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Abstract

The diterpenoids are classically defined by their composition, four isoprenyl units (20 carbons),

and are generally derived from [E,E,E]-geranylgeranyl diphosphate (GGPP). Such metabolism

seems to be ancient and has been extensively diversified, with ~12,000 diterpenoid natural

products known. Particularly notable are the gibberellin phytohormones, whose requisite

biosynthesis has provided a genetic reservoir giving rise to not only a large super-family of ~7,000

diterpenoids, but to some degree all plant terpenoid natural products. This review focuses on the

diterpenoids, particularly the defining biosynthetic characteristics of the major superfamilies

defined by the cyclization and/or rearrangement of GGPP catalyzed by diterpene synthases/

cyclases, although some discussion also is provided of the important subsequent elaboration in

those few cases where molecular genetic information is available. In addition, the array of

biological activity providing the selective pressure driving the observed gene family expansion

and diversification, along with biosynthetic gene clustering, will be discussed as well.
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INTRODUCTION

The ancient role of GGPP in plant metabolism is perhaps best highlighted by its

incorporation into the central photosynthetic pigment chlorophyll – i.e., as the derived/

reduced phytyl side chain, which is also found in the accessory tocopherols. Indeed, two

GGPP also are condensed together en route to the carotenoids. Accordingly, photosynthetic

pigment production is the primary metabolic fate for GGPP in plants. However, this review

is focused on diterpenoid natural products, which serve less central, although still important,

roles. While not required for normal growth and development, leading to their designation as

secondary, or more specialized, metabolites, these compounds serve in often critical

ecological roles, mediating interactions between the producing plant and other organisms,
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which can range from other plants to herbivores and microbes (Figure 1). In addition, a

number of diterpenoids have been important in human industry, such as the historicals role

of conifer resin acids in the naval stores industry, and the blockbuster anti-cancer drug taxol

(paclitaxel).

Notably, the larger size of the diterpenoids reduces their volatility relative to smaller

terpenoids. As a result, they function in more localized roles. Given that there are ~12,000

known diterpenoid natural products, the vast majority of which are from plants, it is perhaps

not surprising that the physiological roles of only a very small fraction are understood in any

detail. Yet their biological activity must underlie the observed diversification, specifically to

drive expansion of the underlying biosynthetic enzyme gene families, and this critical point

will be discussed here. Included in this point will be discussion of the intriguing observation

that, in certain cases, some of the biosynthetic enzyme genes from a common pathway are

clustered together in the relevant plant genome.

Diterpenoid natural products originate in the plastids, although most likely leucoplasts rather

than chloroplasts. Regardless, the isoprenyl precursors are then derived from the 2-C-

methyl-D-erythritol 4-phosphate (MEP) rather than mevalonate (MVA) dependent pathway

(Figure 2). These isoprenoid precursor pathways have been recently reviewed (104), and

will not be further discussed here. The resulting dimethylallyl diphosphate (DMAPP) and

isopentenyl diphosphate (IPP) units are utilized (DMAPP + 3×IPP) to construct a linear

four-isoprenyl unit (20-carbon) diterpenoid precursor. This series of condensation/

elongation reactions is most often catalyzed by a trans-isoprenyl diphosphate synthase to

produce the usual transoid precursor GGPP, using a straightforward reaction mechanism

that has been recently reviewed and also will not be further described here (17; 102).

Notably, there is a recent report indicating that an analogous set of elongation reactions can

be catalyzed by a cis-isoprenyl diphosphate synthase family member, which then produces

the corresponding cisoid four isoprenyl unit (20C) precursor nerylneryl diphosphate (1).

However, this has not yet been well-characterized, with relatively little known about any

derived diterpenoids, and will not be further discussed here, leaving the focus on natural

products originating from GGPP.

BIOSYNTHETIC ORIGINS

While GGPP can be incorporated into other compounds, such as the photosynthetic

pigments mentioned above, such (mero)diterpenoids are not otherwise covered here.

Although biosynthesis of the acyclic plaunotol is initiated by the production of

geranylgeraniol from GGPP that seems to be catalyzed by a membrane-associated

phosphatase in Croton stellatopilosus (59; 60), it seems worth mentioning that terpene

synthases also can produce such primary alcohols, as demonstrated for the production of

geraniol from geranyl diphosphate in herbal monoterpenoid biosynthesis (35). Regardless,

diterpenoid natural products biosynthesis is, nevertheless, almost invariably initiated by

diterpene synthases. The resulting hydrocarbon skeletal structures, which are generally

cyclized and/or rearranged, provide the first differentiation of GGPP into diterpenes that,

upon further transformation(s), lead into derived, structurally related families. This section

of the review then follows a similar pattern, discussing first the early steps mediated by
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diterpene synthases/cyclases, followed by a necessarily brief discussion of the few further

transformations understood at the molecular level (i.e., where the relevant enzymatic genes

have been cloned), here largely focused on the mono-oxygenase cytochromes P450 (CYPs),

whose introduction of oxygen is critical for increasing solubility and introducing hydrogen

bonding potential into the olefins that most often result from diterpene synthase activity.

To bicycle or not to bicycle

Notably, diterpenoid biosynthesis can be initiated by either of two distinct classes of

reactions. While both involve carbocationic cascades, these are triggered in very different

ways. The reactive allylic diphosphate ester bond present in GGPP invariably undergoes

lysis/ionization to trigger one such carbocationic cascade, in reactions catalyzed by class I

diterpene synthases (EC 4.2.3.x). However, this can be preceded by a protonation-initiated

(bi)cyclization reaction (Figure 3), catalyzed by class II diterpene cyclases (EC 5.5.1.x),

which leaves the allylic diphosphate ester bond intact for ionization by a subsequently acting

class I diterpene synthase. From the trivial labdane name assigned to the most commonly

observed hydrocarbon skeletal structure resulting from such class II bicyclization, the

derived polycyclic natural products have been termed the labdane-related diterpenoids (65).

