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Abstract

Rare mutations in AβPP, PSEN1, and PSEN2 cause uncommon early onset forms of Alzheimer’s

disease (AD), and common variants in MAPT are associated with risk of other neurodegenerative

disorders. We sought to establish whether common genetic variation in these genes confer risk to

the common form of AD which occurs later in life (>65 years). We therefore tested single-

nucleotide polymorphisms at these loci for association with late-onset AD (LOAD) in a large

case-control sample consisting of 3,940 cases and 13,373 controls. Single-marker analysis did not

identify any variants that reached genome-wide significance, a result which is supported by other

recent genome-wide association studies. However, we did observe a significant association at the

MAPT locus using a gene-wide approach (p = 0.009). We also observed suggestive association

between AD and the marker rs9468, which defines the H1 haplotype, an extended haplotype that

spans the MAPT gene and has previously been implicated in other neurodegenerative disorders

including Parkinson’s disease, progressive supranuclear palsy, and corticobasal degeneration. In

summary common variants at AβPP, PSEN1, and PSEN2 and MAPT are unlikely to make strong

contributions to susceptibility for LOAD. However, the gene-wide effect observed at MAPT

indicates a possible contribution to disease risk which requires further study.

Keywords

Alzheimer’s disease; amyloid-β protein precursor; genetics; human; MAPT protein; PSEN1
protein; PSEN2 protein

INTRODUCTION

The neuropathological hallmarks of late-onset Alzheimer’s disease (LOAD) are assumed to

provide major clues to pathogenesis. These include extracellular plaques, which are

predominantly made up of insoluble amyloid-β protein, and neurofibrillary tangles (NFTs),

intracellular accumulations of paired helical filaments, which are comprised mainly of

hyperphosphorylated forms of the microtubule associated protein, tau [1]. Genes involved in

the amyloid pathway and the tau gene, MAPT, have therefore long been considered as

putative candidates for involvement in LOAD susceptibility.
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Amyloid-β is formed from the cleavage of amyloid-β protein precursor (AβPP) by β- and γ-

secretases. Mutations within AβPP, plus presenilin 1 (PSEN1) and presenilin 2 (PSEN2),

which encode part of the γ-secretase complex, can cause the autosomal dominant,

predominantly early-onset forms of Alzheimer’s disease [2, 3]. To date, 32 pathogenic AβPP

mutations have been identified in patients with early-onset Alzheimer’s disease (EOAD)

(Alzheimer Disease & Frontotemporal Dementia Mutation Database; http://

www.molgen.ua.ac.be/admutations). These mutations increase cleavage of AβPP by β-

secretase [4]. In addition, 185 PSEN1 and 13 PSEN2 pathogenic mutations have been

observed in EOAD patients which increase γ-secretase cleavage of AβPP [4].

Genetic variation at the MAPT locus has been convincingly associated with an increased risk

of the sporadic tauopathies progressive supranuclear palsy (PSP) and corticobasal

degeneration (CBD) [5]. The associations reported include several polymorphisms that span

the MAPT locus and which are in high linkage disequilibrium (LD). These variants form two

extended haplotypes H1 and H2, which have been shown to capture the common haplotypic

variation across the gene. H1, the more common haplotype, consists of multiple sub-

haplotypes. One of these, H1c has been found to capture the observed association between

H1 and both PSP and CBD more effectively [6]. H2 is a less common, single, un-

recombining haplotype.

In addition a recent genome-wide association study (GWAS) identified association between

MAPT and Parkinson’s disease (PD) [7], where three single nucleotide polymorphisms

(SNPs) at the locus surpassed genome-wide significance. Simón-Sánchez and colleagues

observed that the risk alleles at each SNP are in LD with the H1 haplotype, thus the findings

are consistent with those from other neurodegenerative disorders.

While AβPP, PSEN1, and PSEN2 are established contributors to rare forms of AD, as is

MAPT to other neurodegenerative disorders including PD, PSP, and CBD, the question

remains whether these genes are implicated in the common form of AD which occurs later

in life (>65 years). Relatively recent studies testing these genes for association with LOAD

have produced both positive [8-17] and negative results [18-24]. This includes analyses of

the MAPT H1 and H1c haplotypes [8, 16, 17, 19, 21, 24]. However, these studies have been

underpowered to detect common risk alleles of the effect sizes typically seen in common

disorders. We therefore tested variants at the AβPP, PSEN1, PSEN2, and MAPT loci for

association with LOAD in an extended version of the Genetic and Environmental Risk in

AD Consortium 1 (GERAD1) case-control dataset, previously published by Harold and

colleagues [25], consisting of 3,940 AD cases and 13,373 controls.

