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To globally survey the changes in transcriptional landscape during terminal erythroid differentiation, we per-
formed RNA sequencing (RNA-seq) on primary human CD341 cells after ex vivo differentiation from the earliest
into the most mature erythroid cell stages. This analysis identified thousands of novel intergenic and intronic
transcripts as well as novel alternative transcript isoforms. After rigorous data filtering, 51 (presumptive)
novel protein-coding transcripts, 5326 long and 679 small non-coding RNA candidates remained. The analysis
also revealed two clear transcriptional trends during terminal erythroid differentiation: first, the complexity of
transcript diversity was predominantly achieved by alternative splicing, and second, splicing junctional diver-
sity diminished during erythroid differentiation. Finally, 404 genes that were not known previously to be differ-
entially expressed in erythroid cells were annotated. Analysis of the most extremely differentially expressed
transcripts revealed that these gene products were all closely associated with hematopoietic lineage differenti-
ation. Taken together, this study will serve as a comprehensive platform for future in-depth investigation of
human erythroid development that, in turn, may reveal new insights into multiple layers of the transcriptional
regulatory hierarchy that controls erythropoiesis.

INTRODUCTION

Erythropoiesis is a dynamic process during which immature
hematopoietic cells progressively mature into proerythroblasts,
erythroblasts (basophilic, polychromatic and orthochromatic),
reticulocytes and erythrocytes. These maturational stages can
be recapitulated in ex vivo differentiation cultures that are ac-
companied by changes in cell morphology (cell size reduction
and chromatin condensation, ultimately leading to enucleation)
and in transcription (through the differential induction of
erythroid-specific genes). Therefore, a comprehensive knowl-
edge of the dynamically changing transcriptome of erythroid
cells at different stages of maturation may provide meaningful
insights into the transcriptional networks governing erythropoi-
esis, and this in turn could lead to the identification of novel
molecular targets that could be exploited for the treatment of
erythroid dysfunction caused by inherited (e.g. sickle cell
disease and b-thalassemia) and acquired (e.g. myelodysplasia
and aplastic anemia) deficiencies.

Most human erythroid transcriptome studies were previously
performed using microarrays (1–6) that are, by design, limited to
the detection of known transcripts. The ascendancy of unbiased

deep RNA sequencing (RNA-seq) overcomes this limitation by

identifying novel transcripts regardless of prior knowledge or
genome annotation (7,8). Novel transcripts that can be identified

by RNA-seq include novel alternative RNA isoforms of annotated
genes (hereafter referred to as ‘novel isoforms’) (7–9) and inter-

genic and intronic transcripts. The latter are a valuable resource

for future investigation of protein-coding and non-coding RNAs
(ncRNAs) (10–12). There is increasing evidence that ncRNAs

play a more prominent role than previously appreciated in gene

regulation (13,14), genomic imprinting (15), cancer metastasis
(16), stem cell pluripotency and cellular differentiation (17).

RNA-seq methodology has also been reported to measure tran-
script abundance with superior dynamic range (over five orders

of magnitude) (7,18,19) when compared with microarray studies,

resulting in significantly improved sensitivity and accuracy in
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transcriptome analysis [e.g. RNA-seq analyses have been reported
to detect up to 25% more expressed genes than do microarrays
(20)]. Thus, a greater number of differentially expressed transcripts
involved in erythropoiesis might be identified using RNA-seq than
have been previously reported from microarray studies.

Alternative transcript isoforms have been reported for .92%
of multi-exon human genes (21) and are believed to be a principal
driving force for the evolution of the complex transcriptome of
mammals. Increased transcript isoform diversity is attained
through alternative transcription and alternative splicing. In alter-
native transcription, distinct pre-mRNAs are generated through
both alternative transcriptional initiation and termination (ATI
and ATT, respectively), whereas for alternative splicing, one
pre-mRNA isoform becomes differentially spliced to produce
multiple post-transcriptional RNAs. A previous study reported
that alternative transcription exceeded alternative splicing
during mouse cerebellar development (22), which was contrary
to an even earlier conclusion that alternative splicing occurred
more frequently in 15 diverse human tissues and cell lines (21).
Further, splicing junctional complexity was found to diminish
during neuronal differentiation (23). It is thus currently unclear
whether alternative transcription or splicing is the primary con-
tributor to whole transcriptome diversity, and whether or not junc-
tional complexity changes during human erythropoiesis.