Such metabolism is universally found in vascular plants due to the requisite production of

GAs, whose biosynthesis proceeds through such a sequential pair of class II and class I

cyclization reactions.

To bicycle first: The labdane-related diterpenoids

Of the more than 12,000 diterpenoids ~7,000 fall into the labdane-related super-family,

highlighting the widespread diversification of such biosynthesis. The vast majority of these

natural products are found in plants, where the requisite production of gibberellins (GAs)

seems to have provided a genetic reservoir for derivation of more specialized labdane-

related diterpenoids, particularly stemming from duplication of the genes encoding the two

diterpene synthases/ cyclases, as will become evident in the following sections. Notably,

these also are ancestral to all the plant (class I) terpene synthases involved in hemi-, mono-,

sesqui-, as well as di- terpenoid biosynthesis (7), which form a moderately sized gene family

(20+ members) in vascular plants (10). These enzymes produce the hydrocarbon backbones

that define structurally related families, and represent the initial step in such terpenoid

biosynthesis. Accordingly, GAs provided not only the origins of the diterpenoid metabolism

discussed here, but to some extent that of the smaller terpenoid natural products as well.

This broader evolutionary scenario has been recently reviewed (17), and almost certainly

only applies to plants, not to microbes as suggested elsewhere (61), as will become evident

in the discussions below.

Gibberellins: The ancestral labdane-related diterpenoids

GA metabolism has been comprehensively reviewed in several recent publications (5; 28;

66; 121). Here only the early steps in GA biosynthesis are described (Figure 4). In

particular, those leading up to formation of the characteristic 6-5-6-5 ring structure, as it is

duplication of these upstream enzymes that has led to the observed diversity of labdane-

related diterpenoid natural products. GA biosynthesis is initiated by bicyclization of GGPP
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to copalyl/labdadienyl diphosphate (CPP), with enantiomeric stereochemistry (as defined

relative to that found in cholesterol), in reactions catalyzed by class II diterpene cyclases

then termed CPP synthase (CPS). The resulting ent-CPP is then further cyclized to the ent-

kaurene, with this class I diterpene synthase then termed kaurene synthase (KS), which

catalyzes a complex bicyclization and ring rearrangement reaction (Supplemental Movie).

This tetracyclic 6-6-6-5 olefin is further transformed by a multiply reactive CYP, kaurene

oxidase (KO), that converts C19 from a methyl group to carboxylic acid, via series of

hydroxylation reactions, with intervening dehydration (54). Notably, while CYPs are

typically found associated with the outer membrane of the endoplasmic reticulum (ER), at

least the KO from Arabidopsis thaliana is found on the outer membrane of the plastid

instead (31). This alternative sub-cellular localization presumably provides preferential

access to the plastid-derived ent-kaurene. The resulting ent-kaurenoic acid is then finally

converted to the gibberellane skeletal structure by another CYP, kaurenoic acid oxidase

(KAO).

Not surprisingly, the amount of bioactive GAs is tightly regulated in plants. There clearly is

tight transcriptional regulation of the genes for both anabolic and catabolic enzymes (28;

121). Notably, this includes transcription of CPS, whose activity can be considered to

initiate GA biosynthesis (91). In addition, it has been suggested that the CPS involved in GA

biosynthesis are subject to inhibition exerted by physiologically relevant levels of the

divalent magnesium ion (which varies in plant plastids in response to light), and that also

serves as an enzymatic cofactor for such class II diterpene cyclases, while those dedicated to

more specialized metabolism are exempt from such inhibition (72). Susceptibility to this co-

factor inhibition effect has been associated with the identity of a single amino acid residue,

with a histidine found at this position in all CPS unambiguously associated with GA

biosynthesis, while this is an arginine (or glutamine) in other class II diterpene cyclases.

Strikingly, exchange of these residues is sufficient to ‘switch’ enzymatic susceptibility to

such inhibition (49). Thus, it seems likely that this cofactor inhibition is a physiologically

relevant regulatory mechanism. Recent work lends itself to speculation about the evolution

of plant GA biosynthesis. This is based in part on the availability of genome sequences for

the moss/bryophyte Physcomitrella patens and the lycophyte Selaginella moellendorffii,

whose divergence from the angiosperm lineage is nearly as ancient (3; 79). It has been

shown that S. moellendorffii produces and responds to GA, using genes homologous to those

identified in angiosperms, while P. patens does not produce or respond to GA (34; 124). On

the other hand, P. patens does produce ent-kaurene and ent-kaurenoic acid using enzymes

homologous to those found in vascular plants (27; 52), and these diterpenoids further seem

to have some physiological role in the moss (2; 26). Thus, it seems likely that the production

of ent-kaurenoic acid arose early in plant evolution, before the divergence of bryophytes and

the vascular plants some 450 million years ago (MYA), with the more specific evolution of

GA biosynthesis arising in the next 50 million years – i.e., before separation of the

lycophyte lineage from that of the angiosperms that occurred some 400 MYA (Figure 5).

Regardless of evolutionary history, it is clear that GAs are required for normal plant growth

and development. Notably, this includes not only stem elongation and flowering (as shown

in Figure 6), but also seed germination, such that plants with severe GA deficiency are
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sterile. Hence, the enzymatic genes underlying GA biosynthesis must be present in all plant

genomes, providing the aforementioned genetic reservoir that can be drawn upon by either

individual gene or whole genome duplication to derive more specialized labdane-related

diterpenoid metabolism, as well as the more distantly descended class I terpene synthases, as

will be discussed in the following sections.

