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Coarse graining of membrane simulations by translating atomistic dynamics to densities and fields
with Milestoning is discussed. The space of the membrane system is divided into cells and the differ-
ent cells are characterized by order parameters presenting the number densities. The dynamics of the
order parameters are probed with Milestoning. The methodology is illustrated here for a phospho-
lipid membrane system (a hydrated bilayer of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)
lipid molecules). Significant inhomogeneity in membrane internal number density leads to complex
free energy landscape and local maps of transition times. Dynamics and distributions of cavities
within the membrane assist the permeation of nonpolar solutes such as xenon atoms. It is illustrated
that quantitative and detailed dynamics of water transport through DOPC membrane can be ana-
lyzed using Milestoning with fields. The reaction space for water transport includes at least two slow
variables: the normal to the membrane plane, and the water density. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891305]

I. INTRODUCTION

Biological membranes are critical components of living
systems and have attracted considerable body of simula-
tion work.1–20 The simulations provide atomically detailed
pictures of membrane statics and dynamics, and of the inter-
actions of the membrane with other molecules. Of interest to
the present article are permeability and insertion of medium
size molecules into bilayers.12, 13, 16, 20–35 Passive transport
(without involving cellular machinery such as pumps) is an
important biological process in cellular biology. At the least,
living system must adapt to minimize this type of process for
invading or not losing materials.

These simulations provide considerable insight, however,
they are also challenging due to the broad range of temporal
and spatial scales of membrane processes. The time scales of
local membrane motions extend from picoseconds (local dif-
fusion of a single phospholipid molecule36, 37) to hours (e.g.,
a flip of a phospholipid molecule from one side of the mem-
brane to the other38, 39). Between these extreme limits of time
scales one finds collective diffusion of lipids in the membrane
plane,40 large scale bending,41 and more.42 This broad time
scale makes it difficult to sample the appropriate motions of
membranes using straightforward Molecular Dynamics (MD)
simulations. This is the case even if periodic boundary con-
ditions of small membrane patches are used.41 While it is not
clear how the slow motions are coupled to permeation the ex-
istence of extremely broad range of permeation times (from
microseconds to hours43) suggests that such coupling is likely.
Of course motions on much larger spatial scales than the size
of a single molecule are also possible and they make MD sim-
ulations even more challenging.

It is therefore not a surprise that many simulations
of membranes stop at the qualitative level. It is also not

surprising that collective large-scale dynamics of membranes
is typically described at the continuum elastic limit.44–47 How-
ever, coupling molecular permeation to the continuum limit
is challenging. Another approach to simplify simulations of
membranes is to coarse-grain their representation. This ap-
proach has gained in popularity48–53 and enabled significant
enhancement in sampling. The coarse-grained models are fre-
quently based on collecting a group of atoms into a single
point mass. From the perspective of this paper they focus on
reproducing equilibrium behavior and are not calibrated for
kinetics. The present paper outlines a coarse-grained scheme
to compute membrane dynamics with a focus on time depen-
dent phenomena.

We consider permeation through and insertion of medium
size molecules to membranes. Marrink and Berendsen led
the field of computer modeling of molecular permeation in
their pioneering work of molecular translocation through
membrane.2, 54 They computed the potential of mean force
and the diffusion constant of small molecules as a function of
the permeant center of mass position across the membrane.
These functions were used to compute the permeation co-
efficient that compared favorably with experiment.54 Others
used this approach extensively to investigate other membrane-
permeant systems.12, 16, 28, 30, 55–58 The assumption is that only
the motion of the permeant along the z axis (normal to the
membrane) is slow. The rest of the variables are assumed to
be in thermal equilibrium on the time scale of permeation. We
show in this article that this assumption needs to, and can be
improved.

When medium size molecules are considered, the per-
meation mechanism becomes more complex. The permeant
translocation is likely to depend on molecular orientation
and its internal degrees of freedom (such as rotations around
bonds). We59 and others27, 60–62 have examined the impact of

0021-9606/2014/141(5)/054101/13/$30.00 © 2014 AIP Publishing LLC141, 054101-1

http://dx.doi.org/10.1063/1.4891305
http://dx.doi.org/10.1063/1.4891305
http://dx.doi.org/10.1063/1.4891305
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4891305&domain=pdf&date_stamp=2014-08-01


054101-2 A. E. Cardenas and R. Elber J. Chem. Phys. 141, 054101 (2014)

permeant degrees of freedom on movement through mem-
branes. However, we illustrated recently59 that even with a
set of coarse variables describing the important degrees of
freedom of the permeant, hidden coarse variables remain. We
hypothesize that the missing order parameters are associated
with the membrane itself.

A hypothesis that we explore here is that membrane
atomic density is a relevant coarse variable for permeation.
Relaxations of phospholipid molecules may be necessary to
create the space for the permeant to “walk” through, via
cavity-assisted-diffusion. Thermal contributions to these fluc-
tuations can be exceedingly slow as membrane dynamics
spans long time scales.40, 42 Previous simulation studies have
characterized some equilibrium properties like shape and size
of membrane voids63–65 but there is no direct information on
the time scales of cavity formation in lipids. In the limit of
very long relaxation times the permeant may see a “frozen”
set of lipid configurations and frozen distribution of cavities.
An average over the set of frozen membrane configurations
is required to obtain macroscopic observables of the perme-
ation process. Each member of an ensemble of permeants is
passing through a slightly different “frozen” membrane. On
the other hand, the translocation process that we examine in
the past66 is exceptionally long (hours). On this time scale we
expect many of the dynamic fluctuations of the lipids, which
are not accessible to straightforward MD, to be available for
the permeant.

