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Multiple sclerosis (MS) and its animal model of experimental autoimmune encephalomyelitis (EAE) are
characterized by focal inflammatory infiltrates into the central nervous system, demyelinating lesions, axonal
damage, and abundant production of cytokines that activate immune cells and damage neurons and oligo-
dendrocytes, including interleukin-12 (IL-12), IL-6, IL-17, IL-21, IL-23, granulocyte macrophage-colony
stimulating factor, and interferon-gamma. The Janus Kinase/Signal Transducer and Activator of Transcription
( JAK/STAT) signaling pathway mediates the biological activities of these cytokines and is essential for the
development and regulation of immune responses. Dysregulation of the JAK/STAT pathway contributes to
numerous autoimmune diseases, including MS/EAE. The JAK/STAT pathway is aberrantly activated in MS/
EAE because of excessive production of cytokines, loss of expression of negative regulators such as suppressors
of cytokine signaling proteins, and significant enrichment of genes encoding components of the JAK/STAT
pathway, including STAT3. Specific JAK/STAT inhibitors have been used in numerous preclinical models of
MS and demonstrate beneficial effects on the clinical course of disease and attenuation of innate and adaptive
immune responses. In addition, other drugs such as statins, glatiramer acetate, laquinimod, and fumarates have
beneficial effects that involve inhibition of the JAK/STAT pathway. We conclude by discussing the feasibility
of the JAK/STAT pathway as a target for neuroinflammatory diseases.

Introduction

Multiple sclerosis

Multiple sclerosis (MS) is a chronic inflammatory
demyelinating immune-mediated disease of the cen-

tral nervous system (CNS; brain, spinal cord, optic nerves)
of unknown etiology and heterogeneous clinical symptoms
and course (Mayo and others 2012). A combination of im-
munologic, environmental, and genetic factors is thought
to cause and/or contribute to MS. Symptoms are varied,
ranging from numbness in limbs to severe disease, including
paralysis or loss of vision. Further, cognitive impairment
can occur. In approximately 85% of MS patients, disease is
characterized by a relapsing-remitting (RR) stage, followed
by a secondary progressive (SP) phase (Lopez-Diego and
Weiner 2008). The RR stage involves activities of Th1 and
Th17 cells that infiltrate the CNS, and the SP phase is trig-
gered by inflammation caused by activation of the innate
immune system (Weiner 2008). Hallmarks of MS are demy-
elination; inflammatory lesions; axonal damage; inappropriate

activation of interferon-gamma (IFN-g)-producing Th1 cells,
and interleukin-17 (IL-17)-producing Th17 cells, as well as
CD8 + T-cells and B-cells; hyperactivation of innate immune
cells such as macrophages/microglia, neutrophils, and den-
dritic cells (DCs); astrocyte activation; and exuberant pro-
duction of cytokines/chemokines (Bhat and Steinman 2009;
Ransohoff 2009; Disanto and others 2012). Existing FDA-
approved drugs for MS patients such as IFN-b, Glatiramer
Acetate (GA), Mitroxantrone, Natalizumab, and, most re-
cently, Fingolimod, Tecfidera, and Aubagio are only par-
tially effective (Lopez-Diego and Weiner 2008; Axtell and
others 2010; Lalive and others 2011; Hauser and others
2013), indicating a clear need for new therapies.

Experimental autoimmune encephalomyelitis

Experimental autoimmune encephalomyelitis (EAE),
which has been widely used as a model of MS, is induced
by active immunization with CNS antigens or by adoptive
transfer of CNS-reactive T-cells (Ponomarev and others
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2007; Bailey-Bucktrout and others 2008; Nair and others
2008; Linker and Lee 2009; Barr and others 2012). The patho-
genesis of EAE is complex, with both IFN-g-producing Th1
cells and IL-17-producing Th17 cells having pivotal roles in
the development of neuroinflammation (Goverman 2009;
Axtell and others 2010; Domingues and others 2010; Becher
and Segal 2011). Th1 and Th17 cells also produce granulo-
cyte macrophage-colony stimulating factor (GM-CSF), which
is essential to induce EAE, and sustains neuroinflammation
by recruitment of myeloid cells to the CNS (Kroenke and
others 2010; Codarri and others 2011; El-Behi and others
2011; McGeachy 2011). In both EAE and MS, it is particu-
larly important to limit the entry of Th1 and Th17 cells into
the CNS and/or limit expansion of these cells once they have
breached the blood–brain barrier. Th2 cells, which produce
high levels of IL-4 and IL-10, are correlated with resolution
of EAE, and CD25 + Foxp3 + T regulatory cells (Tregs)
function as inhibitors of CNS inflammation (Goverman 2009;
Kuchroo and others 2012). In addition, innate immune cells
such as DCs, neutrophils, macrophages, and microglia have
critical roles in EAE development (Bhat and Steinman 2009;
Goverman 2009; Steinman 2010; Ajami and others 2011;
Kuchroo and others 2012; Mayo and others 2012; Starossom
and others 2012). Similar to MS, EAE is characterized by the
heighted production of many proinflammatory cytokines and
chemokines, including IL-12, IL-6, IL-17A, IL-17F, IL-21,
IL-23, GM-CSF, IL-1, TNF, IFN-g, CCL2, and CXCL10.