Conifer resin acids: Early labdane-related diterpenoids

An abietadiene synthase involved in resin acid biosynthesis from grand fir, Abies grandis

was the first diterpene synthase from more specialized labdane-related diterpenoid

metabolism to be cloned (94). This bifunctional enzyme, AgAS, catalyzes both class II and I

cyclization reactions (Figure 7), and was clearly related to both the CPS from A. thaliana

(AtCPS) and maize (Zea mays), and the KS from pumpkin (Cucurbita maxima), which also

had been cloned by that time (4; 96; 122). As noted in this original report, AgAS contained

motifs in common with both. Specifically, a DxDD motif in common with the CPSs, and a

DDxxD motif in common with the KS, as well as other known class I (di)terpene synthases.

However, it also was noted that AgAS was similar in length to both the CPSs and KS, which

are similar in length to each other, and all these shared at least some regions of significant

similarity throughout their sequences (94). While the evolutionary relationship between all

of these terpene synthases/cyclases was somewhat enigmatic at that time, later work

demonstrated that at least some early diverging (non-vascular) plants contain a similarly

bifunctional CPS/KS (27; 40). This led to the suggestion that GA biosynthesis may have

originally relied upon such a bifunctional CPS/KS, arising from fusion of separate CPS and

KS from a bacterial origin, which then underwent an early gene duplication, allowing sub-

functionalization to the separate CPS and KS observed in vascular plants (53). Intriguingly,

the genome of the lycophyte S. moellendorffii contains bifunctional diterpene synthases also

involved in more specialized metabolism (47; 95), but these appear to have a separate

evolutionary origin from those involved in conifer resin acid biosynthesis such as AgAS

(10). While a number of bifunctional diterpene synthases have since been identified from

gymnosperms (43; 50; 80; 86; 125), it should be pointed out that conifers seem to have

monofunctional CPS and KS for GA biosynthesis (42), and also recently have been shown

to have monofunctional class I diterpene synthases involved in more specialized metabolism

as well (21). Thus, work on resin acid biosynthesis has both provided key insights into the

evolutionary origins of labdane-related diterpenoids, particularly of the key diterpene

synthases/cyclases, and the manifold ways in which such evolution unfolds.

In addition, AgAS has served as a model diterpene synthase/cyclase for investigation of

terpene synthase structure-function relationships. This includes work with labeled substrates

and analogs of high energy intermediates (70; 71; 73; 75–78), as well as extensive

mutagenesis (49; 68; 69; 73). One of the key findings from this work was demonstration that

the class I and II active sites were separate, and catalytically independent (albeit structurally

interdependent), opening up the possibility that these were located in distinct domains (67;

71). Another was the demonstration that broadly conserved residues in both the class I and II

associated domains (active sites) played important roles in catalysis (68; 69). More recently,

a crystal structure has been determined for AgAS (127), revealing a tri-domain (γβα) protein

structure wherein the class II active site sits at the interface between the N-terminal γ and β
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domains, while the class I active site falls within the C-terminal α-domain (Figure 7). These

observations not only verified the modular nature predicted for the diterpene synthases/

cyclases, but also the existence of an extensive interface between the domains associated

with each activity (i.e., consistent with the previously demonstrated structural

interdependence), particularly the β and α domains. Moreover, this atomic level structure

has already led to additional insights into the enzymatic mechanism of at least the class II

cyclization reaction as well (13).

Cereals: a model system for investigation of labdane-related diterpenoids

Expanded and diversified diterpene synthase gene families have been observed in

angiosperms as well, most notably in the cereal crop plant family. Rice (Oryza sativa) has

been known to produce more specialized labdane-related diterpenoids for over 40 years (38),

and the relatively early availability of its genome sequence enabled application of a

functional genomics approach to investigation of the underlying biosynthetic enzymes (64;

100; 123). This led to biochemical characterization of its full complement of both CPS and

KS-like (KSL) enzymes, which significantly expanded the range of reactions for which the

relevant enzymes were molecularly identified, as previously only those for the production of

ent-kaurene and abietadiene were known (Figure 8). Moreover, despite extensive

phytochemical investigations, the rice KSL (OsKSL) actually exhibited greater diversity

than was expected from the known natural products, with the resulting diterpenes easily

detectable in planta (55; 56). This demonstrated the ability of such a functional genomics

approach to elucidate metabolism, as well as highlighting the extensive elaboration of

labdane-related diterpenoid metabolism in rice.

Characterization of the OsKSL family led to detailed insight into the plasticity of class I

terpene synthases. The alleles for OsKSL5 from ssp. indica and japonica were found to

catalyze distinct cyclization reactions with ent-CPP, with that from japonica producing

tricyclic ent-pimaradiene (37), while that from indica produced tetracyclized and rearranged

ent-isokaurene (119). Comparison of their sequences led to identification of single residue

responsible for this dramatic change in product outcome (Figure 9), which was found to be

applicable to not only these alleles and the closely related OsKSL6, but also to even

distantly related KS (120). It further was possible to apply this single residue ‘switch’ to

increase the complexity of the reaction catalyzed by OsKSL4, from production of a tricyclic

syn-pimaradiene to a rearranged tetracycle (57), as well as apply a similar ‘switch’ in AgAS

(112). Moreover, these results, coupled with additional mechanistic investigation (82),

highlighted role for electrostatic interactions, particularly with the diphosphate anion co-

product, in such class I terpene synthase catalysis (128).

