually, as far back as 1967, Schlogl (8) introduced an analo-
gous quantity in his analysis of the statistical foundations of the
Glansdorff-Prigogine criterion. Fox did not mention this ref-
erence or the work of Lax (9) and Mazo (10), in which an ex-
plicit formulation of the fluctuation-dissipation relationship
for steady states was given.

In short, in so far as we can see, there is nothing in Fox's
proposal (3) that has not already appeared in the literature.
Moreover, certain drawbacks of his approach should be pointed
out. For instance, in the presence of bifurcations and of spatially
inhomogeneous fluctuations, not only is the covariance matrix
ill-behaved but also the Gaussian approximation itself may
break down (11, 12).
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Conclusion
Stability theory remains a challenging subject. Fluctuation
theory is a useful complement to macroscopic stability and
bifurcation analyses. We therefore appreciate the attempts of
Keizer and Fox to study the statistical foundations of stability
theory. However, on view of the nonuniqueness of Lyapounov
functions, various choices are possible, depending on the context
in which the problem is stated.
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