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Abstract

A total synthesis of the unusual ent-kaurane maoecrystal V is described. The synthesis strategy

features a counterintuitive early disconnection of the lactone subunit to a polycyclic enol ether

intermediate in order to preserve the central tetrahydrofuran ring until the beginning stages of the

synthesis. This strategy enables an application of C–H functionalization at the early phase of the

synthesis during the construction of a dihydrobenzo-furan intermediate.

Among many known ent-kauranoids,1 maoecrystal V stands out for its atypical molecular

architecture in this class of natural products. Isolated and characterized by Sun and co-

workers in 2004,2 this unique C19 diterpenoid displayed potent (IC50 = 20 ng/mL) and

remarkably selective cytotoxicity against HeLa cells. The pentacyclic framework of

maoecrystal V integrates three contiguous quaternary stereocenters (two all-carbon), a

bicyclo[2.2.2]octan-2-one subunit, and a strained central tetrahydrofuran flanked by trans-

fused six-membered rings. Collectively, these structural characteristics amount to an

exquisite challenge for chemical synthesis. Numerous research groups initiated programs

directed at the synthesis of maoecrystal V,3 identifying the construction of the quaternary

stereogenic centers as one of the main strategic goals and developing many effective

solutions. The successful completion of the first total synthesis of maoecrystal V in racemic

form, reported by Yang and co-workers in 2010,4 relied on a concise strategy centered on an

intramolecular Diels–Alder reaction (IMDA). The reaction enables a rapid assembly of the

bicyclooctanone and tetrahydrofuran ring systems in one event, albeit with low facial

selectivity for the diene counterpart. The second of the two completed total syntheses of (±)-

maoecrystal V reported to date was described by Peng and Danishefsky in 2012.5 Other

research groups have also developed creative and efficient approaches based on IMDA

chemistry that is envisioned to precede tetrahydrofuran formation.3
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Our strategy for the total synthesis of maoecrystal V has emerged from the decision to

pursue an early installation of the central oxolane ring. We postulated that an early

introduction of the heterocycle would be beneficial for controlling stereoselectivity in

several key transformations. Conversely, its construction late in the synthesis would carry

undesired risks due to its strained nature. Following this line of analysis, a plan summarized

in Scheme 1 was developed.

The strategic constrains of early THF installation suggested a somewhat counterintuitive

initial disassembly of the lactone along the C7—C8 bond (1⇒2, Scheme 1). We envisioned

that the target lactone subunit could be accessed from an appropriately functionalized

formate 2 (X=H) by an intra-molecular hydroformylation or radical cyclization of

selenocarbonate (2, X=SePh) onto the enol ether. The bicyclo[2.2.2]-octanone is unraveled

further by an IMDA disconnection (2⇒3). The hydroxymethyl group at C10 used

previously to deliver the lactone carbonyl group is now refunctionalized to direct a synthetic

equivalent of ethylene for the IMDA reaction, thus achieving the requisite facial selectivity.

In our preliminary investigations,8 we validated the efficiency of the IMDA reaction and

stability of the enol ether in the case of acrylate and vinylsulfonate adducts 3a (Y=CO) and

3b (Y=SO2). However, when faced with removal of the linking functional groups, we found

them to be less than ideal, necessitating lengthy and cumbersome detours for their deletion.

In search for an alternative, we found that a silyl group serves the purpose of enabling both

an efficient [4 + 2] cycloaddition and an effective tether removal.9 This modification

provides a direct path from 4 to 2. Further analysis led to functionalized dihydrobenzofuran

intermediate 5, which we planned to prepare by a C–H-insertion process along the

highlighted C5—C10 bond. In the long term, the C–H-insertion reaction can potentially be

carried out using asymmetric catalysis,10 paving the way for the enantioselective synthesis

of maoecrystal V.

The goal of initial studies was to define a synthetic path to maoecrystal V in racemic form

according to the aforementioned synthesis design. The preparation of the substrate for the

early C–H functionalization reaction began with alkylation of sesamol using 3-(4-

methoxybenzyloxy)-2,2-dimethyl-1-propanol (6) in the presence of diisopropyl

azodicarboxylate and triphenylphosphine,11 which afforded aryl ether 7 in 79% yield

(Scheme 2). Its directed ortho-metalation with n-butyllithium in THF, followed by

transmetalation to the arylzinc reagent and coupling with methyl chlorooxaloacetate,

afforded α-keto ester 8,12 which was converted directly to α-diazoester 9.13 The essential

C–H-insertion was achieved by treatment of 9 with rhodium acetate that provided the

benzofuran product 10 in 74% yield and >10:1 diastereoselectivity in favor of the trans-

substituted isomer.14

Further elaboration included stereoselective installation of the quaternary carbon center at

C10 using zincate enolate generated from 10 and benzyl chloromethyl ether (76% yield, dr

9:1).15 Subsequent reduction of the ester group with lithium aluminum hydride and opening

of the formyl acetal of catechol with methylmagnesium bromide,16 achieved upon heating in

benzene, afforded 13. Oxidation of the substituted phenol with iodobenzene diacetate/EtOH

and vinylsilylation of the primary hydroxy group in the resulting protected ortho-quinone
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intermediate provided the substrate for the intramolecular Diels–Alder reaction (14) in high

yield.