Assessing convergence of MD simulations is difficult
since it is typically limited by ergodicity and not by the size
of the statistics. If the statistics were the only factor then the
accuracy of the observables would improve as 1/

√
L where L

is the number of sampled points. We say that the sampling is
ergodic if the points are uniformly sampled from the correct
distribution. In typical complex simulations the system may
be trapped in a local free energy minimum. Transitions out
of local free energy minima may not be sampled in straight-
forward MD simulations causing significant errors in estimat-
ing averages. How do we know if the system is ergodic or
not? While interesting and useful ergodic measures have been
introduced,67 relevant order parameters need to be identified.
It is not clear what these order parameters might be for the
membrane system.

A simple test of ergodicity for the permeation problem is
possible, and we exploited this test in our recent study.59 Let
the two layers of the membrane be constructed independently.
Let us further assume that the internal degrees of freedom of
the permeant are sampled comprehensively. Permeation from
aqueous solution to the center of the membrane explores
different lipid conformations than the translocation process
through the other half of the bilayer. By construction, both
layers have the same chemical composition in our study
(this is not the case for biological membranes68). At the
“frozen” membrane limit, and at the time scale of MD,
we expect different permeation rates through each of the
layers. But if the system were at the fast equilibration limit
the permeation rates would be similar for both halves of
the membrane. Therefore, if the rates differ significantly
that would suggest that slow conformational motions of the
membrane are coupled to permeation and this interaction

is not sampled correctly during the MD averages. Each
layer is trapped in a local free energy minimum on the MD
time scale, which is typically in the sub microsecond time
scale.

In Refs. 59 and 66 we simulated permeation of N-
Acetyl-L-tryptophanamide (NATA) through a DOPC (1,2-
dioleoyl-sn-glycero-3-phosphocholine) membrane using the
theory and algorithm of Milestoning.69–72 We examined in
detail the convergence of the calculations (as defined above)
using order parameters that include the membrane depth, per-
meant orientation, and the permeant internal degree of free-
dom (the ψ backbone dihedral angle). We found that the sim-
ilarity between the rates of the two layers increases when the
internal degrees of freedom of the permeant were taken into
account. However, systematic deviations remain. The ques-
tion of modeling the membrane explicit dynamics and its pos-
sible coupling to the translocation process was not addressed.
The impact of the fluctuations of the membrane packing den-
sity in a pure phospholipid bilayer, and its time dependence
are the prime focus of the present paper. In the absence of
electrostatic interactions (e.g., when the permeant is electri-
cally neutral) the free energy profile of an uncharged perme-
ant is remarkably similar to the free energy of cavity forma-
tion (see Sec. V). This makes it possible to offer a general
model for the contribution of short-range interactions to the
permeation free energy and dynamics. We also illustrate that
analyzing the membrane packing dynamics with Milestoning
it is possible to determine the permeation rate and pathways
of water molecules moving through the membrane. We sug-
gest a new order parameter for the water translocation, which
is the water density.

The choice of local density to describe the interactions of
membrane fluctuations with uncharged permeants is a sensi-
ble and simple choice. Previous work has explored the con-
nection among phospholipid membrane packing, cholesterol
content, and lateral diffusion.73 The use of density could facil-
itate the development of multiscale modeling connecting the
atomically detailed description of membrane permeation with
continuous modeling of membranes. Also, the local densities
are easy to determine from post-processing of the trajectory
data. Other order parameters are possible, for example, the
local orientation and ordering of the lipid chains. However,
in the present paper we start with the simplest choice that we
could think about.

The paper is organized as follows. In Sec. II we out-
line the theory for Milestoning with fields that is used to
analyze the MD trajectories. In Sec. III we describe the al-
gorithm to extract the required transition kernel for Mile-
stoning. Section IV details the MD simulations of the mem-
brane that determine the parameters for the Milestoning
theory and describes additional methods to extract kinetic
and mechanistic information for water permeation. Results
and discussion are in Sec. V and conclusions are at the
end.

II. MILESTONING FOR FIELDS: THEORY

Milestoning is a theory and algorithm to compute long
time kinetics from an ensemble of short molecular dynamics
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trajectories.72 The first step in Milestoning is to define a
reaction space. It is a set of order parameters or coarse
variables that we use to describe the equilibrium and dynam-
ics of the system −Q(u) ∈ Rn, where Q is a vector of the
coarse variables of length n, and u ∈ R3N is the vector po-
sition of all the N atoms of the system. Using phase space
variables to describe reaction space is also possible. How-
ever, for membrane processes diffusive dynamics that does
not take into count inertial motions seems appropriate. In
the past, reaction spaces were defined by torsions,74 a com-
bination of torsions and hydrogen bonds,75 or by a Carte-
sian representation of a subset of atoms.76, 77 It is not nec-
essary to worry about Jacobian factors in Milestoning as
long as the coordinates are not dependent. The coarse vari-
ables can be as complex as we see fit. It is also possible
to use a one-dimensional reaction-coordinate for a reaction
space.78 In this case it was shown that the optimal choice
of the reaction coordinate for overdamped dynamics is the
iso-committor function.79 On the other hand, a Milestoning
study of a multi-dimensional reaction space produces a more
detailed picture, which is a network representation of the
process. The network is analyzed to elucidate mechanisms
and extract kinetic and equilibrium properties to be tested by
experiments.80

The proper choice of coarse variables to describe the
dynamics of membrane density is a challenge. Some coarse-
grained algorithms (e.g., Martini48) are based on collect-
ing groups of atoms to point masses, and modeling mean
force potentials between these points. These procedures are
successful in reproducing thermodynamic features of mem-
branes. However, understanding kinetics is not so clear. Mem-
ory kernels, which are notoriously difficult to compute, are
required to study coarse-grained particle dynamics.81 Avoid-
ing memory kernels means using ad hoc friction coefficients
and noise terms, which are phenomenological and are hard to
test against microscopic theories and atomically detailed sim-
ulations. It is desirable to develop a dynamic model for the
membrane density that does not have any free parameters and
all the variables are determined directly from short MD trajec-
tories and microscopic modeling of interactions. We propose
such a model below.

