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Abstract

Aims: To investigate the association of ABCG1, GALNT2 and HMGCR genes promoter DNA methylation with coronary heart
disease (CHD) and explore the interaction between their methylation status and the CHD patients’ clinical characteristics in
Han Chinese population.

Methods and results: Methylation-specific polymerase chain reaction (MSP) technology was used to examine the role of the
aberrant gene promoter methylation in CHD in Han Chinese population. A total of 85 CHD patients and 54 participants
without CHD confirmed by angiography were recruited. 82.8% of the participants with ABCG1 gene promoter
hypermethylation have CHD, while only 17.4% of the participants without hypermethylation have it. The average age of
the participants with GALNT2 gene promoter hypermethylation is 62.1068.21, while that of the participants without
hypermethylation is 57.2869.87; in the former group, 75.4% of the participants have CHD, compared to only 50% in the
latter group. As for the HMGCR gene, the average age of the participants with promoter hypermethylation is 63.2468.10
and that of the participants without hypermethylation is 57.7969.55; its promoter hypermethylation is likely to be related to
smoking. Our results indicated a significant statistical association of promoter methylation of the ABCG1 gene with
increased risk of CHD (OR = 19.966; 95% CI, 7.319–54.468; P*,0.001; P*: adjusted for age, gender, smoking, lipid level,
hypertension, and diabetes). Similar results were obtained for that of the GALNT2 gene (OR = 2.978; 95% CI, 1.335–6.646;
P* = 0.008), but not of HMGCR gene (OR = 1.388; 95% CI, 0.572–3.371; P* = 0.469).

Conclusions: The present work provides evidence to support the association of promoter DNA methylation status with the
risk profile of CHD. Our data indicates that promoter DNA hypermethylation of the ABCG1 and GALNT2 genes, but not the
HMGCR gene, is associated with an increased risk of CHD. CHD, smoking and aging are likely to be the important factors
influencing DNA hypermethylation.
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Introduction

Coronary heart disease (CHD), a complex disease caused by an

imbalance between blood supply and demand of the myocardium,

is a leading cause of morbidity and mortality worldwide. The

aetiology of CHD is largely attributed to the accumulation of

cholesterol crystals, cell debris, fibrous materials, & minerals in the

intimal layer of the coronary arteries [1–2]. It is well established

that genetic and environmental factors, such as CHD family

history, poor diet, advanced age, smoking habit, hypertension,

diabetes mellitus, and dyslipidemia are associated with an

increased risk of CHD [3]. Among these factors, dyslipidaemia

is known to have a major influence. Several studies have suggested

that an elevated level of total cholesterol (TC) and low-density

lipoprotein cholesterol (LDL-C), and a low level of high density

lipoprotein cholesterol (HDL-C) are associated with a worse

prognosis of CHD [4]. Lipid accumulation product (LAP), a

continuous marker of lipid over accumulation, has recently been

proposed to be a good predictor for the risk of cardiovascular

disease [5]. However, the exact role of dyslipidaemia in the

cardiovascular system diseases remains to be determined.
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Recently, increasing evidence indicates that many human

diseases, including cancers and atherosclerosis, are either caused

or influenced by abnormal DNA methylation [6–7]. DNA

methylation is a stable and well understood epigenetic marker. It

refers to the addition of a methyl group to the 5 position of

cytosine in a dinucleotide CpG site. Although controversy still

exists about the effect of the position and size of methylated DNA

segments on regional transcription, it has been well established

that this epigenetic change is associated with transcription

silencing, and loss of methylation (demethylation) promotes, if

not activates, gene expression [8]. One of the major mechanisms

to down-regulate expression of a gene is methylation of a cytosine

and guanine rich area, called CpGislands, in the promoter region

of the gene [9]. A few studies have indicated that DNA promoter

methylation of certain genes is responsible for the susceptibility of

CHD [10–13].