Janus kinase/signal transducers and activators
of transcription pathway

The Janus Kinase/Signal Transducer and Activator of
Transcription ( JAK/STAT) signaling pathway is the pre-
dominant signal transduction cascade utilized by numerous
cytokines and is critical for initiating innate immunity, or-
chestrating adaptive immune systems, and ultimately con-
straining inflammatory and immune responses (O’Shea and
Plenge 2012). Cytokines activate receptor-associated JAKs,
which phosphorylate the receptor cytoplasmic domain on

tyrosine residues, leading to recruitment of STATs. The
JAKs then tyrosine phosphorylate STATs, promoting their
activation. Once activated, STATs dimerize, translocate to
the nucleus, and bind to regulatory elements to induce
transcription of target genes (Fig. 1A,B). Over 60 cytokines
and growth factors use the JAK/STAT pathway (O’Shea
and Plenge 2012). There are 4 JAKs ( JAK1, JAK2, JAK3,
and TYK2) and a total of 7 STATs (STAT 1, 2, 3, 4, 5a, 5b,
and 6). Various combinations of JAK/STAT usage result in
differential gene expression, particularly depending on the
STAT transcription factor(s) that is activated. Cytokines,
through activation of the JAK/STAT pathway, are of para-
mount importance in regulating the development, differen-
tiation, and function of T-cells and myeloid cells (Weaver
and others 2007; Geissmann and others 2010b). Specifically,
Th1 cell differentiation is induced by IL-12 through acti-
vation of JAK2/TYK2 and STAT4, Th2 differentiation is
induced by IL-4 activation of JAK1/3 and STAT6, while
Th17 cell differentiation requires IL-6 and IL-23, which
signal through JAK1/2 and STAT3 (Fig. 2) (Harris and
others 2007; Weaver and others 2007). STATs also regulate
innate immune cells (Geissmann and others 2010a; Galli
and others 2011). JAK1/2 and STAT1 activation mediate the
effects of IFN-g on macrophage function, JAK1/2 and
STAT3 are involved in IL-6 family signaling, and GM-CSF
signals through JAK2 and STAT5 to affect myeloid devel-
opment. JAKs and STATs are essential mediators of almost
all biological signaling events initiated by cytokines. As
such, unrestrained activation of the JAK/STAT pathway is
detrimental and has been associated with numerous im-
mune-mediated and autoimmune diseases, including MS
(O’Shea and Plenge 2012). Indeed, a number of STAT
target genes, including IL-23R, IL-17A, IL-17F, IL-21, IL-
22, IL-6, IFN-c, RORct, T-bet, CXCR3, and HLA-DR,
are overexpressed in both MS and EAE, and have been
implicated in contributing to disease pathogenesis. Acti-
vating mutations in STAT proteins are rare; thus, STAT
hyperactivation is usually caused by an overabundance of
cytokines, and/or dysregulation of endogenous negative

