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Summary

• It is still an open question as to whether genome size (GS) variation is shaped by natural

selection. One approach to address this question is a population-level survey that assesses both the

variation in GS and the relationship of GS to ecological variants.

• We assessed GS in Zea mays, a species that includes the cultivated crop, maize, and its closest

wild relatives, the teosintes. We measured GS in five plants of each of 22 maize landraces and 21

teosinte populations from Mexico sampled from parallel altitudinal gradients.

• GS was significantly smaller in landraces than in teosintes, but the largest component of GS

variation was among landraces and among populations. In maize, GS correlated negatively with

altitude; more generally, the best GS predictors were linked to geography. By contrast, GS

variation in teosintes was best explained by temperature and precipitation.

• Overall, our results further document the size flexibility of the Zea genome, but also point to a

drastic shift in patterns of GS variation since domestication. We argue that such patterns may

reflect the indirect action of selection on GS, through a multiplicity of phenotypes and life-history

traits.
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Introduction

Nuclear DNA content, or genome size (GS), varies > 1000-fold among angiosperms (Muñoz

Diez et al., 2012). Beyond its structural impacts on the genome, DNA content variation may

have ecological and evolutionary significance (Biemont, 2008), because GS correlates with

a range of phenotypes, including flowering time, flower size, seed mass, leaf size and

photosynthetic rate (e.g. Meagher & Vassiliadis, 2005; Beaulieu et al., 2007a,b, 2008).

Moreover, several studies have reported within-species correlations between GS and

ecological variables, such as altitude, latitude and temperature (Knight et al., 2005). These

phenotypic and ecological correlates suggest that GS affects the properties of species, such

as regional abundances (Herben et al., 2012), colonization rates and invasiveness (Lavergne

et al., 2010).

It thus seems likely that GS is shaped by natural selection, but nonselective alternatives have

also been proposed to explain GS variation. For example, the skewed distributions of

eukaryotic GSs can be explained by a purely mechanistic model in which GS evolves

stochastically at a rate proportional to size (Oliver et al., 2007). In vertebrates,

recombination rates, rather than natural selection, seem to drive changes in GS (Nam &

Ellegren, 2012). It has also been argued that correlation between GS and population or

biological parameters may be blurred by the phylogenetic signal. After correcting for this

signal, Whitney et al. (2010) reported that GS in angiosperms does not correlate with

effective population size (Ne). Because the efficacy of selection is expected to scale with Ne,

the lack of relationship between GS and Ne may indicate that selection has had little impact

on the broad-scale evolution of GS in higher plants.

Population-level analyses offer the best opportunity to infer selection on GS (Petrov, 2001),

but most analyses of the evolutionary processes acting on GS have taken place on an

interspecies scale. Within the plant kingdom, GS has perhaps been best studied within the

genus Zea. The genus includes the species Zea mays, which is typified by the domesticated

subspecies maize (Zea mays ssp. mays) and two prominent wild subspecies – Zea mays ssp.

mexicana and Zea mays ssp. parviglumis. These two wild taxa, both of which are native to

Mexico and collectively referred to as ‘teosinte’, are geographically and ecologically

distinct. Subspecies mexicana is restricted primarily to the highlands in the states of

Chihuahua, Durango and Puebla, as well as the Central Plateau that surrounds Mexico City

(Iltis & Doebley, 1980; Fukunaga et al., 2005). At an average elevation of 2135 m (Hufford

et al., 2012), mexicana exhibits adaptation to variable temperature conditions and high

altitudes. By contrast, ssp. parviglumis is found at lower elevations in the Balsas River Basin

and the state of Jalisco, tropical regions with relatively stable temperature regimes and lower

average altitudes (1095 m; Hufford et al., 2012). The one location in which the two teosinte

taxa overlap is the Balsas River Basin (Fukunaga et al., 2005), which is the presumed
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location of the domestication of maize from ssp. parviglumis c. 9000 yr ago (Matsuoka et

al., 2002; van Heerwaarden et al., 2011).

Although there is still debate as to whether GS commonly varies within species (Knight et

al., 2005; Biemont, 2008), there is little doubt that GS varies within Zea mays sensu lato.

Among cultivated accessions, which include both open-pollinated land-races and inbred

lines, GS varies by at least 30% (Muñoz Diez et al., 2012). This variation exhibits

inconsistent patterns with geography. In maize, for example, GS and indirect measures of

GS (i.e. the number of chromosomal knobs and C-bands) typically decrease with increasing

latitude (Rayburn et al., 1985; but see Rayburn & Auger, 1990), but may be less consistent

as a function of altitude (Bennett & Smith, 1976; Rayburn & Auger, 1990). Fewer studies

have examined correlates between GS and ecological variables in ssp. mexicana and ssp.

parviglumis, but at least one study has found a positive correlation between GS and altitude

(Laurie & Bennett, 1985). To the extent that the pattern holds, a negative correlation

between GS and altitude/latitude may reflect the need for rapid growth and early flowering

in the shorter growing seasons typical of cooler regions (Rayburn et al., 1994; Poggio et al.,

1998).