ABCG1, GALNT2 and HMGCR are among the genes

suggested by Genome-wide association study (GWAS) whose

variants are associated with CHD and variations in plasma

lipoproteins [14–16]. These three genes exert their effects on the

pathogenesis and progression of CHD through manipulating the

various lipid pathways. The expression of ABCG1 gene reduces

cholesterol accumulation in macrophages by promoting the

transfer of intracellular cholesterol into HDL-C pathway [15].

GALNT2 gene, which influences O-linked oligosaccharide

biosynthesis, has been shown to be involved in HDL-C regulation

in humans [14,16]. HMGCR gene, on the other hand, is

associated with variation in LDL-C levels [14]. The aims of the

present study are firstly to establish whether abnormal promoter

region methylation of these three genes occurs in the cardiovas-

cular system; secondly to explore the interaction of the methyl-

ation with the participants’ lipid level and a few clinical

characteristics; and thirdly to ascertain whether the aforemen-

tioned methylation contributes to the risk of CHD.

Materials and Methods

Ethics Statement
This study protocol was approved by the Ethical Committee of

Ningbo Lihuili Hospital. The informed written consent was

obtained from all the subjects.

Sample and clinical data
Between 1st of July 2012 and 1st of March 2013,221 patients

were under the care of our Cardiology department in the Ningbo

Lihuili Hospital, Ningbo city of Zhejiang province, China. Each of

them was seen and reviewed by at least two independent

cardiologists. All of their medical records were carefully read.

Among these patients, 85 patients had one or more major

coronary arteries with more than 50% occlusion. They were

included into the case group. Another 54 patients, who do not

have an occlusion at all or a past medical history of any congenital

heart disease, cardiomyopathy, liver or renal diseases, are included

in the non-CHD group. The rest 82 patients were excluded from

our study because of the existence of occlusion of less than 50% in

at least one of their coronary arteries, or their past medical history

of the conditions mentioned above. The details of the inclusion

criteria were presented in our previous publication [17]. All

individuals are Han Chinese living in Ningbo city for at least three

generations. Blood samples were collected in 3.2% citrate sodium-

treated tubes and then stored at 280uC.

Biochemical analyses
Genomic DNA was isolated from peripheral blood samples

using the Wizard Genomic DNA Purification kit (Promega,

Madison, USA). DNA concentrations were determined by the

ultramicro nucleic acid ultraviolet tester (NANODROP 1000,

Wilmington, USA). Plasma levels of TG, TC, HDL, and LDL

were measured using an enzymatic end point assay [18]. The

ApoA, ApoB and ApoE levels were measured by the transmission

turbidimetric method [19]. The plasma Lp(a) concentrations were

determined by a sandwich enzyme-linked immunosorbent assay

method [Macra-Lp(a), SDI, Newark, Delaware]. The concentra-

tions of ALT, AST, ALP and GGT in plasma were measured by

the IFCC reference measurement systems ([20–22]. The ALB level

was worked through the Bromocresol green method [23]. All the

above mentioned procedures were performed following the

standard procedures recommended by the manufacturers.

Epigenetic analysis
Sodium Bisulfite Conversion. The methylation status of a

DNA sequence was measured using sodium bisulfite technology.

Sodium bisulfite preferentially deaminatesun methylated cytosine

residues to thymines (after PCR amplification), whereas methyl-

cytosines remain unmodified. Therefore, bisulfite treatment

introduces a difference to the DNA sequence of methylated and

unmethylated DNA. Sodium bisulfite conversion and DNA

recovery were performed by using EpiTect Bisulfite Kit (Qiagen)

as follows: dilute a total of 2 mg DNA from blood in 40 mL of

RNase-free water in a 200 mL PCR tube; add 85 mL Bisulfite Mix

and 15 mL DNA Protect Buffer into the tube; and perform the

bisulfite DNA conversion using a thermal cycler. DNA was

denaturated at 95uC for 5 minutes, incubated at 60uC for

25 minutes, 95uC for 5 minutes, 60uC for 85 minutes, 95uC for

5 minutes, and 60uC for 175 minutes, and finally held at 20uC
indefinitely. After bisulfite treatment, DNA was ethanol-precipi-

Table 1. Primers for MSP of the ABCG1, GALNT2 and HMGCR genes.