For the membrane system we consider the density ρX(R)
where X is the atom type. The density ρ(R) is the number
of atoms we find in an infinitesimal volume element centered
at R. R is a three dimensional vector. We focus on one cell
at each layer of the membrane at a specific value of z, the
membrane depth. A pure phospholipid bilayer membrane is
invariant under translations in the plane (on the average) and
hence the above focus.

The basic entity we examine in Milestoning is the
flux, q, or the change in the state of the system in a unit
time. Since local density determines the system state, we
have

q(�ρ(r), t) = q(ρ(R′) → ρ ′(R′), ρ(R) → ρ ′(R), t), (1)

where r is the position of the wall between two nearby cells
centered at R and R′ which we call a milestone (Fig. 1). Dur-
ing this change of state cell R changes its density from ρ(R)
to ρ ′(R), and cell R′ from ρ(R′) to ρ ′(R′). Clearly the change

FIG. 1. Transition of density between two milestones. Milestone r is the
wall separating cells centered at R and R′, and milestone r′ separates cells
with centers at R′ and R′′. The density ρ(R) is the number of atoms in the
cell centered at R. We consider transitions between two different boundaries
belonging to the same cell, in this case cell R′. A transition event starts with
a change of densities of the cells separated by r: �ρ(r) = ρ(R′) → ρ′(R′),
ρ(R) → ρ′(R). We set the time of this density change to zero. The densities
ρ′(R) and ρ′(R′) are the densities of those two cells at t = 0. The density of
R′ is followed until the next transfer of mass occurs to a different milestone
r′ at time t: �ρ′(r′) = ρ′(R′) → ρ′ ′(R′), ρ′(R′ ′) → ρ′ ′(R′ ′). The transition
kernel K(�ρ(r), �ρ′(r′), t) is the probability that the density transition �ρ(r)
at milestone r is followed by the density change �ρ′(r′) at milestone r′. For
brevity we also say that the transition occurs between milestone �ρ(r) to
milestone �ρ′(r′) where the term milestone refers both to the location of the
wall and the density change associated with it.

in the density inside a volume element must come from
incoming (or outgoing) particles from other nearby cells, and
hence the definition of the flux as dependent on two cells.
We assume that the density transfer is binary and at any time
only one cell is engaged in density exchange with the cell
of interest. We test the correctness of this assumption during
simulations. If we find an exception that during a particular
short time interval (our time step) two transitions occur we
randomly pick one of the transitions to be first and the other
to be next.

The fluxes through all the milestones are the prime tar-
get of the calculations. We write an integral equation probing
conservation of fluxes and building on a local transition ma-
trix. We consider fluxes through two different boundaries of
the same cell and write the probability that such two sequen-
tial transitions will happen at exactly time interval t. In other
words we set the time of entry into the cell through one mile-
stone to be zero and the next transition exiting from the cell
to be at time t (Fig. 1). The probability density or kernel of
this transition is K(�ρ(r), �ρ ′(r′), t). This kernel is estimated
from molecular dynamics trajectories. Either a single long tra-
jectory, which is chopped to many small fragments,75, 82 or
many short trajectories are used.59, 66, 82, 83 From the trajecto-
ries we determined instances in which the milestone �ρ(r)
and �ρ ′(r′) are passed in sequence, one after the other. Let
the number of crossing of the milestone �ρ(r) be n(r) and
the number of follow-up crosses of �ρ ′(r′) at time t, before
any other milestone is crossed, be n(r, r′, t). The correspond-
ing value of the kernel is estimated from the trajectories as
K(�ρ(r), �ρ ′(r′), t) = n(r, r′, t)/n(r). Further discussion of
the numerical estimates in Milestoning is provided in Sec. III.
With the kernel at hand we write the Milestoning equations
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for flux conservation

qX(�ρX(r), t)

= pX(�ρX(r), t) · δ(t − 0+) +
∑
r ′

t∫

0

∫

�
ρ

qX(�ρ ′
X(r′), t ′)

×KX(�ρ ′
X(r′),�ρX(r), t − t ′)dt ′ · d(�ρ ′

X(r′)). (2)

Equation (2) is a statement about conservation of flux. In the
above formula we introduce pX(�ρX(r), t) which is the prob-
ability that the last milestone crossed before or at time t is
�ρX, δ is the Dirac’s delta function. The time difference in
the delta function is set to ensure that the time integral over
the delta function is one (and not 1/2). The time integration in
the second term on the right considers all possible early en-
tries to the cell at times t′ < t and the coarse space integration
(�ρ) is over all possible density changes in the pair of cells.
In practice the values of the densities are discretized and the
integral is replaced by a sum as explained in Sec. III.

Equation (2) is solved with the help of Laplace
transforms.70, 72, 84 We define f̃ (u) = ∫ ∞

0 exp (−ut) f (t) dt .
A Laplace transform in time of Eq. (2) gives

q̃X(�ρX(r), u)

= pX(�ρX(r), 0) +
∑
r ′

∫

�
ρ

q̃X(�ρ ′
X(r′), u)

× K̃X(�ρ ′
X(r′),�ρX(r), u)d(�ρ ′

X(r′)). (3)

Taking the zero limit of the Laplace variable, u, we recover
a long time limit. We consider two cases. The first is of
cyclic condition in which particles in the final target milestone
�ρX(rf) are fed back up to the initial milestone �ρX(ri), e.g.,
a cell at the lower leaflet of the membrane is transmitting den-
sity to a cell at the upper leaflet. In that case we have in the
limit u → 0:

lim
u→0

K̃(�ρ(rf ),�ρ(rj ), u) = 0 j �= i,

lim
u→0

K̃(�ρ(rf ),�ρ ′(ri), u) = 1,

and

K ≡ lim
u→0

K̃(u) =
∞∫

0

K(t)dt.