FIG. 1. The JAK/STAT signaling pathway and domain structure of JAK and STAT proteins. (A) Various cytokines bind
to their corresponding cytokine receptor and activate receptor-associated JAKs, leading to recruitment of STATs. JAKs then
tyrosine phosphorylate STATs, promoting their activation. STATs dimerize, translocate to the nucleus, and bind to regu-
latory elements to induce transcription of target genes. (B) JAK and STAT protein domain structure. JAK proteins contain 7
JH domains including the pseudo-kinase domain ( JH2) and the kinase domain ( JH1). Trans- and autophosphorylation of
tyrosine residues in the C-terminal kinase domain lead to the recruitment and activation of STATs. STAT protein structure
consists of an amino-terminal domain, a coiled-coil domain, a DNA-binding domain, a linker domain, an SH2 domain, and
a transactivation domain. Phosphorylation in the C-terminal transactivation domain by JAKs leads to STAT activation and
dimerization. JAK/STAT, Janus kinase/signal transducer and activator of transcription; JH, JAK homology.
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regulators of JAKs, most notably, suppressors of cytokine
signaling (SOCS) proteins. The SOCS family is composed
of 8 members, CIS and SOCS1–7, and serve to restrict the
duration of activation of cytokine-induced signaling by in-
hibiting JAK kinase activity after it has been turned on (Fig.
3A) (Yoshimura and others 2012). SOCS proteins contain
an N-terminal variable region, a classical SH2 domain, and a
C-terminal SOCS box (Fig. 3B). SOCS proteins are not
constitutively expressed, but rather induced by cytokines,
creating a negative feedback loop to prevent excessive ac-
tivation of cytokine-induced JAK/STAT signaling. SOCS
proteins bind to activated JAKs and to certain cytokine re-
ceptors via their SH2 domains, thereby suppressing fur-
ther signaling events. In addition, the SOCS box interacts
with components of the ubiquitin ligase machinery and
mediates proteosomal degradation of associated proteins,
most commonly, JAKs. SOCS1 and SOCS3 are unique
among the SOCS proteins in terms of containing a 12 amino
acid kinase-inhibitory region (KIR) (Fig. 3B), which acts as

a pseudosubstrate for JAKs, conferring inhibition of JAK
kinase activity. SOCS1 and SOCS3 in particular have crit-
ical functions in repressing innate and adaptive immunity, in
part by inhibiting STAT activation induced by IFN-g, IL-6,
IL-12, IL-23, and GM-CSF, which are all implicated in MS
and EAE pathogenesis (Yoshimura and others 2012; Ker-
shaw and others 2013).

Dysregulation of the JAK/STAT Pathway in MS

Genome-wide association studies have shown that cyto-
kines, their receptors, JAKs, STATs, and SOCS proteins are
associated with human autoimmune diseases, especially
pathways leading to aberrant STAT3 and STAT4 activation
(Oksenberg and Baranzini 2010; Sawcer and others 2011;
Vandenbroeck 2012). In MS, there is significant over-
expression of immunologically relevant genes involved in
Th cell differentiation and antigen presentation. These in-
clude cytokine and cytokine receptor genes such as IL-7, IL-
12, IL-2RA, IL-7R, IL-28RA, OSMR, and IL-22R (Bronson
and others 2010; Oksenberg and Baranzini 2010; Couturier
and others 2011; Oksenberg and Hauser 2011; Zuvich and
others 2011; Vandenbroeck and others 2012; Beecham and
others 2013; IMSGC 2013). A TYK2 variant in MS patients
is a protective allele that results in diminished TYK2 kinase
activity, leading to a decrease in STAT1 activation (Cou-
turier and others 2011). This promotes a deviation of Th cell
differentiation to the Th2 phenotype, and is associated
with a decreased risk of MS. STAT3 has been identified as
an MS susceptibility gene (Baranzini and others 2009;
Jakkula and others 2010; Oksenberg and Baranzini 2010),
and independent replication supports the association be-
tween STAT3 and an increase in MS risk (Lill and others
2012). In addition, genes encoding components of the JAK/
STAT pathway were recently demonstrated to be signifi-
cantly enriched in MS patients (IMSGC 2013). T-cells and
monocytes from MS patients during relapse have elevated
levels of activated STAT3 compared with cells from pa-
tients in remission, which is correlated with low levels of
SOCS3 (Frisullo and others 2006). This suggests an asso-
ciation of decreased SOCS3 expression, increased STAT3
activation, and MS relapse. Furthermore, high levels of
activated STAT3 in T-cells from patients with clinically
isolated syndrome predict conversion to clinically defined
MS (Frisullo and others 2008). A SOCS1 variant was re-
cently validated as a novel risk factor for MS (Vandenbroeck
and others 2012), although the functional significance of this
single-nucleotide polymorphism is not known. Interestingly,
single-nucleotide polymorphisms related to various com-
ponents of the NF-kB pathway have been identified in MS
patients (Beecham and others 2013), suggesting overac-
tivation of this pathway. This is relevant to the JAK/STAT
pathway as there is considerable crosstalk between these two
signaling cascades, and they function in a feed-forward loop
to ensure continuous activation (McFarland and others 2013).