Group Forward primer(59to39) Reversr primer(59to39)
Product
size (bp) Tm

ABCG1 M 59 ATTTGTATTGTGATATCGACGAGAC 39 59 CTTACCTCCTCGATTCTAAACGTAC 39 251 54

ABCG1 U 59 AGATTTGTATTGTGATATTGATGAGAT 39 59 AACTTACCTCCTCAATTCTAAACATAC 39 251 48

GALNT2 M 59 TTATAAGATAGATCGTTTTTTTGTATC 39 59 CCGCTAATATCGATTTTATTTAT 39 263 48

GALNT2 U 59 ATGTTATAAGATAGATTGTTTTTTTGTATT 39 59 AACCCACTAATATCAATTTTATTTAT 39 263 46

HMGCR M 59 TATAAGAGAGAGAGACGTAGGTGATC 39 59 CCCGTACTCGTCCTAACTATAATAA 39 290 55

HMGCR U 59 GTATATAAGAGAGAGAGATGTAGGTGATT 39 59 TAACCCATACTCATCCTAACTATAATAA 39 290 54

MSP: methylation-specific polymerase chain reaction; M: methylation-specific primers; U: unmethylation-specific primers.
doi:10.1371/journal.pone.0102265.t001
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tated and resuspended in 39 m Lelution buffer (Buffer EB) and

stored at 220uC.

Methylation – Specific PCR (MSP). Methylation in the

target CpG regions of ABCG1, GALNT2 and HMGCR genes

promoter in the bisulfite-modified DNA was investigated by

methylation-specific PCR (MSP). Each PCR reaction mix has a

total volume of 50 mL which contains 2 mL bisulfite-modified

DNA, 10 mL 16 KAPA2G buffer (KAPA BIO, United States),

1 mL 0.2 mmol/L deoxynucleotide triphosphate mix (dNTP) mix

(KAPA BIO, United States), 1 mL 0.5 mmol/L of each primer, and

0.5 U of KAPA2G Robust Hotstart DNA Polymerase (KAPA

BIO, United States). The thermo-cyclere condition is as follows:

(1) 95uC for 5 minutes; (2) 10 cycles of 95uC for 30 seconds, Tm-

0.8uC for 30 seconds, and 72uC for 60 seconds; (3) 38 cycles of

95uC for 30 seconds, TmuC for 30 seconds, and 72uC for

60 seconds; (4) 72uC for 10 minutes. PCR products were then

electrophoresed on a 2.5% agarosegel and visualized under UV

illumination. PCR primers were designed by Primer Express

Software v2.0 (ABI). The gene names, locations, primer and probe

sequences are summarized in Table 1.

Statistical analysis
Statistical analyses were performed using the PASW Statis-

tics13.0 software (SPSS, Inc., Somers, NY, USA) and Graph Pad

Table 2. Characteristics of all subjects according to subgroup analysis by CHD status and gender.

Characteristics Subgroup analysis by CHD status Subgroup analysis by gender

CHD(n = 85) Non-CHD(n = 54) P value Male(n = 89) Female(n = 50) P value

(Mean ± s.e.) (Mean ± s.e.) (Mean ± s.e.) (Mean ± s.e.)