(4)

And we also have

lim
u→0

[u · q̃X(�ρX(r), u)] = qX,stat (�ρX(r)). (5)

The function qX, stat(�ρX(r)) is the stationary flux under the
cyclic boundary conditions imposed in Eq. (4). We now write
Eq. (3) for the limit of zero for the Laplace variable (after
multiplying both sides by u) in a more compact and abstract
form

qstat = 〈qstatK〉. (6)

The average corresponds to the integral over the phase space
points of the trajectories that pass through the milestones and
the transition matrix K with elements defined in Eq. (4). The

stationary probability vector of all milestones is given by

p = q � t, (7)

where the symbol � denotes element wise product. The lo-
cal life-time of a milestone, t, which we also consider in this
paper is

(t)r =
∑
r ′

∫

�
ρ

∞∫

0

t · KX(�ρX(r),�ρX(r′), t)dt · d(�ρX(r′)),

(8)
where (t)r is the average life time of milestone r.

Finally the overall mean first passage is computed using
reduced matrices, at the level of the milestones and not at the
level of individual phase space point as discussed earlier. This
requires a physically sensible assumption of de-correlation of
trajectories70 from initiation to termination, or in the present
formulation that the flux function is approximately a constant
on the range of a cell wall (a milestone). We have72

〈τ 〉 = p0(I − –K)−1t, (9)

where 〈τ 〉 is the overall mean first passage time and p0 is the
initial probability that a milestone was crossed. The kernel —K
is similar to K except that

lim
u→0

—̃K (�ρ(rf ),�ρ ′(rj ), u) = 0 ∀j, (10)

which implies an absorbing boundary condition at milestone
f. The population decays to zero and its life-time, as defined
in Eq. (9), is finite.

III. MILESTONING FOR FIELDS: ALGORITHMS

Since r is a continuous variable it means that the number
of reaction coordinates (the field densities) is infinite. The use
of the density field to describe reaction space with computer
simulations makes practical sense only after discretization of
the field. Consider a simulation box of volume V divided into
C cells (Fig. 2). If the number of atoms of type X in cell i is nXi
then the cell density is given by ρXi = C · nXi/V . To explore
transitions we examine the densities in neighboring cells as
a function of time. We call below a change in the density of
a cell an “event.” The transfer of density in each event can
be positive or negative, i.e., cell i can gain or lose density in
events. Our code was build to analyze any of the cells of the
membrane, with a total of 15 × 15 × 17 cells (this is the more
common discretization used in this work). We use 17 cells in
the direction normal to the membrane plane (the z axis) and 15
for each of the in-membrane axes. However, since the mem-
brane is symmetric on the average in the membrane plane, we
focus in the present study on a single column of cells along
the normal to the membrane. This gives us a total of 17 prime
cells.

In three dimensions and assuming equal and cubic cell
sizes, there are 26 neighbors to a central cell. Symmetry re-
duces the number of distinct nearby cells to only 8 (Fig. 3).
As we described in Sec. II, we need to consider two elemen-
tary events at cell i to build the transition kernel. The first
event involves density transfer between the pairs of cells (j, i)
and the second event, after time t, transfers density between
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FIG. 2. Discretization of the simulation box into cells used for the Mileston-
ing calculation of density fluctuations. This is an approximate picture of the
cells. The actual cell sizes used in the calculations are slightly smaller.

cells (i, k). We call the two sequential events “an elemen-
tary sequence” if there is no other event in cell i between the
two transitions mentioned above. We record (of course) only
elementary sequences. We estimate the transition kernel for
atoms of type X as KXji, ik(t) ∼= nji, ik(t)/nji(0). Where nji(0) is
the number of (j, i) events initiated at time zero, and nji, ik(t)
is the number of (j, i) trajectories initiated at time zero that
continue to event (i, k) exactly at time t. Since the kernel de-
pends only on time differences in the time-homogeneous pro-

FIG. 3. The number of cells surrounding a cubic central cell (shown here
with a darker grey) that needs to be considered can be reduced by symmetry
because the x and y directions are equivalent on the average in a pure bilayer
system. Only two cells are required in the xy plane with the same z value as
the central cell. Above the prime cell in the z direction three nonequivalent
cells are needed, and three additional cells are required below the central cell.

cess being considered we can set the time of the original event
to zero.

With the transitional kernel at hand we can determine
the reactive flux, stationary probability density, and the over-
all mean first passage times. We re-iterate that we are not
required to know the transition kernel at all time. The zero
and the first order time moments are sufficient to estimate
parameters of equilibrium and local kinetics according to
Eqs. (6), (7), and (9). With the above discretization the ma-
trices of Eq. (2) (i.e., K) are of dimensionality M × M where
M is the number of milestones.

If we have J discrete values for the density, the number
of milestones for the discretization described above is M = (8
× 17 × J × J) for a particular atom type. The number of den-
sity levels we considered is J = 14. That gives a total number
of milestones M = 26 656. This is a large number. However,
the matrices are highly sparse and the linear problems that
we solve (for the flux q, and for the mean first passage time,
MFPT, 〈τ 〉) are accessible with standard libraries.85 Further-
more, milestones that face directly the central cell are sampled
more often than the ones located at the corners. Therefore, for
the present calculations to enhance the statistical convergence
of our results we accumulated the transitions to the three top
cells (Fig. 3) into one top cell. The same was done for the
two lateral cells and the three bottom cells. This reduces the
calculation to a single column along the z-axis and the num-
ber of milestones is M = 17 × 14 × 14 × 3 = 9996 where
“17” is the number of layers along z. The sampling of all the
lipid and water atoms includes only a fraction of the mile-
stones as active (5810). The number of milestones was 2747
when only the water atoms were included in the analysis.
The prime computational bottleneck remains the collection of
the short trajectories between the milestones and not the post
processing of the Milestoning equations.