Statins have been intensely studied for immunomodula-
tory and anti-inflammatory properties (Zamvil and Steinman
2002; Weber and others 2007b). Simvastatin has been
shown to induce SOCS3 expression in monocytes from MS
patients with RR disease, which was associated with di-
minished STAT1 and STAT3 activation (Zhang and others
2008). This also decreased the production of IL-6 and IL-23
by monocytes, leading to diminished IL-17 production by

FIG. 2. JAK/STAT signaling is critical for the differen-
tiation of CD4 + T-cells. Naive CD4 + Th cells differentiate
into various distinct functional subsets depending on the
cytokines they encounter. Specifically, Th1 cell differenti-
ation is induced by IL-12 through activation of JAK2/TYK2
and STAT4, Th2 cell differentiation is induced by IL-4
activation of JAK1/3 and STAT6, while Th17 cell differ-
entiation requires IL-6 and IL-23, which signal through
JAK1/2 and STAT3, as well as IL-1b. IL, interleukin; Th, T
helper.
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T-cells. Furthermore, simvastatin directly inhibits Th17 cell
differentiation in RR MS patients (Zhang and others 2011).
This is accomplished by inhibition of IRF-4 expression,
which is a key transcription factor for human Th17 cell
differentiation, leading to decreased IL-17A, IL-17F, IL-21,
and IL-22 production (Zhang and others 2011). Lastly,
simvastatin directly targets DCs from MS patients, which
causes an induction of SOCS1 and SOCS3 expression, and
decreased STAT1 and STAT3 activation (Zhang and others
2013). This in turn decreased expression of IL-1, IL-23,
TGF-b, IL-21, and IL-12 from DCs, providing an inhibitory
cytokine environment for Th1 and Th17 cell differentiation
(Zhang and others 2013). These studies collectively suggest
that SOCS proteins may represent therapeutic targets in MS
(Ramgolam and Markovic-Plese 2011). Indeed, a SOCS1
mimetic has efficacy in various EAE models, which is de-
scribed in more detail below.

Dysregulation of the JAK/STAT Pathway in EAE

Activation of the JAK/STAT pathway, particularly
STAT1, STAT3, and STAT4 activation, is observed in
various models of EAE, including active induction of clas-
sical and atypical EAE, as well as Th1 and Th17 cell-
adoptive transfer models of EAE (Zaheer and others 2007;
Chen and others 2009; Jia and others 2011; Qin and others
2012b; Egwuagu and Larkin 2013; Liu and others 2014).
Mice with targeted deletion of STAT proteins have been
used to determine the functional role of different STAT
members in EAE. Given the importance of STAT3 in dif-
ferentiation of Th17 cells, several groups have examined
mice with targeted deletion of STAT3 in T-cells for sus-
ceptibility to EAE. Loss of STAT3 in T-cells renders mice
resistant to EAE disease (Harris and others 2007; Liu and
others 2008). These studies demonstrate that STAT3, by
regulating the expression of the transcription factor RORgt
and the IL-23R, is essential for the development of Th17
cells. As such, STAT3 knock-out mice cannot generate

Th17 cells and thus are protected from developing EAE
(Harris and others 2007; Liu and others 2008). In addition,
T-cells from these mice are defective in expression and
activation of the integrins a4b1 and a4b7 and cannot traffic
into the CNS (Liu and others 2008). STAT4-deficient mice
are defective in the differentiation of Th1 cells and are re-
sistant to EAE induction (Chitnis and others 2001). STAT4
knockout mice have been shown to have a predominantly
Th2 phenotype, which is associated with high levels of IL-4
and IL-5. As such, the resistance to EAE may be because of
the protective effects of Th2-derived cytokines. Interest-
ingly, mice lacking STAT1 are highly susceptible to EAE
(Bettelli and others 2004). It is possible that in the absence
of STAT1, STAT3 and/or STAT4 signaling may compen-
sate to drive Th1 cell responses as these mice are charac-
terized by IFN-g–producing Th1 cells. It has been suggested
that mice lacking STAT1 cannot benefit from the protective
effect of IFN-g and thus have severe disease. IL-6 has a
deleterious role in EAE by activation of STAT3, which is
pivotal for induction of pathogenic Th17 cells, and trafficking
of Th1 and Th17 cells into the CNS (Yang and others 2007;
Jin and others 2009; Quintana and others 2009; Scheller and
others 2011). Thus, IL-6-deficient mice have been shown to
be resistant to EAE induction because of a lack of develop-
ment of Th17 cells (Quintana and others 2009).