Molecular evidence of a role for more specialized labdane-related diterpenoids in maize

(i.e., cloning and characterization of a second, inducible CPS), actually preceded

identification of such natural products in this cereal crop plant (24; 87). Subsequent release

of the maize genome sequence (88), revealed the presence of not only the already reported

expanded CPS, but also KSL, gene families. In addition, wheat (Triticum aestivum) recently

has been shown to contain similarly expanded CPS and KSL gene families, with diverse

biochemical function (117; 129). Intriguingly, investigation of OsKSL substrate range
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demonstrated some stereochemical promiscuity (i.e., of CPP), with two that react with the

endogenous syn-CPP also able to react with CPP of normal stereochemistry, although this is

not found in rice (55). However, the wheat ortholog of the rice syn-CPP producing OsCPS4

(i.e., TaCPS2), produces normal CPP instead (117), with similar normal and syn- CPP

stereochemical promiscuity observed with the wheat TaKSL as well (129). Such metabolic

plasticity may underlie the observed diversification of labdane-related diterpenoid

metabolism in the cereal crop plant family, and potentially even more broadly.

Labdane-related diterpenoids in dicots: Examples from the Salvia genus

Although labdane-related diterpenoid biosynthesis has not been as extensively investigated

in dicotyledonous plants, it is clear that at least some have diverse such natural products.

The most extensive molecular information is available for species from the Salvia genus,

although other dicots have been investigated as well (15; 84). Examples from Salvia include

identification of the diterpene synthases responsible for biosynthesis of sclareol from Salvia

sclarea (6; 19; 85). These are noteworthy for their illustration of the ability of terpene

synthases, of both classes, to introduce water during the course of the catalyzed reaction

(Figure 10), the importance of the resulting hydroxyl groups for increasing solubility and

providing hydrogen-bonding potential will be discussed in more detail below. Another

example stems from investigation of tashinone biosynthesis in the Chinese medicinal herb

Danshen (Salvia miltiorrhiza), which provides insight into the production of phenolic

diterpenoid natural products more generally. In particular, the relevant diterpene synthases

have been identified and shown to produce a cyclohexa-1,4-diene isomer of abietadiene that

is poised for aromatization (16). Strikingly, the various Salvia KSLs, although clearly most

closely related to other KS(L)s, are more similar in size to prototypical plant class I terpene

synthases, having lost the N-terminal γ-domain (33), the significance of which will be

discussed in more detail below.

Not to bicycle: Class I diterpene synthases acting directly on GGPP

There are many diterpenoids whose biosynthesis is initiated by class I diterpene synthases

that react directly with GGPP (i.e., rather than a bicyclic derivative such as CPP). However,

given that the complexity of the end product is a function of the number of double-bonds in

the precursor (11), surprisingly few such class I diterpene synthases have been identified,

particularly by comparison to the multitude of functionally diverse mono- and sequi- terpene

synthases already known (14). While a casbene synthase from castor bean (Ricinus

communis) and a taxadiene synthase from a yew species (Taxus brevifolia) were among the

first plant terpene synthases to be cloned (51; 114), only a few others are known. These

include cembrenol and neocembrene synthases (44; 106), whose product only slightly

differs from casbene (Figure 11). Interestingly, the three class I diterpene synthases

producing casbene, cembrenol or neocembrene (respectively) are more closely related to

mono- and sesqui- (class I) terpene synthases than angiosperm KS(L) – e.g., all of these fall

into the TPS-a sub-family, rather than the KS(L) TPS-e/f sub-family (10). In addition, these

three class I diterpene synthases are significantly smaller than the KS(L), being similar in

size to the prototypical plant mono- and sesqui- terpene synthases. This reflects loss of the γ-

domain (Figure 12), which forms half of the class II diterpene cyclase active site, and this

loss appears to have occurred early in angiosperm evolution given the extensive and
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independent diversification of the relevant TPS sub-families (10). The β-domain that forms

the other half of the class II diterpene cyclase active site is retained, which may reflect its

extensive interface with the class I α-domain noted above. Indeed, loss of the γ-domain has

been observed to independently occur at least two other times (33), suggesting that this is

relatively facile. By contrast, it does not appear that further loss of the β-domain has

occurred. While class I terpene synthases composed of only an α-domain have been recently

reported from the lycophyte S. moellendorffii, these are more closely related to microbial

terpene synthases rather than other plant terpene synthases, indicating a separate

evolutionary origin (45), not derivation from the βα bi-domain terpene synthases.

Much of the chemical diversity generated by sesqui- and particularly mono- terpene

synthases requires rearrangement of the initial primary allylic diphosphate ester bond to a

tertiary position, which removes the geometric barrier imposed by the trans 2,3-double bond

to direct 1,6-bond formation of a cyclohexene ring (12). With GGPP the corresponding

intermediate would be geranyllinalyl diphosphate. Accordingly, the discovery of a

geranyllinalool synthase suggested the potential for analogous rearrangement of GGPP (32).

This was substantiated by the more recent report of a rhizathalene synthase (103), which

almost certainly proceeds through the corresponding rearranged geranyllinalyl diphosphate

as an initial intermediate en route to initial cyclization to a 1,6-cyclohexene containing

intermediate and, hence, to the more complex polycyclic rhizathalene (Figure 13). This then

suggests that much more chemical diversity can be expected to arise from the action of class

I diterpene synthases, which is supported by the diversity observed with the characterized

microbial enzymes (92; 100).

Further transformations: Elaborating upon the hydrocarbon backbone

The diterpene synthases/cyclases described above most often produce a hydrocarbon olefin,

which is, not surprisingly, highly hydrophobic (e.g., their partition coefficient or logP is ≥

8.5). Accordingly, these must almost invariably be further elaborated by the introduction of

oxygen, typically catalyzed by CYPs (EC 1.14.13.x), which are integral membrane proteins

in eukaryotic organisms such as plants (62), enabling access to the presumably membrane

embedded diterpenes. As discussed for GA biosynthesis above, these mono-oxygenases can

catalyze multiple reactions with the same substrate, leading the incorporation of several

atoms of oxygen. In addition, again from GA biosynthesis, it already is evident that these

enzymes can alter the hydrocarbon backbone (e.g., the ring contraction catalyzed by KAO;

Figure 4), leading to assignment of the resulting natural products to new structural families

(e.g., gibberellins are not considered to be kauranoids per se, despite their common

biosynthetic origins). However, most often the CYPs involved in diterpenoid natural

products biosynthesis catalyze the hydroxylation reactions that are prototypical of these

enzymatic super-family (62).