Instead of running many short trajectories we analyze a
single long trajectory in this work. We “chop” a long trajec-
tory to fragments that describe the elementary events between
milestones that we seek (Fig. 4). We set the start of a tra-
jectory fragment to be the time it passes milestone (i, j) (the
orange wall in Fig. 4) given that the prior event was the cross-
ing of a different milestone, and terminate the trajectory the
first time it passes yet another milestone (j, k) (the green wall).
The trajectory fragment is added to the statistical model of the
transition kernel.

IV. METHODS

A. MD simulations

The simulated system is a bilayer membrane with 64
DOPC molecules in each leaflet, a total of 128 DOPC and
6097 water molecules. The system has a total of 47.6 wa-
ter molecules per lipid, above the experimental ratio of
32.5, ensuring full hydration and stability of the simulated
system. The initial configuration of the system was pre-
pared using the membrane builder facility of CHARMM-GUI
(Chemistry at HARvard Molecular Mechanics-Graphical
User Interface).86, 87 The force fields used in the simulations
were the united-atom Berger force field for the acyl chain
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FIG. 4. Simple representation of the Milestoning algorithm. The blue cir-
cles are anchors and the straight lines are milestones (interfaces) separating
the different anchor domains in the system. In the present case anchors are
located at the center of every grid cell and there are different anchors depend-
ing on the number of atoms present in the cell. The curve line represents a
long trajectory that has been partitioned into trajectory fragments depending
on the last milestone that the long trajectory has crossed. The red trajectory
fragment starts at the red milestone and it belongs to the red milestone until
it hits the blue milestone for the first time. At that moment the trajectory be-
longs to the blue milestone until it hits a neighboring milestone (the orange
one) and so on.

atoms of the lipid8 and OPLS (Optimized Potentials for Liq-
uid Simulations) force field88 for the head group region. We
have used the same set of force field parameters in previous
simulations of the same lipid system59, 66 where comparisons
with experiments and Potential of Mean Force (PMF) ob-
tained with other force field sets suggests the chosen parame-
ters are accurate enough to provide sensitive description of the
permeation process. Water molecules were modeled using the
TIP3P force field.89 The combination of Berger/OPLS param-
eters for the lipid and TIP3P model for water has been tested
and used by others.90, 91 The simulations were done with our
molecular package MOIL.92, 93 The initial configuration was
heated slowly and equilibrated at 300 K during a 2 ns run.
The simulation box size is 66.0 × 66.0 × 74.9 Å3. That gives
a surface area per lipid of 68.1 Å2 that is in the range obtained
in previous simulations94 and 5% smaller than the experimen-
tal value.95

Periodic boundary conditions were applied in the three
spatial directions. The long-range electrostatic forces were
calculated using the smooth particle mesh Ewald method96

with a grid of 64 × 64 × 76. The cutoffs for van der Waals in-
teractions and for the real space component of the electrostat-
ics forces were set to 9.8 Å. In all the simulations we constrain
water bond length and angles with a matrix implementation of
the SHAKE algorithm.97, 98 The simulations were done with
multiple time steps according to r-RESPA (reversible Refer-
ence System Propagation Algorithm),99 with 1 fs time step
to integrate the bonding, van der Waals, and real part of the
electrostatics interactions and a 4 fs time step to evaluate the
reciprocal-space component of the Ewald sum.

After the equilibration runs, a 200 ns production run was
performed at constant temperature and volume. Configura-
tions were saved every 1 ps for density analysis.

Two additional sets of simulations were run using the
same bilayer system to evaluate the PMF of membrane per-
meation for xenon and for charged “xenon” atoms. In par-
ticular we are interested in comparing the potential of mean
force for a xenon atom to the potential of mean force for cav-
ity formation. In one set of simulations with constraints we
added two neutral xenon atoms into the bilayer system (one
in each leaflet). The locations of the atoms along the z axis
(the axis perpendicular to the membrane surface) were con-
strained in each window with a harmonic potential with a
force constant of 10 kcal/mol Å2. The location of the biasing
potential was displaced by 2 Å in consecutive windows going
from Z = −32 Å to Z = 0 Å for the xenon atom placed in the
negative leaflet and from Z = 0 Å to Z = 32 Å for the xenon
atom placed in the positive leaflet. This procedure gives a to-
tal number of 17 sampling windows. In each simulation win-
dow the distance separating the two xenon atoms was at least
32 Å to minimize their interaction. Initial bilayer coordinates
for these runs were taken from configurations extracted from
the last 20 ns of the pure bilayer run. Xenon atoms were
placed in cavities observed in these conformations at locations
close to the center of the bias potential for a particular win-
dow. The cavities were large enough (see below) to accommo-
date a xenon atom (van der Waals radius of 2.2 Å) so initial
membrane disruption was minimized. After a short equilibra-
tion period of 100 ps, trajectories of 50 ns were launched in
each window. Configurations from the last 40 ns were used to
evaluate the PMF. In the second set of bias simulations one
negatively charged xenon particle was added and its position
was restrained in a similar way as in the first set of constraint
simulations. Ions perturb more significantly the membrane
compared to neutral species and may also interact strongly
which each other over larger distances. Therefore, only one
charged xenon atom was added to the membrane at a time.
The goal of this study was to have a quantitative appreciation
of the relative magnitude of electrostatic versus cavity forma-
tion forces during a permeation process.

To ensure system neutrality one positively charged potas-
sium ion was added to the box and placed in the aqueous
side opposite to the leaflet occupied by the negative xenon.
We placed the negatively charged xenon in membrane cavities
found in pure bilayer configurations as before. After a short
equilibration period, trajectories of 100 ns were computed in
each window and configurations from the last 40 ns were used
in the analysis. We computed 33 sampling windows with the
bias potential shifted by 2 Å in consecutive windows and use
the Z-constraint method to evaluate the PMF.2

B. Density representation

To extract density information from MD simulations we
mapped the simulation box onto a three-dimensional rectan-
gular grid (Fig. 2). Unless it is stated otherwise for most of
the analysis shown in the paper we use 15 × 15 × 17 grid
cells, with cubic cells of size 4.4 Å. The number of heavy
atoms (carbon, oxygen, nitrogen, and phosphorous atoms of
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the lipid and oxygen atoms of the water molecules) present in
every grid was counted and the density of the grid was clas-
sified according to this number of atoms. For the analysis of
water permeation we only count the oxygen atoms of the wa-
ter molecules to label the grid density. Including both the lipid
and water molecules the average number of non-hydrogen
atoms for the 4.4 Å grid size is 3.4 atoms per cell.