As with other related substrates, the IMDA reaction occurred cleanly upon heating a

solution of 14 in toluene at 110 °C, giving bicyclo[2.2.2]octane cycloadduct 15 in a nearly

quantitative yield. The enol ether within the ring system of 15 was found to be rather stable

and generally suitable for subsequent transformations.

Our next major goal was the appendage of the lactone ring. We planned to accomplish this

task by a rare formyl radical endo-cyclization onto the enol ether double bond (Scheme

3a).17 This approach first required desilylation of 15, which was found to be rather

challenging. The substrate for desilylation reaction was accessed after an efficient reductive

removal of the gem-diethoxy substituents with samarium(II) iodide (90% yield, Scheme

3b).18 Under extensively optimized reaction conditions, the silyl group could be removed in

a reproducible 50% yield upon treatment with tetra-n-butylammonium fluoride in DMPU at

0 °C for 1 h. The unusually high reactivity of the trialkylsilyl ether is due to its position

within the bicyclo[2.2.2]-octanone ring system, and the presence of the carbonyl group is

essential for high reactivity. For example, when the carbonyl group is replaced with a

hydroxyl, the resulting compound is substantially more resistant to desilylation.19

After straightforward derivatization to selenocarbonate20 18, our efforts concentrated on the

lactone closure by radical cyclization. Multiple attempts with tri-n-butyltin hydride as the

reagent using several initiators (AIBN, ACHN, V70) under a variety of addition protocols

and temperature regimes resulted only in reduction to formate 23 (Scheme 3c), with none of

the desired lactone 19 observed. Clearly, the reaction of the initially generated formyl

radical with the hydrogen atom donor, n-Bu3SnH,21 was too rapid relative to the desired

cyclization (step a, Scheme 3a). We hypothesized that using a less efficient hydrogen atom

donor would result in a more effective ring closure. Tris(trimethylsilyl)silane ((Me3Si)3SiH)

was the reagent of choice.21 To our delight, slow addition of a mixture of (Me3Si)3SiH and

AIBN to a solution of phenylselenocarbonate 18 in benzene at 80 °C resulted in the

successful formation of lactone 19 (55% yield), along with a minor amount of byproduct 24
resulting from radical fragmentation (12%).22

Formation of the last six-membered ring, the gem-dimethyl-substituted cyclic enone, was

required to complete the total synthesis of maoecrystal V. Toward that goal, removal of the

p-methoxybenzyl group,23 oxidation of the exposed primary hydroxyl with Dess-Martin

periodinane (DMP),24 and the Wittig methylenation25 delivered 20. Our synthetic studies

revealed that ketone 20 is the optimal substrate for the introduction of the C17 methyl group,

an operation that proved to be difficult to achieve with any level of stereocontrol in the

previous total synthesis efforts. In this instance, addition of iodomethane to the enolate

derived from 20 and LiN(SiMe3)2 afforded the desired product as the major component in a

7:1 mixture of diastereomers (90% combined yield). After debenzylation (DDQ, wet

CH2Cl2, 50 °C, 12 h), the diastereomers were separated, and the major isomer was advanced

to intermediate 22 by oxidation to the aldehyde with DMP and chemoselective addition of

vinylmagnesium bromide in the presence of anhydrous cerium(III) chloride.26 Maoecrystal
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V was obtained in two additional steps, which included ring-closing metathesis27 and

oxidation to enone with Dess-Martin periodinane.

In closing, a concise total synthesis of maoecrystal V has been accomplished (24 steps,

~1.5% overall yield from sesamol). The strategic focus on the central strained

tetrahydrofuran ring resulted in an initial disassembly of the lactone ring to a polycyclic enol

ether. The enol ether was constructed by an IMDA reaction of a tethered CH2=CH2

equivalent with a 2,4-cyclohexadienone fragment obtained by oxidative dearomatization of a

dihydrobenzofuran intermediate. This intermediate, in turn, was prepared by an effective

rhodium-catalyzed C–H functionalization reaction which can potentially be modified to

access enantioenriched products using chiral rhodium catalysts.10
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Scheme 1.
Synthesis Design for Maoecrystal V
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Scheme 2.
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Scheme 3.
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