The JAK/STAT pathway also regulates the innate im-
mune response in EAE. Macrophages, microglia, and DCs
can promote both injury and repair, and have detrimental
and protective roles in diseases such as EAE and MS (Block
and others 2007; Gensel and others 2009; Mildner and
others 2009; Rivest 2009; Shechter and others 2009; Zhu
and others 2011; Yogev and others 2012). These divergent
functions are dictated by their microenvironment, which can
promote a spectrum of macrophage/microglia phenotypes
(Fig. 4). Polarized macrophages are termed proinflam-
matory, classically activated M1, and anti-inflammatory,
alternatively activated M2, which represent 2 extremes of
the macrophage continuum (Gordon 2003; Mantovani and

FIG. 3. Induction of SOCS expression, and
domain structure of SOCS3. (A) SOCS pro-
teins (CIS and SOCS1–7) are not constitu-
tively expressed; rather, they are induced by
cytokines, creating a negative feedback loop
to prevent excessive activation of cytokine-
induced JAK/STAT signaling. (B) SOCS
proteins contain an N-terminal variable
region, a classical SH2 domain, and a
C-terminal SOCS box. The SOCS box in-
teracts with components of the ubiquitin
ligase machinery and mediates proteosomal
degradation of associated proteins, most
commonly, JAKs. SOCS1 and SOCS3 are
unique among the SOCS proteins as they
contain a KIR, which acts as a pseudosub-
strate for JAKs, conferring inhibition of JAK
kinase activity. KIR, kinase-inhibitory region;
SOCS, suppressors of cytokine signaling.
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others 2005; Cassol and others 2010). Macrophages are
polarized to the M1 phenotype by LPS, IFN-g, and GM-CSF
(Mantovani and others 2007; van der Does and others 2010;
Krausgruber and others 2011); produce high levels of IL-12,
IL-6, IL-1b, IL-23, CXCL10, and CCL2, increased levels
of reactive oxygen species, and low levels of IL-10; and
participate in the induction of Th1 and Th17 responses
(Mantovani and others 2005; Cassol and others 2010;
Krausgruber and others 2011). We have recently shown that
the absence of SOCS3 in macrophages leads to a ‘‘height-
ened’’ M1 phenotype associated with excessive STAT ac-
tivation (Qin and others 2012a,b). Furthermore, mice with
targeted deletion of SOCS3 in myeloid cells develop a se-
vere, nonresolving atypical form of EAE, which is associ-
ated with lesions in the cerebellum, rather than the spinal
cord (Qin and others 2012b). These mice have elevated
levels of M1 macrophages; exhibit hyperactivation of
STAT1, STAT3, and STAT4; and have elevated numbers of
inflammatory cells in the cerebellum, including macro-
phages and neutrophils, and a prominent Th1 and Th17 cell
infiltrate (Qin and others 2012b). IL-4, IL-13, and M-CSF
induce M2 macrophages, which upregulate scavenger and
mannose receptors, the IL-1 receptor antagonist, and express
high levels of IL-10, CCL17, CCL18, and CCL22 (Gordon
2003). M2 macrophages resolve inflammation and promote
Th2 responses (Wang and others 2010). M2 macrophages
are protective in multiple models of EAE. Weber and others
(2007a) demonstrated that M2 macrophages are induced by
GA treatment, characterized by increased secretion of IL-
10 and TGF-b and diminished STAT1 activation, and in-
hibit EAE disease upon adoptive transfer by suppressing
Th17 development and promoting Th2 and Tregs. Laqui-
nimod, an agent under evaluation for RR MS, is protective
in EAE models by induction of M2 macrophages, also
characterized by low STAT1 activation (Schulze-Topphoff
and others 2012; Thone and others 2012). Fumurates,
which were approved by the FDA in 2013 for treatment of
RR MS patients, protect mice from EAE by the generation
of anti-inflammatory type II DCs, which induce Th2 cells
(Ghoreschi and others 2011a). The type II DCs have im-
paired STAT1 phosphorylation. Thus, agents that are
protective in EAE models and in MS (GA, laquinimod,
fumarates) promote protective M2 macrophage and type II
DC phenotypes, which are associated with diminished

STAT1/3 activation, decreased production of IL-6, IL-12,
and IL-23, and elevated secretion of IL-10. We have also
shown that M2 macrophages are protective in the atypical
model of EAE associated with SOCS3 deficiency in mye-
loid cells (Qin and others 2012b). Adoptive transfer of M2
macrophages diminished the inflammatory infiltrate ob-
served in the cerebellum, reduced Th1 and Th17 cells
while enhancing expression of Th2 and Tregs, and in-
hibited STAT activation in the cerebellum (Qin and others
2012b).