In this study, we performed RNA-seq on primary human
erythroid cells expanded in differentiation cultures ex vivo from
purified CD34+ cells for 4, 8, 11 or 14 days; by the final time
point, .85% of the cells expressed high levels of hemoglobin
and 25% of the cells had enucleated. We identified and character-
ized transcripts that were localized in intergenic and intronic
regions of previously annotated genes as potential novel protein-
coding transcripts and small or long non-coding RNAs during
the course of erythroid differentiation. We also compared the fre-
quency of alternative transcription and alternative splicing events
during erythropoiesis, and, additionally, analyzed developmentally
regulated splicing dynamics. Finally, we identified differentially
expressed transcripts between each pairwise differentiation
stages and compared all of these results to previous microarray
datasets. We suggest that these data may serve as a comprehen-
sive resource for a variety of investigators interested in erythroid
cell development.

RESULTS

Induction of human erythroid differentiation ex vivo

Purified human CD34+ hematopoietic progenitor cells were dif-
ferentiated ex vivo as previously reported (24,25). After 4 days
in culture, no hemoglobin was detected in these immature cells
by neutral benzidine staining, which monitors hemoglobin syn-
thesis in erythroid cells (Fig. 1A, top panel). By Day 8 in
culture, �90% of the cells resemble proerythroblasts. By Day
11, the cells were at an intermediate differentiation stage, com-
prised primarily of basophilic and polychromatic erythroblasts
(�30%). By Day 14, �25% of the cells had undergone enucle-
ation, the ultimate hallmark of terminal erythroid maturation.
Benzidine-positive cells increased from initially undetectable to
typically .85% by Day 14 (Fig. 1A, bottom panel). Additionally,
erythroid maturation was also confirmed by flow cytometry
(Supplementary Material, Fig. S1). Taken together, these data

show that human CD34+ cells underwent almost complete ter-
minal erythroid differentiation during the 14-day culture period.

Generation and quality of RNA-seq data

Cells were harvested after 4, 8, 11 and 14 days of differentiation;
RNA-seq was performed on two biological replicates at each
stage using a paired-end 72 bp sequencing format on an Illumina
Genome Analyzer IIx (Supplementary Material, Table S1).
Strong correlation [Pearson’s correlation coefficient (r) ¼
0.97–0.98] was observed between the two biological replicates
collected at each stage (Supplementary Material, Fig. S2A). To
further verify the accuracy of RNA quantification using
RNA-seq, 37 genes expressed during the four differentiation
stages were randomly selected for qRT-PCR analysis, and
again, a strong correlation (r ¼ 0.946) was observed between
the qRT-PCR and RNA-seq assays (Supplementary Material,
Fig. S2B). As a representative example, the compilation of
reads that mapped to the human b-globin locus illustrated that
adult b-globin (HBB) transcript abundance peaked after Day 8,
and was far more abundant than any other globin transcript gen-
erated from these differentiated adult bone marrow CD34+ cells,
as anticipated (Fig. 1B).

Characterization of previously known and novel transcripts

To identify novel transcript isoforms as well as new intergenic and
intronic transcripts from the RNA-seq datasets, we performed
de novo assembly of the transcripts using TopHat and Cufflinks
(26). Of the total transcripts assembled, 32 453 represented new
splicing isoforms that could be generated from previously anno-
tated genes, while 9038 appeared to be completely novel (Table 1).