Although it is clear that GS varies within and among the sub-species of Zea mays, there has

not yet been a systematic survey of GS variation among taxa and populations. Here, we

investigate GS and ecological correlates in large samples of both cultivated landraces of

maize and in annual Mexican teosintes. In doing so, we have overcome some of the common

limitations of previous studies. The first of these is the sampling; most previous surveys of

Zea have assessed GS from c. 20 total isolates. Here, we survey 22 maize landraces and 21

populations of annual teosinte, assessing GS variation from five individuals within each

landrace and population. A second limitation is that the geographic scale of sampling has

often been so broad that the effects of environmental factors have been blurred. Our

sampling along parallel altitudinal gradients is designed specifically to reduce this

limitation. Finally, environmental information has been limited mostly to altitude or latitude,

without consideration of additional ecological variables that may impact more directly on

GS, such as temperature and rainfall.

With GS and environmental data for multiple taxa and specific locations, we address three

sets of questions. First, what is the distribution of GS among taxa, populations and plants? Is

there convincing evidence that GS varies within taxa in a consistent fashion? Second, does

GS correlate with bioclimatic variables? If so, are the correlates consistent across parallel

gradients and also among taxa, suggesting a clear relationship between GS and

environment? Or might relationships vary between the domesticate and its wild ancestors, as

suggested by previous studies? Finally, what does this information reveal about the potential

evolutionary and ecological forces that act on GS? Ultimately, we seek to determine whether

variation in GS is shaped by, and limited by, ecological and evolutionary factors.
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Materials and Methods

Plant materials and GS measurements

We sampled teosintes from two altitudinal gradients, hereafter called the ‘Balsas’ and

‘Jalisco’ gradients. ‘Balsas’ was located in the states of Guerrero, Morelos and Estado de

México (Fig. 1). The Guerrero and Morelos states include part of the Balsas River Basin,

whereas Estado de México represents part of the highlands of Central Mexico. The ‘Jalisco’

gradient was located in the Central Western region of Mexico, including portions of the

states of Jalisco, Michoac an and Guanajuato that represent portions of the Bajío and Río

Lerma Santiago Basins (Fig. 1). The two gradients ranged between 343 and 2581 m (Fig. 1,

Table 1). We sampled 21 total teosinte populations from these gradients, with 10 and 11

populations from the Balsas and Jalisco gradients, respectively. At least 30 adult plants and

their seeds (20–50 per adult) were collected from each population. Each gradient

encompassed geographic regions typical of both parviglumis and mexicana; we made a

provisional designation of subspecies status based on distribution maps (Hufford et al.,

2012).

We also analyzed 22 landraces of maize (Zea mays ssp. mays L.). These were sampled along

three altitudinal gradients. The first was the ‘Balsas’ gradient, consisting of nine landraces;

the second was a gradient in the state of Oaxaca (with eight landraces); and the third, for

which there was sampling of four landraces, was the ‘Jalisco’ gradient (Fig. 1, Table 1). Our

sampling included two landraces (MEXI05 and YUCA117) that have been reported

previously as having a small (Vielle-Calzada et al., 2009) and a large (J. P. Vielle-Calzada,

pers. comm.) genome, respectively. In total, we assessed 22 primitive landraces with the

altitudinal range of collection sites varying from 10 to 3073 m (Table 1). All landrace seeds

were provided by Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT).

Five plants per population or landrace were germinated and grown under controlled

glasshouse conditions between February and August of 2011 at UC Irvine, CA, USA

(33°38′49″N, 117°50′43″W; altitude, 25 m). Leaf samples were sent to Plant Cytometry

Services (Schijndel, the Netherlands) where relative DNA measurements were performed by

flow cytometry using 4′,6-diamidino-2-phenylindole (DAPI) staining and Ilex crenata

‘Fastigiata’ (2C = 2.2 pg) as an internal standard. This technique is particularly well suited

for the detection of small DNA variation among samples. In order to limit technical error,

we included the reference maize inbred line B73 in every batch as a second internal control.

In addition, the GS measurements were made on three technical replicates per plant on a

single leaf harvested at the same level of maturity for each plant. The GS measurement for

each technical replicate was calculated as the ratio of the measure to that of maize reference

B73; the estimate for each plant was the average among three technical replicates. Because

we are interested in ranges of GS variation among Zea individuals, for analyses we

expressed GS values as a ratio relative to B73, where B73 has a GS value of 1.0. However,

we also provided estimates of GS, in picograms (pg) per 2C nucleus, for comparison with

other species (Fig. 2, Supporting Information Table S1); these picogram estimates were

calculated assuming that the B73 reference has a GS of 5.64 pg/2C, as based on propidium

iodide (PI) staining against the I. crenata standard.
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Statistical analysis of GS within and among populations

The GS data satisfied the homogeneity of variances (O'Brien test, P > 0.05), but did not

fulfill the normality of the variance (Shapiro–Wilk test, P < 0.0001) required to apply an

ANOVA. For this reason, the distribution of GS variance as a result of differences among

populations (Pop) and among plants within populations (Pop : Plant) was determined by a

nonparametric multivariate analysis of variance (PERMANOVA; Anderson, 2001), using

the function ‘adonis’ of the package ‘vegan 1.17-6’ (Oksanen, 2007) in R statistical software

(Team, 2008). The ‘adonis’ function performs an ANOVA with matrices of Euclidean

distances, testing significance via the analysis of 999 permutated matrices. We also

compared variation in GS between gradients (Gradient) and among populations within

gradients (Gradient : Pop) using PERMANOVA, based on landrace samples from the Balsas

and Oaxaca gradients and teosinte samples from the Balsas and Jalisco gradients.