As mentioned previously, SOCS1 and SOCS3 are criti-
cally involved in regulating innate and adaptive immune
responses (Yoshimura and others 2012). In EAE models,
expression of both SOCS1 and SOCS3 is detected pre-
dominantly in macrophages during the early stages of dis-
ease, as well as in active disease (Stark and Cross 2006;
Berard and others 2010). In a study comparing RR EAE to
chronic (CH) EAE, it was noted that the number of SOCS1-
expressing macrophages at the peak of RR disease was
significantly higher than in CH-EAE (Berard and others
2010). This correlated with diminished expression of iNOS,
whose expression is regulated by SOCS1, in RR-EAE mice
compared with CH-EAE mice. The authors speculate that
the inhibition of iNOS may promote remission in the RR-
EAE model, and that SOCS1 expression by macrophages
may contribute to induction of remissions. SOCS3 expres-
sion in DCs is also protective in EAE (Li and others 2006).
Adoptive transfer of SOCS3-expressing DCs at EAE in-
duction or at disease onset reduces the clinical severity of
EAE compared with control DCs. This was associated with
a limited differentiation of Th1 and Th17 cells and a robust
induction of Th2 cells, which provide protection in EAE. As
discussed previously, IL-6 and IL-23 activation of STAT3 is
critical for Th17 cell differentiation (Basu and others 2013).
Deficiency of SOCS3 in T-cells leads to preferential polar-
ization to the Th17 phenotype, because of heightened
STAT3 phosphorylation and subsequent IL-17A and IL-17F
expression (Chen and others 2006). TGF-b is also required
for Th17 cell differentiation (Basu and others 2013). We
have shown that TGF-b inhibits SOCS3 expression, leading
to enhancement of STAT3 activation and Th17 cell polari-
zation (Qin and others 2009). These results indicate that
SOCS3 expression is critical to constrain the differentiation
of Th17 cells.

FIG. 4. M1 and M2 macrophage polariza-
tion. Polarized macrophages are termed
proinflammatory, classically activated M1, and
anti-inflammatory, alternatively activated M2.
Macrophages are polarized to the M1 pheno-
type by LPS, IFN-g, and GM-CSF, produce
high levels of IL-12, IL-6, IL-1b, IL-23,
CXCL10, and CCL2, increase levels of reac-
tive oxygen species, and participate in the in-
duction of Th1 and Th17 responses. M-CSF,
IL-13, and IL-4 induce M2 macrophages,
which upregulate scavenger and mannose re-
ceptors, the IL-1 receptor antagonist, and ex-
press high levels of IL-10, CCL17, CCL18,
CCL22, and TGF-b. M2 macrophages can
also be induced by GA and Laquinimod
treatment. GM-CSF, granulocyte macrophage-
colony stimulating factor; IFN, interferon.
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Therapeutic intervention of the JAK/STAT
pathway in EAE

The JAK/STAT pathway has received significant atten-
tion as a therapeutic target in inflammation, autoimmune
diseases, solid and liquid tumors, and transplant rejection
(Opar 2010; O’Shea and Plenge 2012; Seavey and Dobr-
zanski 2012). A variety of JAK inhibitors have been de-
veloped with varying degrees of specificity for JAK1, JAK2,
JAK3, and TYK2, and have demonstrated clinical efficacy
in rheumatoid arthritis and other inflammatory disorders
(Fridman and others 2010; Opar 2010; Ghoreschi and others
2011b; Stump and others 2011; O’Shea and Plenge 2012;
O’Shea and others 2013a). Two JAK inhibitors have been
approved by the FDA: Ruxolitinib, a JAK1/JAK2 inhibitor,
was approved in 2011 for patients with myelofibrosis and
polycythaemia vera, and Tofacitinab, a JAK3/JAK1 inhibi-
tor, was approved in 2012 for treatment of patients with
rheumatoid arthritis (O’Shea and others 2013a,b). JAK in-
hibitors interrupt signaling downstream of multiple cyto-
kines, representing a useful approach for MS, which is
characterized by a ‘‘cytokine storm’’ in the periphery and
CNS. Many of the key immunoregulatory cytokines in-
volved in EAE and MS, including IL-6, IL-12, IL-23, IFN-g,
and GM-CSF, require activation of JAK1, JAK2, or both for
subsequent activation of STATs, and ultimate biological
responses (O’Shea and Plenge 2012). As such, a number of
studies have examined direct inhibition of the JAK/STAT
pathway in EAE. Bright and others (1999) previously
demonstrated that tyrphostin B42, a JAK2 inhibitor, reduced
severity of EAE. This was accomplished by inhibiting
IL-12-induced activation of JAK2 in T-cells, leading to a
decrease in Th1 cell polarization. In vivo, tyrphostin B42
decreased Th1 cell development, thereby reducing the in-
cidence and severity of EAE. We have recently demon-
strated that AZD1480, a JAK1/JAK2 inhibitor, has striking
clinical efficacy in multiple models of EAE (Liu and others
2014). In vitro, AZD1480 inhibits the differentiation of both
human and murine Th1 cells by inhibiting STAT1 and
STAT4 activation, and decreasing levels of IFN-g and T-
bet, the transcription factor critical for Th1 cell polarization.
AZD1480 also inhibited the differentiation of human and
murine Th17 cells by inhibiting STAT3 activation, and
downstream STAT3 target genes such as IL-17A, RORct,
IL-22, and IL-23R. AZD1480 also influenced macrophages
and DCs by inhibiting STAT1, STAT3, and STAT5 acti-
vation, and expression of genes such as iNOS, Class II
MHC, and CD40 (Liu and others 2014). Our results indicate
that AZD1480 does not promote the M2 macrophage phe-
notype but exerts an inhibitory effect on M1 polarization.
In vivo, AZD1480 had a significant protective effect in 5
EAE models: classical EAE, atypical EAE, RR EAE,
Th1 cell-mediated EAE, and Th17 cell-mediated EAE. The
beneficial immunomodulatory effects of AZD1480 were
associated with deactivation of myeloid cells, diminished
polarization of Th1 and Th17 cells, decreased expression of
proinflammatory cytokines/chemokines, and reduced infil-
tration of immune cells (Liu and others 2014). Importantly,
AZD1480 treatment was administered at the onset of disease
and in a therapeutic manner after the appearance of clinical
symptoms, with potent clinical efficacy.