To gain insights into the nature and possible functional signifi-
cance of these transcripts, they were further subdivided by para-
meters such as transcript length, open reading frame (ORF)
length, exon number, phylogenetic conservation score, repeat
element content and expression level. Perhaps most significantly,
while most known transcripts and novel isoforms (94 and 89%,
respectively) generated from all previously annotated genes
were longer than 1 kb, the novel transcripts identified here
were significantly shorter, with only 30% of intergenic and
32% of intronic transcripts being longer than 1 kb (Fig. 2A and
Table 2). One criterion that is commonly used to distinguish
protein-coding transcripts from non-coding transcripts is the
presence of an ORF longer than 300 nt (27,28). While most of
the known transcripts and novel isoforms of previously anno-
tated genes (93–96%) obeyed this criterion, only 32% of inter-
genic and 23% of intronic transcripts fell into this category
(Fig. 2B and Table 2). We surmise that this smaller subset of
intergenic and intronic transcripts (with ORFs .300 nt) may
have protein-coding potential, whereas the majority of them
probably represent non-coding (nc) RNAs. To further support
this contention, we found that only 7% of intergenic and 1% of
intronic transcripts encoded more than one possible exon,
while 94–95% of known transcripts or novel isoforms from
annotated genes have multiple exons (Fig. 2C and Table 2).
Additionally, as judged by PhastCons conservation score (29),
intergenic and intronic transcripts were less well conserved
than were the known transcripts and novel isoforms of annotated
genes (Fig. 2D and Table 2). Moreover, the average transcript
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abundance of the novel isoforms and the intergenic and intronic
transcripts were generally lower than the previously annotated
transcripts (Fig. 2E and Table 2). Finally, although repetitive ele-
ments are frequently found in intergenic regions of human
genome (30), their content within the novel intergenic and
intronic transcript category did not differ significantly from
their relative frequency in all previously annotated transcripts
(Fig. 2F and Table 2). In summary, the novel intergenic and in-
tronic transcripts identified here generally had shorter transcript
and ORF lengths, fewer exons, lower sequence conservation and

Figure 1. Adultb-type globin (HBB) RNA is robustly induced as erythroid cells mature. (A) Primary human erythroid cells differentiated ex vivo from purified CD34+

hematopoietic progenitor cells. Morphological changes and hemoglobin accumulation were examined by Wright-Giemsa (top panels; scale bar: 10 mm) and neutral
benzidine (bottom panels; scale bar: 50 mm) staining before (Day 0) and after 4, 8, 11 or 14 days of erythroid differentiation. Enucleated terminally differentiated
erythrocytes (arrowhead, top) and the percentages of benzidine-positive cells (bottom) are indicated. (B) As a representative example, shown here is the accumulated
RNA-seq reads at the humanb-globin locus during erythroid differentiation. The y-axis represents the number of reads mapped to each genomic location and ranges
from 0 to 1 336 084 for all differentiation stages. The relative positions of the five genes within theb-globin locus as well as the positions of the DNase I hypersensitive
sites (HS) that comprise the locus control region are shown at the bottom.

Table 1. Numbers of known and previously unannotated transcripts identified in
primary human erythroid cells