To assess the extent of spatial autocorrelation among the GS of populations and landraces,

we estimated Moran's I statistic for all possible ‘neighborhoods’ defined by distances

between locations that varied from 15 km up to 1000 km, with 5-km increases between the

two extremes. The significance of the I statistic was determined by 10 000 random

permutations using spdep v. 0.5-56 (Bivand et al., 2012) in R statistical software.

Comparison of GS with bioclimatic variables

For the collection site of each natural population and landrace, we recorded passport data,

including geographical coordinates and altitude. These data were used to obtain climatic

information for each natural population and landrace from the current bioclimatic grid layers

from WorldClim V.1.4 (30 arc-seconds c. 1 km resolution; http://worldclim.org/bioclim;

Hijmans et al., 2005). The 19 bioclimatic variables represent summaries of means and

variations in temperature and precipitation, and characterize the dimensions of climate

considered to be particularly relevant in the determination of species distribution at a

regional scale (Hijmans et al., 2005).

Given the history in the literature of comparing GS with elevation, we first focused on this

relationship, employing a linear quantile regression (QR) model to explore the effect of

elevation on percentiles of GS values (Knight & Ackerly, 2002; Knight et al., 2005). QR

estimates the relationship between two variables for all portions (quantiles) of a probability

distribution, rather than just the mean, as in standard regression analyses (Cade & Noon,

2003). As a result, QR models can provide insights into predictive relationships at the

extremes of the distribution of a response variable. We estimated the QR functions from the

15th to the 95th quantile using the package ‘quantreg’ (Koenker, 2008) in R statistical

software. Confidence intervals were calculated by 1000 bootstrap resamplings.

To assess the relationships among GS and bioclimatic variables, we applied Spearman Rank

correlation tests and principal component analysis (PCA) using R. We also integrated the

bio-climatic variables into a linear model based on partial least-squares regression (PLSR).

The goal of PLSR was to assess the predictive value of the models relative to observed GS

values. The PLSR method combines aspects of PCA and multiple regression, and is

particularly useful when there are many predictor variables that may be nonindependent
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(Maestre, 2004). To determine the number of components to be included in the PLSR

model, we performed a standard cross-validation procedure that also estimates the root-

mean-square error of prediction (RMSEP; Maestre, 2004; Mevik & Wehrens, 2007). We

retained only those components which contribute substantially to decrease RMSEP, which

also happened to explain > 5% of the original variance (R2) in the response variable

(Carrascal et al., 2009). The sum of the R2 of the retained components provided the total

explanatory capacity of the PLSR model (Mevik & Wehrens, 2007). PLSR analysis was

performed using the package ‘pls’ (Mevik & Wehrens, 2007) in the R statistical package.

Results

GS variation among and within populations

We measured the GS of five plants per population belonging to 21 natural populations of

teosinte and 22 maize landraces, most of which were collected along altitudinal gradients in

Mexico. We sampled five plants per population or landrace, each with three technical

replicates, resulting in a dataset of 645 GS measurements. For each plant, the GS value is

reported as the average of three technical replicates based on comparisons with the maize

inbred line B73, which has a normalized value of 1.0 in this study.

GS values varied widely among individuals, from 0.948 for an individual from the landrace

‘Palomero Legitimo’ (MEXI211) to 1.299 for an individual from the landrace ‘Olote

colorado’ (OAXA522; Fig. 2). The average GS value per plant was 1.111, but these

averages varied between wild and cultivated samples; the average GS of teosintes (1.129)

was significantly larger (P < 0.001, Kruskal–Wallis test) than the average GS of cultivated

maize (1.095). The overall coefficient of variation was nearly identical between the wild and

cultivated samples, however, at 6.07% and 6.06%, respectively.

The distribution of GS among and within populations was evaluated independently in the

wild and cultivated groups by a PERMANOVA test. The major proportion of the variance

was significantly (P < 0.001) distributed among populations in both groups (Table 2). This

proportion was similar, but higher, in the cultivated (R2 = 84.4%) than in the wild (R2 =

73.2%) group. Conversely, the proportion of the variance within populations in the wild

group (R2 = 23.8%; P < 0.001) was higher than that in the cultivated group (R2 = 13%; P <

0.001). The residual accounted for the technical error among the three biological replicates

for each plant, and was c. 3% (R2) in both groups.

One source of differences among wild populations could be a difference between ssp.

mexicana and parviglumis. We therefore estimated the variance attributable to subspecies

(Table S2). It was significant but quite low (R2 = 2.2%; P < 0.001), with a much larger

proportion of the variance attributable to populations (R2 = 70.9%; P < 0.001). Given that

mexicana and parviglumis do not differ substantially by this analysis, many of our analyses

combine samples from the two teosinte taxa into a single dataset. However, we do

accentuate taxonomic differences when appropriate.