While the addition of a single hydroxyl group does increase solubility (e.g., decreasing logP

by > 1), the resulting compounds resemble membrane components such as cholesterol, and

most likely remain within the membrane. Accordingly, in order to provide solubility in a

biological setting, it seems likely that two spatially separated hydroxyl groups are required,

consistent with examination of the known bioactive diterpenoid natural products. At least in
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a few cases, this has been shown to decrease logP to ≤ 5 (116), which incidentally matches

Lipinski’s rules for desirable pharmaceutical properties (46). Regardless, the incorporation

of such polar groups also provides hydrogen-bonding potential, which would be expected to

significantly increase the ability of the resulting natural product to specifically bind

biological macromolecular targets. However, it should be noted that only in very few cases

has it been established how multiple CYP operate in such biosynthesis, either order of action

or even identification of the relevant CYP. Beyond GA, although several CYP have been

identified from taxol biosynthesis, their order of action remains uncertain (18), and only for

the relatively simple case of rice orzyalexin D & E biosynthesis, requiring only two CYPs, is

such information available for diterpenoid natural products (116).

The relationship among CYPs can be inferred to some extent from the formal nomenclature.

In particular, by the original definition, CYPs sharing more than 40% amino acid sequence

identity are grouped into families, as designated by the number immediately following the

CYP super-family designation, and CYPs sharing more than 55% amino acid sequence

identity are grouped into sub-families designated by letter(s) following the family number,

with individual CYP then finally identified by a concluding number, although some merging

of (sub-)families has inevitably occurred as more molecular information becomes available

(58). As an example of the nomenclature, the KO involved in GA biosynthesis from A.

thaliana is CYP701A3 (30), with all the known KOs falling within the CYP701 family, and

all those from angiosperms within the CYP701A sub-family (58). However, even such sub-

family membership can not be used to assign biochemical function, as it has recently been

shown that CYP701A8 from rice does not catalyze the prototypical KO reaction, but instead

carries out hydroxylation at the neighboring C3α position in a variety of labdane-related

diterpenes (110), consistent with assignment of KO activity in rice to the distinct paralog

CYP701A6 (36; 83). The KAOs also involved in GA biosynthesis fall into the CYP88A

sub-family (29), with no characterized family members yet found to operate in more

specialized diterpenoid metabolism, although at least one member of different CYP88 sub-

family does function in more specialized triterpenoid biosynthesis (89).

A number of other CYP sub-families are known to act in diterpenoid biosynthesis, with

several members of the CYP725A sub-family assigned roles in taxol production (18), and at

least two members of the CYP720B sub-family serving as promiscuous, yet multiply

reactive oxidases in conifer resin acid metabolism (23; 81). In addition, two CYP families

seem to contain multiple sub-families that function in diterpenoid natural products

biosynthesis (Figure 14), albeit these are among the most extensive CYP families in plants.

First, from the exceptionally large CYP71 family, a tobacco (Nicotiana tabacum) CYP71D

sub-family member functions as a C6 hydroxylase in production of cembrendiol (107),

although most of the member of this sub-family function in mono- or sesqui- terpenoid

biosynthesis (22). At least two CYP71Z sub-family members seem to operate in rice

labdane-related diterpenoid biosynthesis, both catalyzing C2-hydroxylation, with CYP71Z6

acting upon ent-isokaurene, presumably for production of the derived oryzadiones/

oryzalides, while CYP71Z7 does so in phytocassane biosynthesis (115). In addition, at least

one member of CYP99A, which is actually a sub-family of the CYP71 family (98), operates

in momilactone biosynthesis, catalyzing the transformation of C19 from a methyl to the
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carboxylic acid necessary for 19,6β-lactone ring formation (109). Second, from the large

CYP76 family, a number of rice CYP76M sub-family members have been shown play a role

in more specialized labdane-related diterpenoid biosynthesis as well (108). For example,

CYP76M7 catalyzes C11α-hydroxylation in phytocassane biosynthesis (98), while

CYP76M6 and 8 catalyze C9β and C7β hydroxylation of 3α-hydroxy-ent-

sandaracopimaradiene to produce oryzalexins E and D, respectively (116). Moreover, a

CYP76AH sub-family member from Danshen seems to operate in tanshinone production,

catalyzing C12-hydroxylation in formation of the intermediate ferruginol (20). Finally,

members of the CYP714 family are known to function in GA metabolism (48; 126; 130),

but no family members have yet been assigned roles in more specialized diterpenoid

biosynthesis. Given the relatively few identified CYP from diterpenoid metabolism, it seems

likely that other CYP (sub-)families will be found to operate in such natural product

biosynthesis.

Beyond the increased solubility and hydrogen-bonding potential imparted by the

introduction of oxygen(s) catalyzed by the CYPs, these also offer opportunities for

additional elaboration. This can be simply further oxidation, as catalyzed by short-chain

dehydrogenases/reductases (SDR) such as that involved the final step of rice momilactone A

biosynthesis (90), but perhaps more interesting is the addition of various functional groups,

such as that catalyzed by the characterized transferases from taxol biosynthesis (18; 105).

However, even less is known about the enzymes involved in such further elaboration than

the initially operating CYPs.