Transcripts from annotated genes Intergenic and
intronic transcripts

Total
Known transcripts Novel isoforms

Day 4 8704 14 993 8799 32 496
Day 8 8608 14 316 8252 31 176
Day 11 7986 14 283 8625 30 894
Day 14 7668 14 154 7873 29 695
Union 9876 32 453 9038 51 367
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Figure 2. Characterization of transcripts identified by RNA-seq. (A–F) In these histograms four categories of transcripts are presented: (1) known transcripts repre-
senting those previously annotated by RefSeq databases (black lines); (2) novel isoforms representing transcripts that display novel alternative splicing or alternative
transcription from previously annotated genes (green lines); (3) intergenic transcripts representing transcripts arising from intergenic regions (blue lines); and 4)
intronic transcripts which represent transcripts identified within previously annotated introns (red lines). The histogram in A identifies the frequency of transcripts
in each of the four categories against transcript length with the x-axis on a logarithmic scale (log10). (B) The frequency of each category of transcripts against
ORF length (log10). The yellow vertical line indicates an arbitrary ORF cutoff of 300 nt. In (C), the frequency of transcripts is plotted against exon number. The
arrow points to the inset that enlarges the range of genes containing 1–10 exons. (D) The frequency of transcripts against the average PhastCons score for each tran-
script (see Materials and Methods). (E) The frequency of transcripts plotted against their expression level (FPKM; log2). The expression level indicates the arithmetic
average of the four differentiation stages (Days 4, 8, 11 and 14) for each transcript. (F) The frequency of transcripts against the percentage of each sequence constituted
by repetitive elements. (G) A representative example of one intergenic transcript, denoted TCONS_00053011, located on chr7: 127958594–128091061 between the
genes METTL2B and FAM71F2, and shows its expression levels at the four stages of erythroid differentiation. The y-axis represents the number of reads mapped to
each genomic location, and ranges from 0 to 520 for all four differentiation stages. The red arches indicate the exon junctions that were identified in Day 11 transcripts.
The UCSC genome browser indicates that this transcript is not annotated by the UCSC or RefSeq databases. The existence of this novel transcript is supported by data
from the human EST database. Cross-species comparisons show that the genomic segment bearing this unannotated, potentially protein-coding transcript is highly
conserved among different vertebrate species.
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were of lower abundance than the corresponding known tran-
scripts from previously annotated genes.

Identification of putative protein-coding and non-coding
RNAs

To identify the most probable novel protein-coding candidates
among the transcripts, we applied combinations of multiple
logical criteria that were discussed previously; ORF length
(.300 nt), exon number (.2), which are the two most conven-
tional and conservative criteria for protein-coding potential;
additional criteria that increase the stringency were PhastCons
score (.0.1), repeat element content (,30%), and expression
level (excluding the lowest 5% of transcripts at each maturation
stage). Ultimately, 50 intergenic and one intronic transcripts suc-
cessfully passed the most stringent tests (Table 2). Among them,
only three represented products of conceivably unique protein-
coding genes, while the remaining 48 appeared to be transcripts
from genes with high similarity to known genes and were there-
fore presumed to have arisen by gene duplication.

We describe TCONS_00053011 as a detailed example of the
three putative novel protein-coding transcripts (Fig. 2G). Al-
though a BLAST search of this ORF (using the most recent
genome updates) returned no matches, this transcript is found
in the human EST database (Fig. 2G), indicating that it likely
represents a novel human RNA with protein-coding potential.
A second example, TCONS_00040131, taken from the 48 tran-
scripts that display high similarity to transcripts of known genes
(in this case, to FANCD2) is depicted in Supplementary Mater-
ial, Figure S3. We randomly selected 9 (out of the 51 recovered)
filtered transcripts and confirmed their existence by RT-PCR
(Supplementary Material, Fig. S4).

In this study, we also identified putative non-coding RNAs
based on their transcript and ORF lengths. Transcripts longer
than 200 nt with ORFs shorter than 300 nt were classified as pu-
tative long non-coding RNAs (lncRNAs) (27), and only 249
(3%) of all known transcripts and 2108 (6%) of the novel iso-
forms fulfilled both criteria, while 3008 (54%) intergenic and
2318 (66%) intronic transcripts obeyed both criteria (Table 2).
Transcripts from 20 to 200 nt were categorized as putative
small non-coding RNAs (sncRNAs) (31,32); however, none of
the known transcripts and only 28 (0.09%) of the novel isoforms
obeyed this criterion, while 581(10%) intergenic and 98 (3%) of
the intronic transcripts obeyed the criterion (Table 2). We note
that these sncRNAs might be underrepresented in datasets pre-
sented here because only cDNA fragments of �200 nt in
length were selected for the RNA-seq library constructions.

In summary, after rigorous data filtering, 51 novel RNAs were
discovered as potential protein-coding transcripts. Further ana-
lyses revealed that only 3 (out of 51) transcripts may have
protein-coding potential while the remaining 48 transcripts
may have been generated by gene duplication. Additionally,
we also found 5326 long and 679 small non-coding RNA candi-
dates in the present study.