MATERIALS AND METHODS

SNPs within 20 kb of AβPP, PSEN1, PSEN2, and MAPT were analyzed for single-marker

and gene-wide association to LOAD within the GERAD1 GWAS dataset (directly

genotyped and imputed). Meta-analysis between GERAD1 and two publically available

datasets was also performed for markers selected from the GERAD1 single-marker analysis.

The details of all analyses are given below.
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GERAD1 samples

The total sample analyzed in this study was comprised of 4,957 AD cases and 9,682 controls

previously described in Harold and colleagues [25] plus an additional 5,529 controls. The

sample included 4,113 cases and 1,602 elderly screened controls recruited by the Medical

Research Council (MRC) Genetic Resource for AD (Cardiff University; Institute of

Psychiatry, London; Cambridge University; Trinity College Dublin), the Alzheimer’s

Research UK (ARUK) Collaboration (University of Nottingham; University of Manchester;

University of Southampton; University of Bristol; Queen’s University Belfast; the Oxford

Project to Investigate Memory and Ageing (OPTIMA), Oxford University); Washington

University, St Louis, United States; MRC PRION Unit, University College London; London

and the South East Region AD project (LASER-AD), University College London;

Competence Network of Dementia (CND) and Department of Psychiatry, University of

Bonn, Germany and the National Institute of Mental Health (NIMH) AD Genetics Initiative.

In addition, 844 AD cases and 1,255 elderly screened controls were ascertained by the Mayo

Clinic, Jacksonville, Florida; Mayo Clinic, Rochester, Minnesota; and the Mayo Brain Bank.

All AD cases met criteria for either probable (NINCDS-ADRDA [26], DSM-IV) or definite

(CERAD [27]) AD.

A total of 6,825 population controls were also included. These were drawn from large

existing cohorts with available GWAS data, including the 1958 British Birth Cohort

(1958BC) http://www.b58cgene.sgul.ac.uk), the NINDS funded neurogenetics collection at

Coriell Cell Repositories (Coriell) (http://ccr.coriell.org/), the KORA F4 Study [28], the

Heinz Nixdorf Recall Study [29, 30], and amyotrophic lateral sclerosis controls [31].

Additional controls, not previously analyzed, included 1,456 elderly screened controls from

the Lothian birth cohort, University of Edinburgh (http://www.lothianbirthcohort.ed.ac.uk/),

plus 4,069 population controls from either the 1958BC (n = 1,596) or the National Blood

Service [32] (n = 2,477). Additional genotypes were also made available for 1,068 1958BC

controls previously included in the Harold and colleagues publication [25]. All individuals

included in the analysis have provided informed consent to take part in genetic association

studies and we obtained approval to perform a GWAS including 19,000 participants (MREC

04/09/030; Amendment 2 and 4; approved 27 July 2007).

Genome-wide analysis

The GWAS was performed as described by Harold and colleagues [25]. 5,715 samples were

genotyped using the Illumina 610-quad chip; genotypes for the remaining subjects (n =

14,453) were made available either from population control datasets or through

collaboration and were genotyped on the Illumina HumanHap 1.2M, 610, 550 or 300

BeadChips. Prior to association analysis, all samples and genotypes underwent stringent

quality control (QC), which resulted in the elimination of 58,841 autosomal SNPs and 2,855

subjects. Thus, in Stage 1, we tested 528,747 autosomal SNPs for association in up to

17,313 subjects (3,940 AD cases and 13,373 controls, of whom 3,534 were elderly controls

who were screened for cognitive decline or neuropathological signs of AD). The genomic

control inflation factor λ [33] was 1.060 (λ1000 = 1.010), suggesting little evidence for

residual stratification. SNPs were tested for association with AD using logistic regression,
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assuming an additive model. Specific details of the logistic regression analysis and the

covariates included are given elsewhere [25]. Genome-wide significance was defined as p <

5 × 10−8 as suggested by Pe’er and colleagues [34].