We sampled separate elevation gradients for both the landrace and teosinte samples with the

thought that these gradients provide a measure of pseudo-replication. We therefore
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contrasted the Balsas and Jalisco gradients for the teosinte samples and the two best sampled

gradients (Balsas and Oaxaca) for the landraces. For both maize and teosinte, the variance

caused by differences between the two gradients was significant (P < 0.001), but far less for

the wild samples (R2 = 4.6%) than for the cultivated samples (R2 = 18.5%). The highest

component of variance again reflected differences among populations (R2 = 68.6%) or

among landraces (R2 = 66.7%).

Finally, GS variation showed some spatial structure, because population GS values were

spatially autocorrelated for both cultivated and wild samples (Fig. S1). Moran's I was

significant for neighborhoods of 40 km for all GS data, 65 km for cultivated data alone and

75 km for teosintes data, with the I statistic remaining positive up to neighborhood sizes of

120 km (Fig. S1). To sum, our GS estimates represent significant differences among

populations and among landraces, with lower GS variances attributable to either gradients or

individuals within populations.

The relationship between GS and elevation

We have established that populations and landraces vary significantly in GS. But does this

variation follow a discernible pattern with regard to environment? We first approached this

question with an analysis of elevation, both because elevation has been used as a proxy for a

suite of environmental variables and because its relationship with GS has long been

investigated (Rayburn & Auger, 1990; Poggio et al., 1998; Knight & Ackerly, 2002; Knight

et al., 2005).

We examined elevation by applying linear QR to both cultivated and wild samples (Fig. 3).

In the cultivated group, GS and elevation showed a significant negative relationship (P <

0.001) for all six quantiles considered (0.15, 0.30, 0.45, 0.60, 0.75, 0.90). This negative

relationship was consistent across the Oaxaca and Balsas gradients and thus appears to be a

general feature of our sample of maize landraces. It should also be noted that the slope of the

95% quantile was noticeably more negative than that of other quantiles (Fig. 3).

By contrast, the pattern for the wild samples, taken as a whole, was not clear. The lower

quantiles (0.15 and 0.30) exhibited a significant positive relationship (P < 0.05) between

elevation and GS, but the upper quantiles (0.45, 0.60, 0.75, 0.90) showed nonsignificant (P

> 0.05) correlations. When we partitioned the samples by gradient, the picture became even

murkier (Fig. 3). There was a consistent, significant and positive relationship at all quantiles

for the Balsas gradient, but the exact opposite held for the Jalisco gradient. When individual

subspecies were considered, the positive correlation held in both subspecies for the 50%

quantile, but the slopes for all other quantiles differed in sign between sub-species (Fig. S2).

Thus, the correlation with GS and elevation varied as a function of the teosinte sample.

Correlations between GS and bioclimatic variables

In theory, elevation is a proxy for several correlated variables, and hence we investigated

correlations between GS and bioclimatic variables directly. Several geographic and climatic

variables correlated significantly with GS based on Spearman Rank correlations (Table 3).

In maize, for example, the approach recapitulated the negative correlation with elevation.
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Several additional correlations were significant for the entire landrace sample, including

variables representing longitude, temperature (BIO5 and BIO6) and precipitation (e.g.

BIO13). Significance based on the total maize sample seems to be primarily a function of

the Balsas gradient, because correlations were generally not significant for the Oaxaca

gradient, even though the two gradients had a similar number of landraces sampled (n = 8 vs

9 populations for Balsas vs Oaxaca). The only correlations that were both shared and

significant between gradients were those with elevation (Table 3; Fig. 2) and seasonal

precipitation (BIO15).

The teosintes exhibited different trends from maize (Table 3). For the complete sample, only

a few variables were strongly correlated with GS – i.e. longitude and precipitation in the

warmest and coldest quarters (BIO17 and BIO19). Otherwise, the results depended heavily

on sample partitions. For example, for the two gradients, the patterns of correlations with GS

were significant, but in opposite directions, for several variables (e.g. BIO3, BIO6, BIO11,

BIO14, BIO16 and BIO18; Table 2). When the samples were partitioned by subspecies

(Table S3), the correlations become slightly more regular, with the most strong and

consistent correlations between GS and longitude, temperature seasonality (BIO4) and levels

of precipitation in the coldest and driest quarters (BIO17 and BIO19).

Pairwise correlations suffer from several weaknesses (see Discussion), and so we turned to

PLSR, which is a technique to build a linear model that decomposes the data into (in this

case) orthogonal components. Once the model is estimated, it can then be used to predict the

dependent variable, GS, from potentially nonindependent predictor variables. We applied

PLSR separately to cultivated and wild GS measurements with the 22 predictor variables

(Table 3). For cultivated data, we included GS data from the two main gradients sampled

(Balsas and Oaxaca); for the teosinte data, both gradients were included. PLSR identified

four and five components for cultivated and wild samples, respectively, which explained >

5% of the variance in GS, which we retained in the PLSR model. Once the PLSR model was

determined, it was used to demonstrate the fit of the predicted values to observed values

(Fig. 4). Together, the significant components explained 78.6% and 62.7% of the observed

variance in GS for cultivated and wild samples, respectively. In other words, GS can be

predicted partially on the basis of climatic and geographic variables.