Changes in transcriptional and splicing isoform diversity
during erythropoiesis

Transcript isoforms can be generated either at the level of tran-
scription by alternative transcriptional initiation (ATI) and/orT
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termination (ATT), or post-transcriptionally by alternative spli-
cing. Alternative splicing events can range from exclusion of one
or more exons (exon skipping, ES) to inclusion of an entire or
partial (5′ or 3′) intron (intron retention, IR; alternative 5′ spli-
cing, A5′S; alternative 3′ splicing, A3′S, respectively) from the
mature mRNA (Fig. 3A) (21,22).

We next investigated the contributions of alternative tran-
scription and splicing to transcript isoform diversity during
erythroid differentiation. For all known transcripts, alternative
transcription collectively comprised 22.6% (15.9% ATI and
6.7% ATT) of total events, while alternative splicing made up
77.4% of the total events during erythroid differentiation
(Table 3). When we combined the known and novel isoforms
from the annotated genes together, we also observed that alterna-
tive splicing was far more prevalent than alternative transcrip-
tion starts and stops in total alternative events (Table 3).

Although a similar number of genes generate transcript var-
iants during differentiation, for all known transcripts the total

frequency of alternative events diminished as differentiation
progressed (Table 3), hence the average frequency of alternative
events per gene gradually decreased (from 2.34 to 2.08) between
Days 4 and 14, respectively (Table 3). The same trend occurred
when the known and novel isoforms were combined, in that the
average frequency of events per gene also diminished from 2.47
on Day 4 to 2.19 by Day 14 (Table 3), suggesting that isoform di-
versity is more prominent during more immature erythroid dif-
ferentiation stages. Further, although a decrease in the overall
number of alternative events occurred as differentiation pro-
gressed, none of the specific alternative event categories was dif-
ferentially affected (Table 3).

We also examined splicing junctional complexity during
erythropoiesis. As shown in Figure 3B, the number of unique
junctions generated from all annotated genes (including known
transcripts and novel isoforms) diminished with progressing dif-
ferentiation, consistent with the alternative splicing event quanti-
fication. In summary, the complexity of transcript diversity
throughout differentiation was predominantly achieved by alter-
native splicing, while splicing junctional diversity diminished
during erythroid differentiation.

Highly expressed transcripts during erythropoiesis

Hereafter we used an alternative protocol entitled ‘Quantifica-
tion of reference annotation only’ (26), in which no novel gene
or transcript discovery algorithm was applied, to measure the ex-
pression abundance (FPKM) of transcripts annotated by the
RefSeq database. Using this method we found that 66–70% of
all known human transcripts were expressed in erythroid cells
(Supplementary Material, Table S2). A histogram depicting
the frequencies of transcripts plotted against their abundance
at each differentiation stage is shown in Figure 4A.

We next examined the most abundantly expressed tran-
scripts at each differentiation stage, which might provide
insights into essential physiological functions that may be
required at different stages. A total of 815 transcripts with
an FPKM .128 were identified at one or more of the four
stages (with 652, 620, 535 and 446 such transcripts detected
at Days 4, 8, 11 and 14, respectively) (Fig. 4B and Supple-
mentary Material, Table S3). Gene Ontology (GO) analysis
(33) revealed that transcripts that were highly expressed on

Figure 3. Reduction of alternative isoform diversity during erythropoiesis. (A) A schematic diagram for alternative transcriptional or splicing events is presented.
Transcript isoform diversity can be generated either by transcriptional regulation or by alternative splicing of the same pre-mRNA (see Materials and Methods)
(B) The frequency of previously annotated genes is plotted in the histogram against number of unique exon junctions per gene, which represents splice junctional
complexity, of both known transcripts and novel isoforms at each differentiation stage. The inset, as indicated by the arrow, shows an expanded view of the range
of unique junctions between 1 and 20.