Age(yrs) 61.3369.22 56.3569.00 0.002 59.2269.52 59.7369.34 0.763

Gender (M/F) (58/67.4) (31/57.4) 0.230 NA NA

Smoking,n(%) 43(50.0) 21(38.9) 0.199 59(66.3) 5(9.8) ,0.001

Hypertension,n(%) 53(61.6) 26(48.1) 0.117 55(61.8) 24(47.1) 0.091

Diabetes,n(%) 25(29.1) 3(5.6) 0.001 15(16.9) 13(25.5) 0.219

TC(mmol/l) 4.561.1 4.3561.0 0.399 4.4861.09 4.3861.02 0.591

TG(mmol/l) 1.9762.82 1.4760.72 0.203 1.9262.76 1.5360.90 0.323

HDL-C(mmol/l) 1.0960.26 1.1060.36 0.784 1.0860.32 1.1260.28 0.397

LDL-C(mmol/l) 2.7260.92 2.6360.76 0.547 2.7460.88 2.6060.83 0.388

ApoAI(g/L) 1.0760.19 1.0460.23 0.320 1.07760.22 1.0360.18 0.142

ApoB(g/L) 0.8560.27 0.8460.21 0.830 0.8560.24 0.8260.26 0.475

ApoE(g/L) 4.1861.34 3.9661.42 0.369 3.9061.18 4.4361.60 0.026

Lp(a)(g/L) 0.4060.34 0.2560.26 0.005 0.3260.35 0.3960.26 0.190

hs-CRP (mg/L) 8.09614.81 3.9063.87 0.014 7.63614.55 4.4764.62 0.134

ALB (g/L) 41.2764.25 40.6666.27 0.498 41.0265.95 41.0663.20 0.958

GLB (g/L) 24.4063.60 26.2664.94 0.011 24.9864.37 25.3764.05 0.597

A/G 1.7260.32 1.6460.29 0.121 1.7160.33 1.6560.28 0.239

ALT (IU/L) 27.06618.19 24.94617.20 0.496 29.01619.65 21.41612.72 0.014

AST (IU/L) 32.95647.19 27.96621.09 0.466 35.07647.33 23.98615.85 0.108

ALP (IU/L) 72.74620.33 70.22624.69 0.512 70.75621.22 73.54623.57 0.472

GGT (IU/L) 40.19640.01 33.81627.74 0.307 44.88639.16 25.25624.82 ,0.001

Values are given as mean6s.e.; NA: denotes not applicable.
CHD: coronary heart disease; TC: total cholesterol; HDL: high density lipoprotein; LDL: low density lipoprotein; ALT: alanine aminotransferase; AST: aspartate
aminotransferase.
doi:10.1371/journal.pone.0102265.t002

Figure 1. Typical methylation analysis result of the ABCG1, GALNT2 and HMGCR genes promoter regions of by MSP. MW: molecular
weight DNA marker (100-bp DNA ladder). 1–6 were CHD patients, 7–12 were Non-CHD controls; M for methylated specific primers; U for the
unmethylated specific primers; PCR product indicated the presence of methylated or unmethylated promoter of ABCG1, GALNT2 and HMGCR for
primer M or primer U.
doi:10.1371/journal.pone.0102265.g001
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(Prism 5). Data are presented as means 6 standard deviation. The

differences of the ABCG1, GALNT2 and HMGCR genes

promoter methylation status between the CHD patients and the

control group were analyzed using a Pearson Chi-square exact

test. The mean group differences for laboratory parameters were

compared by using a Student t-test. Pearson correlation was used

to determine the association between the three genes promoter

methylation status and CHD by assessing odds ratio (ORs) and

95% confidence intervals (95% CI). Cox regression was used to

assess the effect of baseline and traditional risk factors, such as age,

gender, smoking, lipid level, hypertension, and diabetes. All

statistical analyses were two-sided and P value,0.05 was

considered to be statistically significant.

Results

The main clinical and biochemical characteristics of the study

population are shown in table 2. There are 85 CHD patients with

a mean age of 61.3369.22 and 54 healthy subjects with a mean

age of 56.3569.00 participating in the present study. The CHD

patients are older than the non-CHD subjects. There are more

males present in the CHD group than in the non-CHD group.

When all the participants are analysed according to their genders,

the males’ mean age is 59.2269.52 years old, similar to that of the

females, 59.7369.34 years old. The percentage of smokers is

higher in the male group compared to in the female group (66.3%

vs. 9.8%, P,0.001).