Studies on other pharmacologic inhibitors have impli-
cated the JAK/STAT axis in regulating clinical manifesta-

tions of EAE. Peroxisome proliferator activated receptor-g
(PPARg) and COX2 inhibitors suppress EAE severity, in
part, by inhibiting IL-12-induced activation of the JAK/
STAT pathway, and subsequent suppression of Th1 cell
differentiation (Natarajan and Bright 2002; Muthian and
others 2006). This was accomplished by inhibiting STAT3
and STAT4 activation in T-cells. The protective effect of
GA in EAE is in part caused by inhibition of STAT3
phosphorylation in T-cells, leading to inhibition of RORgt
expression, and suppression of Th17 cell differentiation
(Chen and others 2009). Several herbal compounds, in-
cluding plumbagin (PL), berberine, and quercetin, exert
protective effects in EAE models by inhibiting STAT acti-
vation and Th1 and Th17 cell differentiation (Muthian and
Bright 2004; Qin and others 2010; Jia and others 2011).
Furthermore, both PL and berberine inhibited NF-kB acti-
vation in antigen-presenting cells, which diminished ex-
pression of IL-6 and iNOS by these cells. The lack of IL-6
likely contributes to the decrease in Th17 cell differentia-
tion, while reductions in iNOS may promote the develop-
ment of Tregs (Lee and others 2011), which aid in resolution
of disease.

Lastly, there is much interest in the use of SOCS mi-
metics in neuroinflammatory diseases. SOCS1 and SOCS3
contain a KIR domain that binds to tyrosine-phosphorylated
JAKs and inhibits their kinase activity (Fig. 3B). SOCS1
mimetics have been made that bind to the JAK2 autophos-
phorylation site, preventing activation of STAT1 and STAT3.
The SOCS1 mimetic (Tkip) inhibits IFN-g and IL-6 acti-
vation of STAT proteins in vitro, thereby suppressing
downstream gene expression (Flowers and others 2004).
The SOCS1 mimetic has been tested in several EAE models.
Administration of Tkip before EAE induction in NZW mice
prevents acute EAE, while in SJL/J mice, administration
blocks the acute and relapse phases of EAE, even when
given after establishment of disease (Mujtaba and others
2005). In C57BL/6 mice with CH EAE, Tkip reduced dis-
ease severity (Berard and others 2010). A more detailed
analysis demonstrated that Tkip inhibits expansion of Th17
cells in EAE by blocking IL-23 activation of STAT3 ( Jager
and others 2011). The therapeutic efficacy of Tkip in EAE
was associated with a reduction in cellular infiltration into
the CNS. These findings collectively indicate that the
SOCS1 mimetic can attenuate neuroinflammatory responses
in the CNS and may have therapeutic value in MS patients.