Table 3. The percentage of each alternative event type in known or known/novel
isoforms at each differentiation stage

D4 D8 D11 D14 Union

Known transcripts
Total events 18 620 18 398 16 726 16 372 22 678
Gene # 7974 7972 7938 7871 8112
Event/gene 2.34 2.31 2.11 2.08 2.80
Events type (%)

ATI 16.1 16.2 16.2 15.9 15.9
ATT 6.9 6.7 6.7 6.6 6.7
IR 1.2 1.1 1.0 1.0 1.0
A5′S 31.1 31.4 31.4 31.5 31.1
A3′S 22.1 22.2 22.2 22.5 22.3
ES 22.6 22.4 22.5 22.4 23.0

Known + novel isoforms
Total events 28 955 28 016 26 238 25 532 33 865
Gene # 11 745 11 734 11 688 11 636 11 787
Event/gene 2.47 2.39 2.24 2.19 2.87
Events type (%)

ATI 15.6 15.4 15.5 15.4 15.5
ATT 6.6 6.6 6.6 6.5 6.5
IR 2.0 1.7 1.9 1.8 1.7
A5′S 28.9 29.3 28.8 29.0 29.1
A3′S 21.9 22.0 21.8 21.8 22.2
ES 25.1 25.0 25.3 25.6 25.1
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Day 4 were enriched for basic metabolic functions (e.g. gen-
eration of precursor metabolites, nucleotide metabolic pro-
cesses and DNA metabolism etc.) and basic biological
processes (e.g. regulation of apoptosis, RNA processing and
splicing etc.), while highly expressed transcripts at later mat-
uration stages were enriched for erythroid-specific functions
(e.g. hemoglobin complex formation and erythrocyte differen-
tiation) (Supplementary Material, Fig. S5A). Of these 815
transcripts, 308 (�40%) were highly expressed throughout
erythroid differentiation and were strongly associated with
ribosome-related functions such as protein synthesis (Supple-
mentary Material, Fig. S5B and C).

In order to shed light on the potential transcriptional regula-
tion of these highly expressed transcripts at each differentiation
stage, we performed transcription factor binding site analysis

(UCSC_TFBS) using the DAVID database with default settings
(see Materials and Methods). After applying a cutoff of false dis-
covery rate (FDR) ,0.05 to the enriched transcription factors at
each stage, we observed that some transcription factors dis-
played a unique, stage-specific regulatory pattern (e.g. YY1 at
Day 4, NFY and PAX5 at Day 8 and TAX/CREB at Day 11),
while we also saw enrichment of NRF2 throughout erythroid dif-
ferentiation (Fig. 4C).

Taken together, the consistently highly expressed transcripts
during differentiation were strongly associated with ribosome-
related functions. The highly expressed transcripts on Day 4
were predominantly concerned with basic metabolic functions
and basic biological processes, while the highly expressed tran-
scripts at later differentiation stages (e.g. Day 14) were enriched
in erythroid-specific functions.

Figure 4. Identification and functional analysis of the most highly expressed transcripts during erythroid differentiation. (A) In the histogram, the frequency of pre-
viously annotated transcripts expressed at each differentiation stage is plotted against their expression level (in FPKM; log10). The inset enlarges the domain lying
between 100.5 and 102.5. The arrowhead indicates the cutoff criterion of 128 FPKM, which was arbitrarily selected to define only the most abundantly expressed tran-
scripts. (B) The 815 previously annotated transcripts with expression levels .128 FPKM at one or more of the four erythroid differentiation stages examined here (at
Days 4, 8, 11 or 14) are presented in the heatmap, sorted by expression level in temporal order from Day 4 to Day 14. (C) The significantly, over-represented TFBSs
(FDR ,0.05) from the highly expressed transcripts at each discrete erythroid differentiation stage are shown for each differentiation time point on a logarithmic scale
(log10).
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Differentially expressed transcripts during erythroid
differentiation

We identified 11 402 differentially expressed transcripts after
applying double cutoffs of a fold change .2.5 between any pair-
wise comparisons (of Days 4, 8, 11 or 14) and an FPKM .0.01 in
at least three of the differentiation stages examined (Fig. 5A).
The analyses were further refined by hierarchical clustering
based on the temporal expression patterns of the transcripts nor-
malized to Day 4 (Fig. 5A and B), resulting in the identification
of seven distinct gene expression clusters.