Fig. 1 shows a typical example of the MSP products analysed on

an agarose gel for the ABCG1, GALNT2 and HMGCR genes. We

analysed the relationship between the promoter methylation status

of the three genes and various clinical characteristics, such as age,

sex, smoking, lipid level, hypertension, and diabetes mellitus in

Table 3. Firstly, we found that 26.9% of the participants with

ABCG1 gene promoter hypermethylation have diabetes, while

only 6.5% of the participants without hypermethylation have it.

This difference is statistically significant. However, when the Cox

regression was used to adjust the influence of factors such as age,

gender, smoking, lipid level, CHD, and hypertension, the

difference becomes statistically insignificant (P* = 0.0212). 82.8%

of the participants in the former group suffer from CHD. This is

statistically significantly higher than that of the participants in the

latter group which is 17.4% (P,0.001; P*,0.001). The average

age of the participants with GALNT2 gene promoter hypermethy-

lation is 62.1068.21, statistically significantly higher than that of

the participants without hypermethylation which is 57.2869.87

(P = 0.004; P* = 0.008); in the former group, 75.4% of the

participants have CHD, significantly higher than 50% in the

latter group (P = 0.003; P* = 0.008). As for the HMGCR gene, the

average age of the participants with promoter hypermethylation is

63.2468.10, significantly higher than that of the participants

without hypermethylation which is 57.7969.55 (P = 0.003;

P* = 0.014); its promoter hypermethylation is likely to be related

to smoking. In addition, it seems that the DNA promoter

hypermethylation of the three genes is not related to lipid level,

hypertension and gender.

Furthermore, we then analysed the methylation patterns of

ABCG1, GALNT2 and HMGCR genes promoter regions in the

CHD patients and non-CHD subjects. As shown in Fig. 2, the

promoter region of the ABCG1 gene is hypermethylated in 90.5%

of the CHD patients and 29.6% of the non-CHD subjects.

Similarly, the promoter regions of the GALNT2 gene and

HMGCR gene are hypermethylated in a higher percentage of

the CHD patients than the non-CHD subjects (54.1% vs. 27.8%

and 34.1% vs. 22.2% respectively). The promoter methylation of
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the ABCG1, GALNT2 and HMGCR genes was detected in

91.2%, 52.6%, and 31.6% of the male CHD patients, while that of

the male non-CHD subjects is 34.4%, 28.1%, and 21.9%. In the

female study group, the promoter methylation of the three genes

was detected in 89.3%, 57.1%, and 39.3% of the CHD patients

and 22.7%, 27.2%, and 22.7% of non-CHD subjects respectively.

There was a significant statistical association of the promoter

hypermethylation of the ABCG1 gene with CHD risk

(OR = 22.859; 95% CI, 8.989–58.135; p,0.001 and

OR = 19.966; 95% CI, 7.319–54.468; P*,0.001; P*: adjusted

for age, gender, smoking, lipid level, hypertension, and diabetes).

Hence, ABCG1 promoter methylation status could be used to

predict the risk of CHD in the total study sample. Similar

relationship was found between the methylation status of the

GALNT2 gene promoter region and the risk of CHD

(OR = 3.067; 95% CI, 1.474–6.380; p = 0.002 and OR = 2.978;

95% CI, 1.335–6.646; P* = 0.008) (Table 4). In contrast, the

methylation status of the HMGCR gene promoter regions is not

shown to be associated with CHD (OR = 1.813; 95% CI, 0.829–

3.965; P = 0.134 and OR = 1.388; 95% CI, 0.572–3.371;

P* = 0.469). As displayed in Table 4, the ABCG1 and GALNT2
gene promoter regions are positively associated with CHD both in

the male group (ABCG1: OR = 19.855, 95% CI, 6.148–64.119,

P,0.001; GALNT2: OR = 2.840; 95% CI, 1.121–7.194;

P = 0.025 and ABCG1: OR = 16.291, 95% CI, 4.917–53.974,

P*,0.001; GALNT2: OR = 2.717; 95% CI, 1.010–7.309;