PLSR is usually implemented to build a regression model, but it can also provide insights

into the weight and significance of predictor variables to the model. Table 3 presents the

coefficients (or loadings) of each predictor variable, as summed across orthogonal

components. The magnitude of each coefficient provides insight into its importance in the

model; the significance of coefficients was calculated by a jackknife procedure. The weights

of coefficients yielded three unique insights. First, in maize, the suite of most important

variables is related to geography (elevation, longitude and, to a lesser extent, latitude).

Because we were puzzled by the relationship between geographic measures and GS, we

reapplied the PLSR model without latitude and longitude (Table S4), with a commensurate

reduction in predictive value (Fig. S3). Second, the most highly weighted predictors in

teosintes are related to temperature and precipitation. Finally, and perhaps most surprisingly,

the variables that predict GS have shifted dramatically between cultivated landraces in
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Mexico and wild teosinte populations, even though the landrace and wild samples originate

from similar regions and sampling strategies.

PCA reveals distinct groups of teosintes

We conducted a PCA to group populations on the basis of the complete dataset – that is, GS

data plus the 22 predictor variables for both maize and teosintes (Figs 5, S4). The PCA

approach is helpful because variables may be represented diagrammatically as vectors of

particular magnitude and direction in the space defined by principal components. For

example, it is possible to infer that variables related to temperature seasonality (BIO1, BIO5,

BIO8, BIO9, BIO10, BIO11 and BIO15) have similar (correlated) effects on the grouping of

populations because their associated vectors have similar direction (Fig. 5).

In our analysis, the first principal component (PC1) explained 12.7% of the total variance,

and the second component (PC2) explained 3.4% of the variance. Together, they grouped

particular subsets of populations. For example, the Balsas teosinte populations formed a

distinct group relative to the remaining teosintes. By contrast, the PCA produced no obvious

grouping of landraces, but instead illustrated the remarkable ecological flexibility of

cultivated maize, because landraces were distributed across the space defined by the first

two principal components. We note, however, that most of the landraces from the Jalisco

gradient grouped near the wild populations collected in the same area, as is expected if

bioclimatic variables dictate landrace usage.

Discussion

GS variation within species

Our study was designed to investigate variation in GS, the relationship of GS with climatic

variables and, ultimately, the evolutionary processes that shape GS variation. With regard to

the first, there is still debate as to whether GS varies within species and, if so, the extent of

that variation (Knight et al., 2005). In order to overcome technical difficulties that may

create false variation among individuals (Nardon et al., 2003; Biemont, 2008), we used

plants grown and harvested under similar conditions, estimated GS by the same technique

on all samples and employed extensive technical replication.

Our analyses clearly indicate that GS varies both among and within subspecies of Z. mays.

Among subspecies, our sample of maize landraces has a moderately (c. 3%), but

significantly, lower average GS than our sample of teosintes. The GS of elite inbred lines of

maize is smaller still (Laurie & Bennett, 1985), suggesting that average GSs have decreased

through the processes of domestication and subsequent crop improvement, perhaps because

of strong selection (Rayburn et al., 1994). Average GS also varies significantly between the

wild parviglumis and mexicana subspecies, but this variation pales in comparison with the

amount of variation among populations. Indeed, among-population variation is the largest

component of GS size variation, larger even than differences between subspecies or

altitudinal gradients (Table 2).

Given GS variation, it is interesting to speculate on the genomic components that contribute

to size variation – that is, features such as genes, transposable elements (TEs), centromeric
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repeats, telomeres, rDNAs and heterochromatic knobs. There is already substantial evidence

that maize and teosinte genomes vary both in gene content (Swanson-Wagner et al., 2010)

and TE complement (Wang & Dooner, 2006). Maize accessions are also known for varying

in their number of heterochromatic knobs (McClintock, 1978). The measurement of knobs

and TE repeats has been enhanced by the use of high-throughput sequencing (HTS;

Tenaillon et al., 2011). For example, a study of 38 teosinte and maize inbred lines used HTS

data to show that intraspecies differences in GSs are driven primarily by the amount of knob

repeats (Chia et al., 2012). Given that knobs constitute only 8% of the maize genome

(Ananiev et al., 1998), whereas TEs represent c. 85% (Schnable et al., 2009), this

observation is somewhat surprising. Even more surprising is the observation that the overall

TE content of these lines actually correlates negatively with GS (Chia et al., 2012).

These observations seem to imply some sort of genomic ‘trade-off’ between

heterochromatic knobs and TEs, as if they balance actively to maintain limits on GS.