BIOLOGICAL ACTIVITY

A range of roles for diterpenoid natural products drives their evolution

As described above, the GA phytohormones play critical roles in normal plant growth and

development. Consistent with their prominent role in promoting stem elongation, as

discussed above GA biosynthesis seems to have evolved during the differentiation of

vascular plants, coupling function to evolution. As has been illustrated above, (di)terpenoid

biosynthesis has evolved from that of GA, but these more specialized metabolites must have

a selectable function in order to drive functional specialization and retention of the

underlying enzymatic genes. In a few cases, biological roles have been assigned more

specialized diterpenoid metabolites (Figure 15), providing some insight into the selective

pressure leading to evolution of the relevant biosynthetic pathway. For example, conifer

resin acids seem to function in defense against bark beetles, undergoing oxidative cross-

linking following extrusion and volatilization of the mono- and sesqui- terpene components

of the rosin to form a physical barrier, as well as exhibiting antifeedant and antibiotic

activity (41). However, in the absence of genetic evidence, it is difficult to definitively

assign more specific roles and/or physiological function. Hence, the focus here will be on

diterpenoid natural products for which such genetic evidence is available. For example, it is

clear from knock-out lines of the relevant diterpene synthase that rhizathalene acts as a

semi-volatile antifeedant against root herbivory by the fungus gnat (Bradysia ssp) in A.

thaliana (103). Interestingly, while the function of cembrendiol is not clear, suppression of

the relevant CYP leads to accumulation of the cembrenol precursor instead, with the
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resulting tobacco plants exhibiting resistance to aphid colonization (107). In rice, analysis of

knock-out lines of the upstream OsCPS4 and more specific OsKSL4 indicates that the

primary function of the momilactones is allelochemical activity (i.e., suppression of the

growth of other plant species)(118). Despite being the first rice phytoalexins isolated against

the devastating fungal blast pathogen (Magneportha oryzae)(8; 9), these momilactone

deficient knock-out lines are no more susceptible to infection by M. oryzae than their

corresponding wild-type (parental) lines (118). However, suppression of OsCPS4 in a

different genetic background does lead to increased susceptibility, as well as loss of

allelopathy (101), perhaps due to a difference in timing of phytoalexin accumulation, which

has been correlated with susceptibility (25). Indeed, alleochemical activity is attributable to

momilactone B, which is selectively secreted from the roots, while momilactone A

preferentially accumulates within the plant (e.g., upon infection), consistent with a role as a

phytoalexin (39). These results highlight the complexity inherent in determining

physiological function, as well as the differential activity of even closely related natural

products. For example, momilactone B may be derived from momilactone A by a single

biosynthetic step (64). On the other hand, such differential function then provides the

selective pressure necessary for evolution of the relevant gene encoding the enzyme

catalyzing this additional biosynthetic step. By contrast to the examples discussed above,

despite the complexity and length of the relevant biosynthetic pathway, it is unclear what

physiological function taxol serves in yew trees, and such uncertainty is prevalent among

not only the diterpenoids, but all natural products. Nevertheless, the cases where such

information is available demonstrates that diterpenoid activity spans plant-insect, plant-plant

and plant-microbe interactions (Figure 15). According, these natural products serve in

variety of roles, providing selectable advantages that drive continuing evolution of

diterpenoid chemical diversity.

The yin and yang of biosynthetic gene clusters in plants

Finally, as observed in a so-far limited number of cases for plant natural products more

generally (63), there also are diterpenoid biosynthetic gene clusters, investigation of which

has offered some insight into the nature and assembly of these in plants versus microbes

(where analogous gene clusters are shaped by horizontal gene transfer, which does not

appear to be relevant in plants). In particular, it became evident at an early stage in the

functional genomics based investigation of rice diterpenoid biosynthesis that both OsCPSs

involved in more specialized metabolism were closely linked to OsKSL that acted on their

enzymatic product – i.e., genes encoding sequentially acting enzymes were close together in

the rice genome (74; 113). Moreover, the only other genes in these regions encoded CYP

and, in one case, also an SDR (83). Given that all of the genes were clearly of plant origin

and that their closest homologs are paralogs found elsewhere in the rice genome, these

clusters do not appear to have arisen from any sort of horizontal gene transfer, but assembly

during evolution of the rice genome via the usual vertical transmission. Nevertheless, later

work demonstrated that, consistent with their physical linkage to the upstream OsCPS4 and

OsKSL4, the nearby CYP99A2 and/or 3, as well as SDR, were involved in production of the

momilactones, forming a dedicated biosynthetic gene cluster on rice chromosome 4 (Figure

16)(90). On the other hand, while the cluster on chromosome 2 has been primarily

associated with phytocassane biosynthesis (98), CYP from this cluster seem to also
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participate in not only biosynthesis of the oryzadiones, for which the relevant OsKSL6 is

found within the cluster, but also that of oryzalexins (108; 115; 116). Involvement in

oryzalexin biosynthesis highlights the patchwork nature of this cluster, as the relevant

OsKSL10 is found elsewhere in the rice genome. In addition, the KO paralog CYP701A8

also seems likely to function in phytocassane and oryzalexin biosynthesis, but is found

elsewhere in the rice genome as well (albeit CYP701A8 is tightly linked in a tandem gene

array with CYP701A6, encoding the essential KO required for GA production, ensuring its

inheritance in any case)(110). While the patchwork coverage of biosynthetic pathways by

these gene clusters is consistent with the absence of horizontal gene transfer, it is then

somewhat unclear what drove their assembly. Although co-regulation via localized effect

[e.g., on chromosomal state (111)] may provide pressure for maintenance of a cluster, the

genes from the diterpenoid biosynthetic gene cluster on rice chromosome 2 are differentially

regulated, with no obvious correlation to linear arrangement, arguing against a role for co-

regulation in even cluster maintenance, at least in this case (98). More critically, it has been

pointed out that co-regulation does not provide a driving force for assembly, which was

suggested to require both positive selection (e.g., for production of a diterpenoid providing

advantageous activity) and negative selection against incomplete inheritance (e.g., toxicity

associated with a metabolic intermediate or derivative thereof)(99). Evidence for such dual

push-pull selection pressure is evident from genetic dissection of the rice momilactone

biosynthetic gene cluster, where the associated physiological functions in allelopathy and

plant microbial defense provide positive selection pressure, but a striking 2-fold decrease in

seed germination rate was observed with the OsKSL4 knock-out line, demonstrating a strong

negative selection pressure against inheritance of OsCPS4 in the absence of OsKSL4 (118).