C. Determination of global maximum weight
paths (GMWP)

Global maximum weight paths are pathways of maxi-
mum flux connecting two given nodes in a network. They
are useful for qualitative understanding of mechanism and
to determine precise reaction coordinates at finite temper-
atures. The concept was elaborated on and discussed by
Berezhkovskii, Hummer, and Szabo100 and by Metzner,
Schütte, and Vanden-Eijnden in the framework of transition
path theory101 and is particularly useful and easy to imple-
ment in Milestoning. We used a recently developed code,80

which is based on a Recursive Dijkstra’s algorithm, to deter-
mine GMWP for water permeation in the network of density
levels and membrane depths.

D. Computation of permeability coefficient

The rate of passive permeation of a solute through a
membrane is quantified by its permeability coefficient that
gives the flux of solute per unit area and normalized it by the
concentration gradient across the membrane interface. Previ-
ously we described a procedure to compute the permeability
coefficient by Milestoning.59 We write the permeability as P
= (J1/�c)qf where J1 is the number of molecules that pass
through the first milestone per unit time and area, �c is the
concentration gradient, and qf is the flux under stationary con-
ditions through the final milestone (with q1 = 1). To estimate
the Milestoning fluxes we use a set of dual cyclic boundary
conditions as described in Ref. 59.

V. RESULTS AND DISCUSSION

A. Density distribution for the combination of lipid
and water atoms at equilibrium

We first determined the density distribution of lipid and
water atoms along the membrane axis. Fig. 5 shows the equi-
librium distribution for different cell densities obtained with
Milestoning using Eq. (7). These distributions compare well
to the equilibrium distributions determined by a straightfor-
ward average over the 200 ns of simulation data and increase
our confidence in the Milestoning results. As expected the free
energy profile for zero density of lipid and water atoms de-
creases going from the lipid/water interface to the interior of
the membrane with a slight peak at 18 Å where the phosphate
head groups are located.66 The free energy for low density
states (1–3 atoms per cell) reaches its minimum value at the
center of the membrane while for higher density states (more
than 5 atoms in the cell) the profiles have their minima in a
region between 18 and 13 Å from the membrane center.

FIG. 5. Free energy profiles along the z axis for different atomic occupancy
of cells. The solid lines represent the equilibrium free energy according to the
number of lipid and water atoms associated with each milestone. The dashed
lines are the same free energies obtained from the original MD trajectory that
were average over the 200 ns of simulation data obtained for the pure bilayer
system. For a given z value we are also averaging over all the grids in the xy
plane. The center of the membrane is at 0 Å. The close symmetry between
the left and right leaflets reveals excellent convergence of this equilibrium
property.

The probability of transitions of density depends strongly
on the location of the cells along the membrane axis. Fig. 6
illustrates that dependence for a decrease of density for
several initial conditions. For low densities (1 or 2 atoms) the
probability of transitions to lower the density further is higher
at the membrane center (where the overall atomic density is
lower) compared to other locations. For higher densities (4–
6 atoms initially in the cell) the transitions to lower densities
occur more easily at the water phase. By comparison, they are
less probable in the 18–13 Å region where the lipid tails are
more closely packed.66

We ask which neighboring cells are more likely to gain
density when a central cell decreases its density. We fur-

FIG. 6. Probability of transition events between milestones that result in a
decrease of the density of the cell is plotted as a function of the membrane
axis. A transition event is defined as a change of cell density. When a cell
contains one atom at a given time it can take one atom from other cell (tran-
sition 1 → 2) or lose that atom to a neighboring cell (transition 1 → 0). The
sum of all transition probabilities is normalized to one.
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FIG. 7. The probability of transition events between milestones that result
in a decrease of the density of the cell is classified according to the location
of the cell that acts as an acceptor to the transition. The top panel shows
the probability of transitions to lateral cells (transitions between cells with
the same value of z). The bottom panel displays the difference between the
probability of transition to a neighboring cell with a larger value of z and a
lower value of z. The error bars represent the values computed for the two
layers.

ther inquire how this probability changes along the z axis.
Fig. 7 illustrates those variations of transitional probabilities.
For a given density change there is a higher propensity for
transitions to lateral cells when the cell is closer to the mem-
brane center (Figure 7, top). This inclination as a function of
the z axis is more pronounced when the cell contains more
atoms before the transition. At the center of the membrane
there is more space available (see Fig. 5) for lateral displace-
ments. The behavior is more complex and subtle for up or
down transitions (transitions to cells with a larger value or
lower value of z). The bottom of Fig. 7 shows the difference of
transition probability to go up or down (a positive value means
that probability to go up is larger). For transitions 1 → 0 to
form an empty cavity up transitions are more probable than
down transition for most locations with the exception of the
region closer to the membrane center were up and down tran-
sitions probabilities become similar. The general tendency to
favor up transitions moves density away from the membrane
center. On the other hand for initial densities larger than aver-
age (for example, transition 7 → 6) the up transition is more
probable in the region between 6 and 13 Å and the down tran-

sitions are more probable in the region 18–24 Å. The over-
all tendency favors mass motion to the more dense region of
the membrane system at about ∼18 Å where the phosphate
groups are approximately located. At intermediate densities
the transition probability changes along the membrane axis
are a mix of these two tendencies observed at the lower and
higher ends of density.