P* = 0.048) and the female group (ABCG1: OR = 28.333, 95%

CI, 5.964–134.609, P,0.001; GALNT2: OR = 3.556; 95% CI,

1.071–11.808; P = 0.035 and ABCG1: OR = 52.923, 95% CI,

5.329–525.607, P* = 0.001; GALNT2: OR = 6.355; 95% CI,

1.248–32.365; P* = 0.026). The analysis in the two gender groups

demonstrates both male- and female-dependent effects of the

ABCG1 and GALNT2 gene promoter methylation status in

prediction of CHD. However, the statistical evidence is not high

enough to support an association between the HMGCR gene

promoter methylation and the CHD in either of the gender group

(Table 4).

Discussion

Coronary heart disease is one of the most prevalent and

preventable health problems that cause high morbidity and

mortality in both the developed and developing countries

worldwide [24]. High level of the circulating LDL-c and low level

of the HDL-c are strong risk factors for CHD [25].

ABCG1 belongs to the ABCG family of reverse half transport-

ers. Similar to ABCA1, ABCG1 exports excess cellular cholesterol

into the HDL pathway and reduces cholesterol accumulation in

the macrophages [16]. Multiple potential transcripts of human

ABCG1 that use alternate exons or promoters have been identified

and found to play an important role in the transportation of

dietary lipid components [26].

Another strong candidate for the HDL-c regulation in humans

is GALNT2, which regulates O-linked oligosaccharide biosynthe-

sis [27]. GALNT2 mutation has been reported to underlie non-

sialyation of APOC3, which in turn leads to the increased LPL

activity in humans [28]. LDL-c levels are significantly associated

with GWAS SNPs near HMG Co-A reductase (HMGCR), the

rate-limiting enzyme for cholesterol biosynthesis [29]. Typical of

GWAS-identified variants, an LDL-associated genetic variant near

HMGCR has an allele frequency of 39% and influences LDL

cholesterol levels by a modest 2.5 mg/dL. However, use of statins,

which inhibit the function of the rate-limiting enzyme, encoded by

HMGCR, in the cholesterol synthesis, typically decreases LDL

cholesterol levels by 20–40%, or ,14–70 mg/dL [30].

Sharma P et al has provided evidence that there is a potential

relationship between the global DNA hypomethylation and locus-

specific hypermethylation in the process of atherosclerosis, which

has yet to be explored [31]. Promoter CpG island hypermethyla-

tion is closely related to gene inactivation and silencing, resulting

in loss of expression of tumour suppressor genes and X-

chromosome inactivation [32–33]. Aberrant promoter region

methylation of tumour-suppressor genes is associated with the

mechanism for carcinogenesis. Altered gene expression and cell

proliferation in atherosclerotic lesions have some similar charac-

teristics of certain solid tumours and thus might share similar

mechanisms that lead to CHD [34]. Indeed, it is conceivable that

epigenetic modifications, especially alteration in DNA methylation

status, are increasingly being recognized as a key factor in the

pathogenesis of complex disorders, including atherosclerosis [9].

Several studies have separately shown that methylation of CpG

islands of the CHD risk genes has a significant role in the

development of CHD. Simon et al found that epigenetic changes

within the ABCA1 gene promoter contribute to the inter-

individual variability in plasma HDL-C concentrations and are

associated with CHD expression [12]. For example, the modula-

tion of methylation-induced FVIIa concentrations was observed

Figure 2. Methylation percent of the ABCG1, GALNT2 and HMGCR genes promoter in the CHD cases and Non-CHD controls according
to subgroup analysis by total samples and gender.
doi:10.1371/journal.pone.0102265.g002
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only in A1A1, where the higher methylation status resulting in

lower FVIIa being more prevalent within the CHD-free group

compared to the CHD group (p = 0.011) [14]. PLA2G7 methyl-

ation might exert its effects on the risk of CHD by regulating the

levels of TC, TG, and ApoB in females. The gender disparities in

the PLA2G7 methylation may have an effect in the molecular

mechanisms underlying the pathophysiology of CHD [11].