Although it is diffi-cult to imagine a precise molecular mechanism for this tradeoff, there are

some hints that optimal GSs may indeed exist. For example, it has long been suggested that

large genomes are disadvantageous (Knight et al., 2005) and stabilizing selection has been

shown to act on GS (Smarda et al., 2010) over short time scales (Smarda et al., 2007). There

are hints of similar GS limitations in maize data (Poggio et al., 1998). Take, for example,

our QR analysis between GS and elevation (Fig. 3). Although there is a clear and consistent

positive association for both maize gradients, the higher quantiles have lower slopes, as

might be expected if there are limits to GS. Moreover, the visual distribution of points

suggests a quadratic relationship between GS and elevation; that is, the curvature of points

suggests that GS reaches a maximum size at moderate elevations, with upper and lower

limits (e.g. Knight & Ackerly, 2002). We tested a quadratic QR on these data, but the

quadratic fits no better than the linear relationship (data not shown). Nonetheless, the pattern

of observations is superficially consistent with a limit on maize GS as a function of elevation

or variables correlated with elevation. We note that such limits on GS in maize have been

argued previously based on the abundance of B chromosomes at different altitudes (Lia et

al., 2007).

By contrast, there is no consistent evidence for constraints on GS in teosintes on the basis of

QRs with elevation, whether the wild samples are treated as a whole (Fig. 3), in different

gradients (Fig. 3) or in different subspecies (Fig. S2).

Climatic variables and GS

A related question is whether GS varies predictably as a function of climatic factors,

suggesting ecological constraints on GS. Our study has uncovered a wealth of pairwise

correlations between GS and bioclimatic variables (Table 3), but the pairwise correlations

themselves are inconsistent among subspecies and gradients (Tables 3, S3), making it

difficult to interpret their meaning and importance. Pairwise correlations may be

inconsistent for a variety of reasons. One reason is sampling, both in terms of the depth of

sampling and the climatic range over sampled locations. Although we have sampled

extensively, our sampling could very well be too sparse to be able to identify consistent

patterns between gradients or subspecies. Another sampling issue is climatic range; without
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sufficient variation in climate, it may be difficult to identify correlations between individual

variables and GS. Our sampling of altitudinal gradients was nonetheless intended to cover

climatic ranges within the limited distribution of the annual teosintes.

Another potential cause for inconsistencies in pairwise correlations may be that there are

real but multifaceted relationships between environmental factors and GSs. Accordingly, we

applied PLSR to our data. PLSR is designed to model relationships when there are many

potentially nonindependent predictor variables and a limited number of observations (Mevik

& Wehrens, 2007). The resulting models are predictive, explaining 78.6% and 62.7% of GS

variation for landraces and teosintes, respectively (Fig. 5). Although PSLR is not

specifically designed to identify the contribution of particular variables to the model, it does

provide insight into the suites of variables that contribute to GS (Table 3). For example, the

PLSR indicates that several variables are predictors of GS in the teosintes, including

temperature-related variables (BIO2, BIO3 and BIO4) and precipitation in the wettest

quarter (BIO16). Both BIO4 and BIO16 are also determinants of the climatic distribution of

parviglumis and mexicana (Hufford et al., 2012).

In addition to elevation, it is notable that PLSR models also detect latitude and longitude as

strong predictors of GS in maize (Table 3). We assume that these geographic coordinates

somehow encapsulate a complex combination of climatic (and perhaps even sociological)

factors that are otherwise unrepresented by the bioclimatic data. For example, higher

latitudes may correlate with cooler growing seasons, as is often assumed for elevation. In

this particular study, longitude is related to distance from the coast, and thus may capture

aspects of climate (such as humidity) or even historical factors that vary from coastal areas

to the highlands.

Does selection drive variation in GS?

We ultimately seek to determine whether GS variation is influenced by natural selection. To

that end, as already noted, we find that within-population variation in GS is small relative to

variation among populations, and that such variation is spatially autocorrelated. Although

this pattern does not itself implicate the action of natural selection (population divergence

can also be a function of genetic drift and isolated populations), it is a necessary precursor to

infer that natural selection affects GS.

Although stabilizing and directional selection have been shown to affect GS in experimental

settings (Rayburn et al., 1994; Cullis, 2005; Smarda et al., 2010), the appropriate null

hypothesis for a survey like ours is that natural selection does not affect GS. This null

hypothesis is difficult to reject, but we nonetheless suggest that the predictive performance

of the PLSR models, which demonstrate dependences between GS and both geographical

(elevation, longitude) and environmental (temperature and precipitation) factors, tends to

discount it (Fig. 4, Table 3).

We also designed our sampling under a secondary hypothesis: if natural selection has shaped

GS, we assume a priori that there should be consistent relationships between GS and

environmental factors across taxa and gradients. This secondary hypothesis is not supported.

For example, the environmental factors that correlate most noticeably with GS in teosintes
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(e.g. BIO2, BIO3, BIO4, BIO16; Table 3) do not correlate consistently with GS in maize,

and vice versa (Table 3, Fig. 3).