B. Permeation of water

We also used grid discretization of the simulation cell
to examine changes of density and dynamics of water mov-
ing through the membrane. In this case we keep track only
of the number of water molecules present in each grid cell
and determine transition events and density changes of water.
Figure 8 displays the free energy for water density distribu-
tion at different membrane depths. At the water phase, there
is a valley region in the surface with a minimum value fluc-
tuating between three to four water molecules per cell. The
surface slope is steeper at low water densities and more grad-
ual at larger water densities. As expected moving closer to
the membrane center the location of this valley shifts to lower
water densities and the high-density slope becomes steeper.
At membrane depths below 10 Å the lower density slope dis-
appears. At those membrane depths the more probable wa-
ter grid density becomes zero. Still, enough water molecules
move close to the membrane center to be able to evaluate
water density changes in that region and therefore to obtain
estimates of the free energy and MFPT for the water perme-
ation process. A projection of the free energy surface along
the membrane axis produces a barrier height of 5.7 kcal/mol
that is within the values 5.5–6.2 kcal/mol reported in previ-
ous computations.2, 16, 56, 102 Our estimate of the MFPT for the
transmembrane permeation of water gives an average of 10.0
± 1.2 μs (the error bars are estimated from the studies of wa-
ter permeation for each leaflet of the membrane).

We also computed the permeability coefficient P
= (J1/�c)qf with the method described in Sec. IV. The perme-
ation coefficient requires further elaboration compared to the
free energy and the mean first passage time since our equation
for the flux (Eq. (6)) is not normalized. If the flux q is a solu-
tion of Eq. (6) so is λq where λ is a positive scalar constant.
Hence we need to determine independently the initial value
of the flux. We estimated the initial flux of water molecules
by counting the number of water molecules moving through a
cross section at the water phase in our simulation box. The
cross section was the 66 × 66 Å2 of the membrane plane
of the full box. It was placed 35 Å from the membrane cen-
ter and the number of water molecules crossing this surface
was averaged over the 200 ns simulation. The average flux
was 0.015 water molecules Å−2 ps−1. This gives J1/�c = 4.4
× 103 cm/s where we use �c = 55 M for the unidirec-
tional flux of water across the membrane. Using Mileston-
ing we computed the flux qf for the halves of the mem-
brane. This gives P = 0.041 ± 0.019 cm/s, somewhat larger
than the reported experimental values for permeation of water
through DOPC membranes that range from 0.0158 to 0.0056
cm/s.103–105 Our larger estimate may reflect the (too large) dif-
fusion constant of the water model TIP3P.106
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FIG. 8. A two-dimensional free energy surface showing atomic occupancy for the oxygen-water atoms in the membrane system at different membrane depths
calculated by Milestoning. It is also displayed the global maximum weight paths (GMWP) for water permeation from the water phase at each side of the
membrane to the center of the membrane (black and mauve lines). For the water permeation on the left side the second and third next GWMPs are shown in
dashed black lines. These paths are obtained by removal of the kinetic bottleneck from the previous GWMP. The free energy landscape and GWMP illustrate
that the optimal path is not simply the normal to the membrane plane (z) but rather a combination of z with the water density to create a curved reaction path in
two dimensions.

Figure 8 also shows GMWP for water permeation from
both water layers to the membrane center. Both trajectories
follow closely areas of low free energy. At a distance of 8 Å
from the membrane center these maximum flux paths tend
to pass through grid cells with two waters molecules. This
could suggest that water pathways are faster when a water
molecule drags another one on its way to the hydrophobic
membrane center. Elimination of the bottlenecks to generate
the second and third GMWPs (illustrated for the permeation

pathways at the left side) creates pathways with more multiple
occupancies between −8 and −4 Å. The flux for these second
and third GMWPs has a similar order of magnitude than the
first GMWP so these pathways are expected to contribute to
the permeation of water.

Figure 9 shows milestone life times in the coarse-grained
space of water density and position along the membrane axis.
In most regions, the life times are very short reflecting the
fast diffusion and changes of water density in locations where

FIG. 9. Milestone life times for changes of water density. Most life times are short with the exception of the ones in the middle of the membrane that can reach
hundreds of picoseconds. Note the “dip” at the membrane center. At the center of the membrane the density is low which facilitates less collisional events and
more rapid motions.
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FIG. 10. Mean first passage time for water permeation through the mem-
brane. (Top) Projection of the MFPT along the membrane axis. Error bars
are obtained by comparing water permeation estimates starting on opposite
sides of the membrane. (Bottom) The projection of the MFPT over the mem-
brane axis and water density. This surface shows permeation times for water
molecules moving from the negative to the positive z-layer. The MFPT is
slightly dependent on the water density before the barrier is reached.

water is abundant. Closer to the membrane center with lower
water densities, changes of density are slower, with life times
reaching several hundreds of pico seconds. At the membrane
center there is a decrease of the milestone life times. At that
location there is more space available for molecular motions
and fluctuations of density can speed up. In Fig. 10 we show
the overall mean first passage time for water permeation as
a function of the normal to the membrane plane, z, and the
water density. There are two distinct time scales, one in the
hundreds of picoseconds and a second in the tens of microsec-
onds. We are able to observe ten of microsecond kinetics due
to the enhancement factors of Milestoning that makes it pos-
sible for us to probe much longer time scale than the ones that
are accessible to straightforward MD. The permeation time
saturates near the membrane center at z = 0 Å. Only a weak
dependence of the MFPT on the local water density, mostly
near the barrier position, is observed.