Methylation associated inactivation of the ER, a gene in vascular

tissue, may influence atherogenesis and aging of the vascular

system [9]. These examples demonstrate that DNA aberrant

methylation potentially play a predominant role in the pathogen-

esis of cardiovascular disease.

In the present study, methylation status of the promoter region

of the CHD risk genes ABCG1, GALNT2 and HMGCR were

firstly investigated. Our study found a significantly higher

promoter methylation of ABCG1 and GALNT2 in the CHD

group than in the non-CHD group. The promoter region of the

ABCG1, GALNT2 and HMGCR genes was hypermethylated in

90.5%, 54.1% and 34.1% of CHD patients and 29.6%, 27.8%

and 22.2% of non-CHD subjects. There is statistically significant

evidence to show that the ABCG1 gene promoter hypermethyla-

tion increases the risk of CHD in the total samples (OR = 22.859;

95% CI, 8.989–58.135; P,0.001 and OR = 19.966; 95% CI,

7.319–54.468; P*,0.001). Similar results were obtained for the

GALNT2 gene (OR = 3.067; 95% CI, 1.474–6.380; P = 0.002 and

OR = 2.978; 95% CI, 1.335–6.646; P* = 0.008). However, we

found no convincing association between the DNA methylation of

HMGCR gene promoter and CHD risk. The promoter methyl-

ation of ABCG1 and GALNT2 genes are significantly positively

associated with CHD risk both in the male and the female groups.

In addition, we found a significant association between the

promoter methylation status of the three genes and several clinical

characteristics. This study found that 82.8% of the participants

with ABCG1 gene promoter hypermethylation have CHD, while

only 17.4% of the participants without hypermethylation have it;

the percentage of the participants have diabetes is 26.9% in the

former group and 6.5% in the latter group. The average age of the

participants with GALNT2 gene promoter hypermethylation is

62.1068.21, while that of the participants without hypermethyla-

tion is 57.2869.87; in the former group, 75.4% of the participants

have CHD, compared to only 50% in the latter group. As for the

HMGCR gene, the average age of the participants with promoter

hypermethylation is 63.2468.10 and that of the participants

without hypermethylation is 57.7969.55; its promoter hyper-

methylation is likely to be related to smoking. In the past decade,

several clinical research studies have been focused on the

molecular mechanisms of aberrant DNA methylation in the

development of CHD, but our current understanding into these

processes is limit.

There are some limitations in our study. Firstly, to the best of

our knowledge, this is the first study to analyse the involvement of

the ABCG1, GALNT2 and HMGCR genes promoter methylation

in CHD. The sample size in our study is comparatively small, as

only 85 CHD patients and 54 participants without CHD were

recruited. Hence, further replication studies with larger sample

size are required to confirm our findings. Secondly, as our study

only recruited Han Chinese people, further replication studies of

the relationship between the promoter methylation of the three

genes and the risk of CHD in other different ethnic populations

are needed. In addition, our study was only designed to determine

whether the DNA methylation status of the three genes’ promoter

regions has a predominant role in the development of CHD. The

underlying mechanisms have not been scrutinised. Aberrant

methylation status of these genes could contribute to CHD risk

via manipulating gene expression, affecting protein levels,

influencing blood lipid levels, or even participating in the

pathogenesis of atherosclerosis. Therefore, the relationship

between DNA methylation status and gene expression regulation

will have to be tested in further studies.

In conclusion, the present work has provided supportive

evidence to the link between DNA methylation status and the

cardiovascular risk profile. Our data indicated that the ABCG1
and GALNT2 gene promoter hypermethylation increases the risk

of CHD. However, no convincing association between that of the

HMGCR gene and CHD risk was found. CHD, smoking and

aging are likely to be the important factors influencing DNA

hypermethylation. The aforementioned results can potentially

help improve the current clinical diagnosis and treatment of CHD.

For a better understanding of the pathophysiological processes of

CHD, future studies are required to investigate the relationship

between DNA methylation and gene expression regulation.
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