GERAD1 imputation analysis

AD summary statistics were based on 3,940 cases and 13,373 controls from UK, USA, and

Germany typed with the Illumina Chips 1.2M, 610, 550, and 300. Genotypes at the 201,228

SNPs common to each of the 4 chips were used as input for imputation. The imputation was

performed using IMPUTE2 software [35] with two phased reference panels, the 1000

genomes (http://www.1000genomes.org) August 2009 release and Hapmap3, r. II. NCBI

build 36 positions were used for all markers in this study. QC filters applied included a

minor allele frequency (MAF)≥0.01 and an INFO score (representing imputation quality)

≥0.8. After QC 4,685,506 markers remained. The AD case/control data were then analyzed

using logistic regression including covariates accounting for country of data collection and

the five principal components obtained with EIGENSTRAT [36] software based on

individual genotypes for the GERAD1 study participants. The genomic control inflation

factor λ for the imputed dataset was 1.11.

Gene-wide analysis

All SNPs located within AβPP, PSEN1, PSEN2, and MAPT that were either directly

genotyped within the GERAD1 sample or imputed were identified. SNPs were assigned to a

gene if they were located within ± 20 kb of any transcript corresponding to that gene. P-

values were calculated under an additive disease model and adjusted for genomic control

(genotyped λ = 1.06, imputed λ = 1.11).

Gene-wide analysis was performed based on the Simes [37] method for conducting multiple

tests of significance. The Simes method is less conservative than the Bonferroni method

when the tests are not independent, and is thus better suited for analyzing multiple SNPs

from the same gene (where the individual association tests are likely to be correlated due to

linkage disequilibrium). If the p-values for the individual tests are ordered such that p(1) ≤

p(2) ≤ … ≤ p(n) then the null hypothesis of no association in the gene is rejected at

significance level α if p(j) ≤ jα/n for any j = l,…,n. The corrected p-value for the joint

significance test of all SNPs in a gene using this method (denoted “Simes p-value”) is given

by the minimum of p(j) × (n/j).

Meta-analysis with additional datasets

Meta-analysis was performed on GERAD1 and two publically available GWAS datasets

from the Translational Genomics (TGEN) Research Institute and the Alzheimer’s Disease

Neuroimaging Initiative (ADNI).

The TGEN sample, previously reported by Reiman and colleagues [23], is comprised of 861

cases and 550 controls. Imputation of this dataset was performed using MACH software

[38] with the August 2010 1000 genomes reference panel. SNPs were tested for association

using logistic regression assuming an additive model. Sample population (USA or

Netherlands) was included as a covariate.
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The ADNI (http://www.loni.ucla.edu/ADNI) [39] GWAS data was subjected to QC-filtering

prior to association analysis. This included retaining individuals with missing genotype rates

<0.01, with mean autosomal heterozygosity between 0.32 and 0.34, and with mean X-

chromosome heterozygosity either <0.02 for males, or between 0.25 and 0.40 for females.

Following QC, 151 AD cases and 177 controls were analyzed in this study. Imputation was

performed using IMPUTE2 software [35] and the August 2010 1000 genome data release.

SNPs were tested for association with AD using logistic regression assuming an additive

model.

Meta-analysis was performed by inverse variance weights (IVW) meta-analysis using

summary data (i.e., odds ratios (OR) and standard errors). The standard error statistic

included in the inverse variance weights meta-analysis accounts for variation in sample size

between studies. The Cochran’s Q-test and the I2 heterogeneity index were used to assess

heterogeneity between studies. Significant evidence of heterogeneity was determined by a

Cochran’s Q-statistic p < 0.1 or I2 > 50. In these instances a random effects meta-analysis

was performed; alternatively, meta-analysis with a fixed effect model was used.

RESULTS

Analysis of AβPP, PSEN1, PSEN2, and MAPT

A summary of the results is given in Table 1. The most significant p-values are shown for

both genotyped and imputed SNPs. Single-marker analysis did not identify any variants

within these four genes that reached genome-wide significance (p < 5 × 10−8) in either

analysis. At the MAPT locus, rs11656151 shows the greatest evidence for association with

AD (imputed p = 8.8 × 10−5). rs11656151 is located within intron 8 of MAPT isoform I-467

(NM 016835). The most significant SNP at the PSEN1 locus is a 1000 genomes marker at

chr14 : 72745579 (NCBI36, imputed p = 1.9 × 10−4) which is located within intron 8 of

PSEN1 isoform 1 (NM 000021) and lies within a 4555 bp of a deletion which has been

identified in two AD families. This deletion spans exon 9 of PSEN1 which results in an in-

frame skipping of exon 9 and an amino acid change at the splice junction of exon 8 and 10

[40, 41]. At the AβPP locus, rs381743 shows the greatest evidence for association with AD

(imputed p = 0.002). It is located 15 kb 5’ to the AβPP gene. The most significant SNP

within PSEN2 shows a borderline significant association with AD (rs12405469 imputed p =

0.041). This SNP is located 7 kb 3’ to PSEN2.