We are left to conclude that, if GS is affected by selection, the relationship is defined by at

least two salient features. The first is complexity, born of a shifting mix of environmental

factors and phenotypes. The phenotypes that may affect GS include growth rate, flowering

time, flower size, seed mass, leaf size and photo-synthetic rate (e.g. Rayburn et al., 1994;

Meagher & Vassiliadis, 2005; Beaulieu et al., 2007a,b, 2008). Each phenotype may be under

different selection pressures in different biotic and abiotic environments; in turn, selection

on multiple phenotypes may affect GS in synergistic or opposing fashions. It should also be

noted that chromosomal knobs may be under selection through the effects of genetic factors,

such as Abnormal chromosome 10 (Ab10), which may be less common in regions with short

growing seasons. Ab10 is significant because it is associated with meiotic drive for

increased knob heterochromatin (Buckler et al., 1999). The Ab10-carrying genotype may

decrease with altitude because of fitness costs associated with genes in tight linkage

(Buckler et al., 1999), generating an indirect effect on both knob frequency and GS.

The second is that shifts in the relationship can be very rapid. We have shown, for example,

that GS in our sample of maize, which was domesticated c. 9000 yr ago, exhibits different

relationships to both climate and geographic factors than does GS in teosintes (Fig. 3). It is

possible that strong artificial selection on maize has fundamentally exaggerated, altered or

skewed relationships between GS and phenotypes. This point may be best illustrated by our

PCA (Fig. 4): given that maize was domesticated from parviglumis in the lowlands of the

Balsas regions (Matsuoka et al., 2002; van Heerwaarden et al., 2011), we expect that the

first domesticates of maize would have clustered with the Balsas teosinte group. Thereafter,

maize was quickly distributed to the Mexican highlands and beyond (Fukunaga et al., 2005),

across a range of climates (Hufford et al., 2012), so that maize samples of different GSs are

now distributed throughout the climactic space defined by the PCA (Figs 4, S4). A final note

is that, if our inferences are correct – that is, that the relationship between GS and selection

is defined by complexity and rapid shifts – it may not be surprising that global analyses, like

those of Whitney et al. (2010), fail to find convincing evidence of a strong effect of natural

selection despite the fact that experimental analyses clearly do (Rayburn et al., 1994; Cullis,

2005; Smarda et al., 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Map of the collection locations of cultivated maize and wild teosinte samples in Mexico.

Elevation gradients are denoted by separate colors. Wild and landrace samples are denoted

by triangles and circles, respectively. The YUCA117 sample is not represented on the map

and is not included in any analyses that compare gradients.
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Fig. 2.
Genome size (GS) estimates for each maize landrace and each teosinte population sample

measured either as a ratio over the B73 maize reference genome or in picograms per 2C

nucleus (pg/2C). Populations are arranged by mean GS values. Cultivated, yellow boxes;

wild, blue boxes. The boxes indicate the first quartile (leftmost line), the median (central

line) and the third quartile (rightmost line). The whiskers represent the standard deviation,

with the outliers represented by dots.
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Fig. 3.
Scatter plot and quantile regression showing the relationship between genome size (GS) and

elevation for the cultivated maize landraces and wild teosinte groups of samples. The dashed

gray lines correspond to the quantiles (0.15, 0.30, 0.45, 0.60, 0.75, 0.90), the median fit is in

solid blue and the least-squares estimate of the conditional mean function is the dashed (red)

line.
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Fig. 4.
Comparison between the observed and predicted genome size (GS) for maize (cultivated)

and teosintes (wild), based on the linear model inferred using partial least-squares regression

(PLSR). The R2 of the Spearman correlation for both fits is also provided.
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Fig. 5.
Principal component analysis (PCA) including the 22 cultivated maize and 21 wild

populations of teosinte included in this study. The gray arrows represent the different

variables considered in the model. PC1 and PC2 explain 12.7% and 3.4%, respectively, of

the variance.
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Table 2

Nonparametric multivariate analysis of variance (PERMANOVA) for teosinte and maize landrace samples

Category df SS MS F R 2 P (> F)

Teosinte

    Populations

        Pop 20 1.1067 0.0553 252.752 0.7320 0.001

        Pop: Plant 84 0.3593 0.0043 19.536 0.2376 0.001

        Residuals 210 0.0460 0.0002 0.0304

        Total 314 1.5120 1

    Gradients

        Gradient 1 0.0699 0.0699 50.720 0.0462 0.001

        Gradient: Pop 19 1.0368 0.0546 39.588 0.6857 0.001

        Residuals 294 0.4053 0.0014 0.2680

        Total 314 1.5120 1

Landraces

    Landraces

        Pop 21 1.2491 0.0595 335.670 0.8439 0.001

        Pop : Plant 88 0.1920 0.0022 12.310 0.1297 0.001

        Residuals 220 0.0390 0.0002 0.0263

        Total 329 1.4800 1

    Gradients

        Gradient 1 0.2348 0.2348 299.045 0.1852 0.001

        Gradient: Pop 15 0.8461 0.0564 71.842 0.6674 0.001

        Residuals 238 0.1869 0.0008 0.1474

        Total 254 1.2677 1
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Table 3

Environmental variables, their Spearman correlation with genome size (GS) and their coefficients in the linear

model inferred by partial least-squares regression (PLSR; results are shown for gradients in maize landraces

and teosintes separately)