Thus, the observed patchwork nature of natural product biosynthetic gene clusters in plants

may result from the lack of negative selection against the loss of certain genes (i.e., those not

found in the relevant cluster, such as OsKSL10, loss of which presumably does not have a

significant deleterious effect).
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SUMMARY POINTS

1. Diterpenoids, derived from GGPP, encompass over 12,000 known natural

products, including many of significant importance, not only to the plants where

the vast majority of these are found, but also to human industry.

2. While the diterpenoid natural products obviously encompass a vast array of

chemical structures, these can nevertheless be grouped into structurally related

families on the basis of their hydrocarbon backbones, which are largely

produced by diterpene synthases/cyclases.

3. Chief among diterpenoid natural products are the gibberellin phytohormones, as

it is from the requisite diterpene synthases/cyclases that evolution has drawn, via

gene duplication and neofunctionalization, to yield the striking structural

diversity observed not only with diterpenoid, but also terpenoid natural products

more generally.

4. Diterpenoid natural products can be initially divided into two major super-

families distinguished by whether or not ionization of the allylic diphosphate

ester bond, catalyzed by prototypical (i.e., class I) terpene synthases is preceded

by protonation-initiated bicyclization catalyzed by class II diterpene cyclases.

Those in which such bicyclization occurs are termed labdane-related

diterpenoids, which forms the largest super-family with ~7,000 known

members.

5. The evolutionary relationship between gibberellin biosynthesis and more

specialized diterpenoid metabolism is perhaps most evident in the labdane-

related diterpenoids. Very early diverging examples of the relevant diterpene

synthase/cyclases can be found in those operating in gymnosperm/conifer resin

acid biosynthesis. More specialized labdane-related diterpenoid metabolism has

been extensively diversified in the important cereal crop plant family, where it

also has been most intensively studied, although examples can be found among

dicots, where recent studies in the Salvia genus have begun to provide molecular

information, as well.

6. While less is known about biosynthesis of diterpenoids outside of the labdane-

related superfamily, recent reports demonstrate the range of chemical diversity

that can be expected to result from the action of the relevant class I diterpene

synthases acting directly on GGPP.

7. Even less is known about the enzymes catalyzing the further transformation

necessary for production of the final/bioactive diterpenoid natural products.

Thus, as for many other plant natural products, very few complete biosynthetic

pathways have been elucidated for diterpenoids.

8. Evolution of the sometimes complex biosynthetic pathways and/or networks

necessary for production of known diterpenoid natural products must be driven

by selection pressure (i.e., physiological function derived from biological

activity). However, again as is typical with plant natural products, the
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physiological function of very few diterpenoids has been determined with any

degree of confidence. Nevertheless, there is an intriguing range of biological

activity that has been ascribed to diterpenoid natural products.

9. Work on rice diterpenoid metabolism has provided some insights into the

presence of biosynthetic gene clusters in plants, highlighting their complex

nature, as well as supporting the hypothesis that both positive and negative

selection pressure is required for their assembly.
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FUTURE ISSUES

1. It is clear that much more chemical diversity can be expected to arise from

further investigation of diterpenoid metabolism. This includes elucidation of

diterpenoid natural products derived from the recently discovered cisoid NNPP

precursor, as well as characterization of additional diterpene synthases/cyclases.

Moreover, the further elaboration required to generate the plethora of natural

products found in each of the structurally related families of diterpenoids

remains largely opaque, yet additional fascinating chemical transformations are

required and still await elucidation in many cases.

2. Assignment of physiological function will help illuminate the selective pressure

leading to evolution of the sometimes complex biosynthetic pathways and/or

networks underlying the production of intricate diterpenoid natural products.

This may be further expected to address the question of why certain species

make so many diterpenoids (e.g., more than 20 are known in rice, but the

majority of these were isolated as antibiotics against a single microbial pathogen

– M. oryzae).

3. Even beyond identification of physiological function, only for GA is the

molecular target and subsequent effect (i.e., signaling pathway in the case of

GA) known (97). This provides an additional frontier for exploration with all

natural products, including the diterpenoids.
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Figure 1.
Schematic of the biological roles played by diterpenoid natural products, ranging from the

growth promoting effects of the GA phytohormones to roles in ecological interactions – e.g.,

illustrated are the activities of momilactone B as a rice allelochemical, rhizathalene A as an

herbivore (insect) antifeedant, and momilactone A as an antibiotic/phytoalexin against the

rice fungal blast pathogen.
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Figure 2.
Sub-cellular localization of the initial stages of diterpenoid biosynthesis to plastids.