We attempted to impute these variants in two publically available GWAS datasets [23, 39].

These results as well as the meta-analysis of all three datasets are given in Table 2. Meta-

analysis of these variants did not produce any genome-wide significant variants. However,

we observed a slight increase in significance of the association between the MAPT

polymorphism rs11656151 (p = 4.7 × 10−5) and AD. While this SNP was not significant in

the TGEN and ADNI datasets, both showed the same direction of effect as GERAD1 dataset

for this variant.

In addition to single-marker analysis, we performed gene-wide analysis using all SNPs

located within 20 kb of AβPP, PSEN1, PSEN2, and MAPT (Table 1). Gene-wide analysis

may offer a number of possible advantages over single locus tests [42]. For example, if there
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is more than one independent association signal within a gene or set of markers, combining

these into a single statistic may offer enhanced power over single SNP analysis [43]. We

detected no significant association between AβPP, PSEN1, or PSEN2 and AD using this

approach. However, MAPT shows significant gene-wide association (Simes p = 0.009)

which survives multiple testing correction for the four genes analyzed.

Further analysis of MAPT association

Previous studies of MAPT have reported association between the H1 haplotype and AD [16,

17] as well as other neurodegenerative disorders [6]. The marker rs9468 defines H1/H2

status [19]. In our imputed dataset rs9468 shows some evidence of association to AD (p =

7.8 × 10−4), with the risk allele (T) a proxy for the H1 haplotype. We imputed rs9486 in

both the TGEN and ADNI datasets (Table 2). Meta-analysis of all three samples slightly

increased the significance of this variant (p = 5.2 × 10−4). However, the H1 sub-haplotypes

including H1c could not be analyzed as only 5 out of the 6 markers, which define these

haplotypes could be reliably imputed in the GERAD1 dataset.

DISCUSSION

AβPP, PSEN1, PSEN2, and MAPT are all implicated by AD pathology and been shown to

have genetic effects on neurodegenerative disorders. In order to determine whether these

genes cause susceptibility to LOAD, we analyzed AβPP, PSEN1, PSEN2, and MAPT in an

imputed GWAS dataset of 3,940 cases and 13,373 controls. Association analysis of variants

at each locus revealed no genome-wide significant SNPs. This observation is supported by

other recent AD GWAS’, which do not observe genome-wide significance at these loci

[44-46]. Taken together this data suggests that common variation at these loci does not

provide a strong contribution to LOAD susceptibility.

Conversely, we did observe a significant association between MAPT and AD using a gene-

wide approach (p = 0.009), an analysis that has not been performed within the recent

GWAS’. A significant gene-wide result can be suggestive of multiple independent

association signals within a gene. However, if genuine AD susceptibility variants exist at the

MAPT loci, they are likely to be of weak effect. For example, rs11656151, the most

significant single-marker at MAPT in our dataset, has an OR of 1.13. Meta-analysis of three

GWAS datasets provided evidence of consistency between samples. However, the TGEN

and ADNI datasets are relatively small and replication in much larger samples is needed.

The marker rs9468, tags the H1 haplotype which has been found to be overrepresented in

both PSP and CBD cases [6]. Furthermore, the top hit in a recent PD GWAS of 3,361 cases

and 4,573 controls (rs393152, p = 1.95 × 10−16) tags the H1 haplotype [7]. Marker rs9468

showed some evidence for association to LOAD in the GERAD1 dataset (p = 7.8 × 10−4). In

addition, we observed the same direction of effect in the TGEN and ADNI datasets.

However, as with rs11656151, this marker needs to be explored in larger datasets.

Furthermore, as a result of insufficient data, we could not determine whether refining the H1

haplotype into a subhaplotype such as H1c, which has been found to be associated with

neurodegenerative disorders CBD and PSP, would increase the significance of association

observed.
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While our results suggest that common variation at AβPP, PSEN1, PSEN2, and MAPT does

not provide a strong contribution to AD risk, it is possible that these loci contain as yet

undetected rare variants of larger effect. Genome-wide association studies are underpowered

to detect these variants and sequencing of several thousand cases and controls would be

required to detect rare variants at these loci.

In conclusion, it is unlikely that common variation at AβPP, PSEN1, PSEN2, and MAPT

provide strong contributions to susceptibility for LOAD. However, the gene-wide effect

observed at MAPT indicates a possible contribution to disease risk. Replication of this result

is necessary although it is likely that large sample sizes will be required to achieve the

power necessary to show a true effect.
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