GOanalysis revealed that transcripts inCluster1(predominantly
up-regulated) were enriched for erythroid-specific functions such
ashemoglobincomplex(i.e.mRNAsfora-andb-globins),nucleo-
some assembly, oxygen transport, cell death and heme metabolic
processes (Supplementary Material, Table S4). Not surprisingly,
Cluster 7 (consisting entirely of down-regulated transcripts) was
enriched for non-erythroid functions such as immune system
processes and leukocyte activation (Supplementary Material,
Table S4). Interestingly, another major population of transcripts
(described as Cluster 4) was specifically enriched in metabolic pro-
cesses. These transcripts were initially induced from Day 4 to Day
8, and subsequently repressed at Days 11 and 14, of erythropoiesis
(Supplementary Material, Table S4), suggesting that the most
active metabolic and energy-consuming processes occurred
while the progenitor cells were undergoing rapid proliferation
prior to commitment to the erythroid lineage.

Since RNA-seq has been reported to significantly improve
sensitivity and accuracy in transcriptome analysis (7,18–20),
we might have expected to identify many differentially

expressed genes that were previously overlooked in microarray
studies during erythropoiesis. We found 1322 more differentially
expressed genes (using fold change .2.5 between any pairwise
stage comparisons) that were not identified in previous micro-
array studies (1–5), which included two studies that most
closely mimic the serum-free culture conditions employed in
this study (2,4). After removing low abundance transcripts by ap-
plying an additional criterion requiring an FPKM .1 in at least
three differentiation stages, this finally yielded 404 genes that
were differentially expressed, including 80 (20%) non-coding
RNAs (Supplementary Material, Table S5).

We next examined significantly enriched TFBSs in the vicinity
of hierarchically clustered genes. By applying an FDR ,0.05, we
discovered 42, 28 and 73 transcription factors that are possible
modulators of transcription in Clusters 1, 4 and 7, respectively
(Supplementary Material, Table S6). As shown in Figure 5C,
we found that the binding sites for, among others, HNF4,
LMO2COM and HEN1 were significantly and uniquely enriched
in the genes encoding induced transcripts (Cluster 1), while sites
for NMYC, MYOD, IK3, ELK1 and PAX2 were similarly
enriched among the genes encoding transcripts that diminished
during progressive differentiation (Cluster 7). However, in
Cluster 4, there were only 5 (of 28) TFBSs that were uniquely
and significantly enriched, including RORA2 and STAT1 (both
TFs which interestingly execute differentiation programs in re-
sponse to extracellular signals), while the remainder either over-
lapped those of Clusters 1 or 7 (Supplementary Material,
Table S6).

We also applied a second algorithm called DESeq (34) to
identify differentially expressed genes. DESeq is based on the

Figure 5. Identification and characterization of differentially expressed transcripts during erythropoiesis. (A) The heatmap shows a global view of stage-dependent
differential expression of previously annotated transcripts that exhibited a .2.5-fold change in any pairwise comparison between the four differentiation stages (Days
4, 8, 11 or 14) and an expression level (FPKM) .0.01 in at least three separate differentiation stages. Expression levels of the transcripts were normalized to those on
Day 4, and then binary logarithmic transformations of fold-change values were plotted to generate the heatmap by hierarchical clustering. (B) The line plots depict the
expression pattern of each gene cluster during erythroid differentiation on a binary logarithmic scale. The minimum of 220 in the plots represents an artifact of data
analysis. [To avoid an infinite fold-change of transcripts that did not express at certain stages, all transcripts were augmented with an extremely small FPKM (1026)
prior to binary logarithmic transformation to thereby generate the 220 value.] (C) The uniquely and significantly over-represented TFBS in transcripts of Clusters 1
and 7 are shown.
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negative binomial distribution of raw gene read counts to iden-
tify the differentially expressed genes rather than normalized
FPKM values. It also employs a size factor estimation step for
normalization that is robust to outlier high read transcripts,
thereby avoiding any possible negative effect of simpler normal-
ization based on total reads that might be influenced by very
highly expressed genes (e.g. globin genes) in erythroid cells.
Using an FDR ,0.05, we identified 4185 differentially
expressed genes by DESeq (Supplementary Material, Fig. S6
and Supplementary Material, Table S7) and 68% (2870) of
them overlapped with the differentially expressed genes identi-
fied using an FPKM fold change .2.5 and an FPKM .0.01 in at
least three differentiation stages by Cuffdiff. We also enriched
similar GO terms from the up- and down-regulated transcripts/
genes identified by Cuffdiff (Clusters 1 and 7) and DESeq (Clus-
ters 1 and 2), respectively (Supplementary Material, Tables S4
and S7)