Landraces Teosintes

Environmental variable
1

R (All)
2 R (Balsas) R (Oaxaca) PLSR (All)

3 R (All) R (Balsas) R (Jalisco) PLSR (All)

Elevation –0.381*** –0.406** –0.391* –0.462** 0.091 0.542*** –0.434*** 0.250*

Latitude –0.133 –0.405** –0.033 –0.187** 0.241* 0.536*** –0.307* 0.160

Longitude 0.387*** 0.505*** 0.240 0.515*** –0.443*** –0.476*** –0.515*** 0.195

BIO1 = Annual Mean
Temperature

0.235* 0.430** 0.035 0.051* –0.127 –0.541*** 0.414** 0.015

BIO2 = Mean Diurnal
Range (mean of monthly
(max temp – min temp))

–0.012 0.103 0.059 0.182 –0.151 –0.326* –0.466*** –0.474***

BIO3 = Isothermality
(P2/P7)(× 100)

–0.028 0.104 –0.308 –0.053 –0.238* –0.764*** 0.568*** –0.593***

BIO4 = Temperature
Seasonality (standard
deviation × 100)

–0.147 0.073 0.024 –0.068 0.284** 0.652*** –0.355** 0.186**

BIO5 = Max Temperature
of Warmest Month

0.250** 0.558*** –0.070 0.113** –0.098 –0.345* 0.162 0.112

BIO6 = Min Temperature
of Coldest Month

0.297** 0.400** 0.262 0.032 –0.100 –0.471*** 0.497*** 0.137

BIO7 = Temperature
Annual Range

–0.087 0.084 –0.089 0.117 0.164 0.428** –0.486*** –0.108

BIO8 = Mean
Temperature of Wettest
Quarter

0.228* 0.406** 0.035 0.030 –0.120 –0.542*** 0.363** –0.002

BIO9 = Mean
Temperature of Driest
Quarter

0.253** 0.465** 0.035 0.076* –0.106 –0.397** 0.345** –0.209

BIO10 = Mean
Temperature of Warmest
Quarter

0.228* 0.430** 0.164 0.053 –0.120 –0.493*** 0.326* 0.081

BIO11 = Mean
Temperature of Coldest
Quarter

0.253** 0.430** 0.035 0.061** –0.103 –0.537*** 0.476*** 0.043

BIO12 = Annual
Precipitation

0.253** 0.400** 0.135 –0.055 0.071 –0.338* 0.476*** 0.211*

BIO13 = Precipitation of
Wettest Month

0.325*** 0.395** 0.199 0.059 0.014 –0.406** 0.607*** –0.033

BIO14 = Precipitation of
Driest Month

–0.052 –0.366* 0.262 0.328** 0.194* 0.497*** –0.738*** –0.263

BIO15 = Precipitation
Seasonality

0.203* 0.446** 0.369* 0.274*** –0.034 –0.278 0.454*** –0.121

BIO16 = Precipitation of
Wettest Quarter

0.248** 0.395** 0.199 –0.023 0.065 –0.425** 0.509*** 0.212***

BIO17 = Precipitation of
Driest Quarter

0.016 –0.311* 0.313* 0.318** 0.357*** 0.498*** –0.068 0.400*

BIO18 = Precipitation of
Warmest Quarter

0.247** 0.063 –0.156 –0.328* 0.105 –0.509*** 0.589*** 0.262
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Landraces Teosintes

Environmental variable
1

R (All)
2 R (Balsas) R (Oaxaca) PLSR (All)

3 R (All) R (Balsas) R (Jalisco) PLSR (All)

BIO19 = Precipitation of
Coldest Quarter

0.014 –0.174 –0.042 0.100 0.326*** 0.126 0.618*** –0.023

1
Bioclimatic variables defined as: BIO1, Annual Mean Temperature; BIO2, Mean Diurnal Range (mean of monthly (max temp – min temp));

BIO3, Isothermality (BIO2/BIO7) (× 100); BIO4, Temperature Seasonality (standard deviation × 100); BIO5, Max Temperature of Warmest
Month; BIO6, Min Temperature of Coldest Month; BIO7, Temperature Annual Range (BIO5–BIO6); BIO8, Mean Temperature of Wettest
Quarter; BIO9, Mean Temperature of Driest Quarter; BIO10, Mean Temperature of Warmest Quarter; BIO11, Mean Temperature of Coldest
Quarter; BIO12, Annual Precipitation; BIO13, Precipitation of Wettest Month; BIO14, Precipitation of Driest Month; BIO15, Precipitation
Seasonality (coefficient of variation); BIO16, Precipitation of Wettest Quarter; BIO17, Precipitation of Driest Quarter; BIO18, Precipitation of
Warmest Quarter; BIO19, Precipitation of Coldest Quarter.

2
Spearman correlation coefficient R for (in parentheses) the entire sample (All) or a particular gradient (Balsas, Oaxaca, Jalisco). Significance

values are denoted by asterisks: *, P < 0.05; **, P < 0.01; ***, P < 0.001.

3
The PLSR coefficient based on the total sample. Significance levels are denoted by asterisks: *, P < 0.01; **, P < 0.001; ***, P < 0.0001.
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