STAT inhibitors

There is also interest in the development of STAT in-
hibitors, particularly inhibitors of STAT3 and STAT5, as
their aberrant activation is associated with a wide range of
cancers (Brantley and Benveniste 2008; Yu and others 2009;
Walker and others 2013). In addition, STAT3 mediates
many of the inflammatory responses associated with sig-
naling by the IL-6 family of cytokines and has relevance as
a target in numerous autoimmune diseases, including MS.
Thus, STAT transcription factors appear to be targets with a
high therapeutic index. However, the ability to target STATs
has lagged far behind the great progress in targeting JAKs.
Although STATs lack enzymatic activity, they do contain
clearly defined functional domains that can serve as targets
(Fig. 1B). A number of strategies have been employed, in-
cluding (1) creating phosphopeptide mimetic prodrugs that
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target the SH2 domain, thereby preventing dimerization of
STATs (McMurray and others 2012); (2) targeting of the N-
terminal domain of STATs to modulate JAK/STAT signal-
ing (Timofeeva and Tarasova 2012); (3) development of
decoy oligonucleotides that bind activated STATs, thereby
interfering with DNA binding and transcriptional activity
(Sen and Grandis 2012); and (4) screening chemical li-
braries for STAT modulators (Nelson and others 2011;
Walker and Frank 2012). A number of STAT3 inhibitors
have been described and tested successfully in preclinical
models (Nelson and others 2011; Zhang and others 2012;
Miklossy and others 2013). More importantly, a STAT3
decoy oligonucleotide has been tested in a phase 0 clinical
trial in patients with head and neck cancers. The results
demonstrate evidence of inhibition of STAT3 target genes in
the tumor and are the first to document the efficacy of
STAT3 inhibitors in humans (Sen and others 2012). In ad-
dition, a small molecule inhibitor of STAT3 is being tested
in a clinical trial in patients with chronic lymphocytic leu-
kemia (Frank 2012). Of relevance to neuroinflammation,
a STAT3 inhibitor (ORLL-NIH001) has been tested in ex-
perimental autoimmune uveitis, a model of human posterior
uveitis (Yu and others 2012). Treatment with ORLL-NIH001
attenuated disease severity by inhibiting the inflammatory
properties of T-cells, inhibiting entry of T-cells into the
retina, and reducing expression of CCR6 and CXCR3 (Yu
and others 2012). In addition, ORLL-NIH001 inhibited the
expansion of human Th17 cells in vitro. These encouraging
findings bode well for the future development and use of
STAT3 inhibitors in MS patients.

Conclusions

The JAK/STAT pathway is one of the most critical signal
transduction systems utilized by cells of the innate and
adaptive immune systems to initiate and regulate immune
responses. Aberrant activation of this pathway promotes
dysregulation of innate and adaptive immunity, including
activation of pathogenic Th1 and Th17 cells, activation of
macrophages, neutrophils, and DCs, and excessive produc-
tion of proinflammatory cytokines, all of which contribute to
the pathogenesis of MS. There have been remarkable ad-
vances in the development of specific JAK inhibitors that
show great promise in the treatment of autoimmune dis-
eases, as well as a variety of cancers (O’Shea and others
2013a,b). Common adverse effects associated with the JAK
inhibitors include bacterial, fungal, and viral infections, but
opportunistic infections are uncommon. Presumably be-
cause of interference with EPO signaling and signaling by
colony stimulating factors via JAK2 inhibition, anemia and
neutropenia can also occur. Hypercholesterolemia is ob-
served with the use of JAK inhibitors, which may be due to
blockade of IL-6 signaling. Because of the relatively short
half-life of the JAK inhibitors, the drug can be stopped if
adverse effects such as infections become severe. Another
possibility may be to administer JAK inhibitors in a pulsatile
manner.

Given the profound role of cytokines in autoimmunity,
JAK inhibitors have great potential utility. As JAK inhibi-
tors can interrupt the signaling of numerous cytokines, we
believe that they may be useful for the treatment of MS as
simultaneous inhibition of cytokine signaling involved in
activation of innate and adaptive immune responses may

break the cycle of inflammation characteristic of MS. Other
diseases such as Parkinson’s disease, spinal cord injury, and
Alzheimer’s disease, which have a prominent neuroin-
flammatory component, may also benefit from JAK inhibi-
tors. In this regard, preliminary findings from our laboratory
using a JAK1/2 inhibitor in a rat model of Parkinson’s
disease demonstrate a reduction in macrophage/microglial
activation, and sparing of dopaminergic neurons (unpub-
lished data). These findings collectively suggest that the
JAK/STAT axis may serve as a therapeutic target for neu-
roinflammatory and neurodegenerative diseases.
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