C. Cavity density and kinetics

The previous analysis of the combined lipid and water
densities in the bilayer membrane system (Fig. 5) showed
that transient cavities (cells with no atoms of any kind) can
form in the crowded membrane environment. Figure 11 shows
the probability of finding different number of cavities along
the z axis. In the region from the water phase to the mem-
brane/water interface the formation of empty cavities is lim-
ited so it is very rare to have two or more empty cells at the
same membrane depth. The least favorable location for hole
formation is about 18 Å from the membrane center (see also
Figs. 5 and 12) where the phosphate groups are approximately
located.66 A larger number of cavities is observed close to the
membrane center. For example, at the center the most prob-
able number of cavities is five for a cubic cell of volume
85.3 Å3. More generally, this volume of cavities corresponds

FIG. 11. Equilibrium distribution of the number of empty cells (starting from 1 to 19 empty cells) present at different locations along the membrane axis. It is
more probable to find multiple holes at the membrane center than in other regions of the membrane system.
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FIG. 12. (Top) Free energy of hole formation as a function of the distance
from the center of the membrane. Results are shown for different volumes
of the grid used to discretize the density data. Error bars are obtained by
comparing results from the two membrane layers. (Bottom) it shows the same
free energy normalized along z and with the free energy shifted to zero at the
center of the membrane. The orange curve is the PMF for permeation of a
xenon atom. The van der Waals diameter of xenon is 4.3 Å, smaller than the
size of the cubic grid cell of volume 85.3 Å3 shown in red (with a 4.4 Å side).

to a fraction of 0.02 of the total volume in a layer at the mem-
brane center.

Figure 12 depicts free energy profiles for hole forma-
tion along the membrane axis for different sizes of the cubic
grid used to discretize the simulation box. The difference of
probability for cavity formation between the membrane cen-
ter and the water phase increases with the volume of the cav-
ity. The height of the barrier also increases with the cavity
volume. With increasing cell volumes becomes even more
difficult to find holes in areas of high particle density in the
membrane system. When the volume of the cell is larger than
161.9 Å3 (that volume corresponds to a cubic size of 5.5 Å)
holes were not present at the denser locations of the mem-
brane in our simulations. For the smaller volume displayed,
59.3 Å3, the probability for hole formation is similar in the
water/membrane interface and the water phase although the
probability to observe holes is still slightly larger at the mem-
brane center.

FIG. 13. Milestone flux for the permeation of a hole from the water phase
to the center of the membrane. Error bars are obtained by comparing the
independent Milestoning results for the two layers.

We computed kinetics of cavity mobility with Mileston-
ing. For a small cell volume of 59.3 Å3 a complete permeation
path of a cavity was found (Fig. 13). The kinetic bottleneck is
observed at the location of the membrane headgroups and the
flux increases once the cavity is approaching the membrane
center.

D. Neutral and charge xenon transport

The noble gas xenon is known to be an anesthetic agent
but the mechanism of anesthetic action is not well under-
stood. Recent MD simulations of lipid bilayers interacting
with Xe atoms at different concentrations showed that these
atoms tend to accumulate at the membrane center.107, 108 In
here, we used MD with Z constrained to a particular value
using a harmonic restraint to determine the PMF for perme-
ation of a xenon atom through the same bilayer system we
used in the density analysis (the van der Waals diameter of
a xenon atom is 4.3 Å). The cubic box of volume 85.3 Å3

is large enough (side 4.4 Å) to enclose one xenon atom. The
bottom panel of Figure 12 shows that the PMF for xenon is
similar to the free energy change for the 85.3 Å3 cavity. The
overall change of free energy and the location of the barrier
are similar (slightly shifted to the water phase for the PMF
of xenon). The more notable difference is that the minimum
basin seems to be broader for xenon. This similarity suggests
that the membrane permeation of xenon is controlled by the
presence of these membrane cavities.

We also computed the PMF of anionic xenon. We used
this artificial anion to study the effects of electrostatics while
keeping the size of the particle the same as the neutral case.
The PMF increases monotonically going from the water phase
to the center of the membrane where the only barrier is present
(Fig. 14). The barrier height is 24.1 ± 1.8 kcal/mol, larger
by about 20 kcal/mol compared to the transport of the neu-
tral atom. An electrostatics calculation using a continuum di-
electric model5 gives a barrier at the center of 35 kcal/mol.
We observed, as noted by others5, 109 that when the anion is
at the membrane center there is a considerable distortion of
the bilayer structure with the formation of a column of water
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FIG. 14. The free energy profile for a negatively charged “xenon.” See text
for more details. Error bars are obtained by comparing the results of the two
layers.

molecules coming from one of the aqueous phases all the way
to the location of the anion that can be surrounded by up to 10
water molecules at a time. On the other hand, for the neutral
Xe atom, the bilayer structure is preserved when the atom is
at the membrane center. These observations suggest a mecha-
nism that cannot be captured by continuum theories, like the
self energy used above.

VI. CONCLUSION

In the present paper we proposed a novel approach
of coarse graining membranes to obtain continuum, field-
like representation, based on atomically detailed MD simu-
lations. The approach makes it possible to connect micro-
scopic with mesoscopic description of membrane and open
the way for multiscale modeling of membranes bridging from
atomic description to continuum. For example, earlier model-
ing of membrane as highly viscous fluids are accessible to
the present description. Further reduction in complexity of
the present model is expected using continuous Markovian
modeling110 and deriving the corresponding diffusion equa-
tion for the particle density.

The Milestoning with fields algorithm introduced here
provides sensible results probing the density fluctuations and
dynamics of membrane systems. The equilibrium probabil-
ities for the different density states obtained with the algo-
rithm are accurate enough to provide useful information for
transition probabilities and how these transition probabili-
ties change depending on the heterogeneous membrane en-
vironment. We showed that membrane-packing fluctuations
create transient cavities and contribute to the permeation of
uncharged small solutes through the membrane. The extent
in which these membrane fluctuations contribute to the per-
meation of larger molecules such as peptides is a topic for
future work as well as assessing if the use of different force
fields can influence the results extracted from our analysis.
We also showed that the permeability of water is satisfactorily
described with Milestoning with fields. Our calculations sug-
gest that pathways in which two water molecules are clustered

near the membrane center could have significant contribution
to the permeation process.
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