Schematic of a plant cell with relevant chloroplast and leucoplast organelles shown, along

with upstream MEP-dependent isoprenoid precursor pathway described elsewhere (104), as

well as production of the general diterpenoid precursor GGPP catalyzed by isoprenyl

diphosphate synthases also described elsewhere (17; 102).
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Figure 3.
Bicyclization of GGPP to labdane hydrocarbon backbone containing CPP that can proceed

more prototypical allylic diphosphate ester ionization initiated reaction catalyzed by (class I)

terpene synthases in diterpenoid biosynthesis.
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Figure 4.
Early steps in GA biosynthesis, from GGPP to first gibberellane intermediate, along with

relevant enzymes (as defined in the text).
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Figure 5.
Staggered evolution of GA biosynthesis. While the production of ent-kaurenoic acid seems

to have evolved early in land plants, as suggested by the presence of CPS/KS and KO

homologs in the bryophyte P. patens, while GA biosynthesis more specifically seems to

have arisen later, during the evolution of vascular plants, as suggested by the presence of

homologs to the remaining genes in the early diverging, yet vascular, lycophyte S.

moellendorffii (GA20ox, GA C20-oxidase; GA3ox, GA C3-oxidase). Shown is simplified

plant phylogeny with dates of divergence (MYA, millions of years ago), along with

components of the GA biosynthetic pathway alongside the approximate period in which they

evolved.
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Figure 6.
Effect of GA phytohormone deficiency on stem elongation and flowering of A. thaliana.
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Figure 7.
Structure of the abietadiene synthase from A. grandis (AgAS), along with catalyzed

reactions. AgAS exhibits a tri-domain structure (γβα, as indicated), wherein the class II

active site sits between the N-terminal γβ domains, and the class I active site is within the C-

terminal α domain. The structure is shown as a ribbon diagram, with the side-chains of the

catalytic class II associated DxDD and class I associated DDxxD motifs shown in stick

format.
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Figure 8.
Metabolic map of rice diterpenoid biosynthesis. Shown are the characterized diterpene

synthases/cyclases along with the catalyzed reactions, and downstream natural products

where known. Indicated in green, and by thicker arrows, are those enzymes and reactions

required for GA biosynthesis in rice (83). Adapted from ref. 108, with permission.
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Figure 9.
Effect of single residue ‘switch’ on reaction catalyzed by ent-(iso)kaurene synthases. Shown

is a scheme of the reaction catalyzed in the usual production of ent-kaurene from ent-CPP,

which requires the presence of the conserved Ile residue indicated in the alignment of KSs

from A. thaliana (AtKS), rice (OsKS), spruce (PgKS), and P. patens (PpCPSKS), which

spans ~450 million years of evolution. If this residue is changed to Thr, the enzymes largely

catalyze the abortive production of ent-pimaradiene instead. The potential role of the ionized

pyrophosphate anion in driving carbocation migration also is indicated by its positioning

within the scheme.
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Figure 10.
Reactions catalyzed by diterpene synthases from S. sclarea in production of sclareol

(SsLPS, class II diterpene cyclase producing 8α-hydroxy-labdadienyl diphosphate, which is

utilized by the class I diterpene synthase SsSS to produce sclareol). These reactions are

noteworthy in their incorporation of water prior to concluding deprotonation.
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Figure 11.
Macrocyclization reactions catalyzed by casbene, neocembrene, and cembrenol synthases.
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Figure 12.
Loss of γ domain in prototypical (class I) plant terpene synthases. Illustrated by comparison

of AgAS structure with that of the 5-epi-aristolochene (sesquiterpene) synthase (93).

Domains are colored to assist visualization (γ, yellow; β, green; α, blue), with N-terminal

helix that is retained during the ancient, but not more recent, γ domain loss event show in

magenta. Note that the N-termini of AgAS (although not apparent in the crystal structure),

as well epi-aristolochene synthase, fold back and form part of the class I active site in the C-

terminal α domain.
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Figure 13.
Rizathalene cyclization reaction demonstrates ability of class I diterpene synthases to

rearrange GGPP to geranyllinalyl diphosphate (shown) en route to 1,6-cyclization to the

shown cyclohexenyl carbocation intermediate.

Zi et al. Page 35

Annu Rev Plant Biol. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 14.
Hydroxylation reactions carried out by CYP in biosynthesis of more specialized rice

labdane-related diterpenoids, along with resulting (both indirect and direct) natural products.
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Figure 15.
Illustrating the varied biological roles played by diterpenoid natural products. (a) The

rhizathalenes produced by TPS08 act as antifeedants against herbivory by larva of the

fungus gnat (Bradysia) in A. thaliana (103). Top row depicts undamaged roots (wild-type

plants). Middle row depicts roots of wild-type plants after Bradysia feeding. Bottom row

depicts roots from TPS08 knock-out (tps08-1) after Bradysia feeding. Reprinted with

permission from ref. 103. (b) The momilactones, whose biosynthesis relies on OsCPS4, act

as allelochemicals, suppressing the growth of other plants. Lettuce seedlings germinated in

the presence of OsCPS4 knock-out (cps4) or its parental/wild-type (WT) rice seedlings.

Reprinted with permission from ref. 118. This effect is most likely due to momilactone B

(39). (c) The momilactones, most likely momilactone A, acts as an antibiotic phytoalexin

against the rice fungal blast pathogen M. oryzae (101). Pictures of the lesions in the leaves

of OsCPS knock-down (cps4-tos) or its parental/wild-type rice following infection with M.

oryzae. Reprinted with permission from ref. 101.

Zi et al. Page 37

Annu Rev Plant Biol. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 16.
Yin and yang of plant biosynthetic gene clusters, as illustrated by that for diterpenoid

(momilactone) biosynthesis in rice. Schematic of gene cluster on chromosome 4 in the rice

genome and known roles of the encoded enzymes in momilactone biosynthesis, along with

effect of knocking-out OsKSL4 (ksl4) relative to its parental/wild-type (WT) line on

allelopathy (increased growth of the endemic rice paddy weed barnyard grass with ksl4) and

germination rate (decreased with ksl4). The combination of positive and negative selection

pressure (here allelopathy versus decreased germination rate) is hypothesized to drive gene

clustering.
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