In summary, differentially expressed transcripts during
erythropoiesis (identified by a fold change .2.5 and an FPKM
.0.01 in at least three differentiation stages) were classified
into seven clusters by hierarchical clustering. Cluster 1 (primarily
consisting of up-regulated transcripts) was enriched in erythroid-
specific functions, Cluster 4 (up-regulated from Day 4 to Day 8,
then down-regulated thereafter) was related to metabolic processes,
and Cluster 7 (mainly containing progressively down-regulated

transcripts) was associated with other non-erythroid hematopoi-
etic lineage functions. For each of the major clusters, we predicted
potential transcription modulators based on TFBS analysis. We
also identified 404 genes that were not previously known to be
differentially expressed in erythroid cells.

Abundant transcripts with extreme differential expression
profiles are enriched in lineage-specific functions

To gain insights into the physiological functions associated with
the most extreme differential expression patterns during erythro-
poiesis, we examined genes after applying criteria of a fold
change .10 and expression levels of FPKM .0.1 for at least
three differentiation stages. These doubly stringent criteria
yielded a group of 1287 transcripts that were subjected to more
detailed analysis (Fig. 6A). Using hierarchical clustering, six
groups of transcripts were identified; their expression patterns
are shown in Figure 6B. GO term analysis revealed that the tran-
scripts in Clusters 1 and 6 were significantly enriched in hemato-
poietic lineage-specific functions (Supplementary Material,
Table S8). The most significantly up-regulated transcripts
(Cluster 1) were highly related to erythroid lineage development,
while the most significantly down-regulated ones (Cluster 6)
were strongly associated with lymphocyte and leukocyte
lineages (Supplementary Material, Table S8). Other fluctuating,

Figure 6. Identification and functional analysis of transcripts exhibiting extreme differential expression during erythropoiesis. (A) The heatmaps characterize tran-
scripts that display the most significant differential expression, with a fold change .10 between any two pairwise comparisons among the four differentiation stages
examined and having an expression level of FPKM .0.1 in at least three differentiation stages. Expression levels (in FPKM) of transcripts were normalized to those on
day 4, and then a binary logarithmic transformation of fold-change values were plotted to generate the heatmap by hierarchical clustering. (B) The line plots depict the
expression pattern of each gene cluster during erythroid differentiation on a binary logarithmic scale. The minimum of 220 in the plots represents an artifact of data
analysis, as performed in Figure 5B.
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expressed clusters were also enriched for specific functions; for
example: the transcripts in Cluster 2 were enriched in protein
binding and signal transduction functions (Supplementary Ma-
terial, Table S8), while those in Cluster 4 were most highly
enriched in functions related to lumen formation and protein
transport. When we applied TFBS analysis as before, only one
transcription factor—TCF11 (also known as NFE2L1, NRF1
or LCR-F1), enriched in Cluster 6—passed our stringent cutoff
of FDR ,0.05 (the corresponding P-value for this enrichment
is 1.84 × 1025). The enrichment of TCF11 might have been pre-
dicted given its well-established roles in megakaryocyte differ-
entiation (35) and T-cell development (36). In brief, abundant
transcripts with extreme differential expression profiles were
specifically enriched in lineage-specific functions.

DISCUSSION

Massive parallel sequencing of experimentally derived short
RNA sequences (RNA-seq) has revolutionized our understand-
ing of the complexity, plasticity and regulation of gene expres-
sion, and has highlighted that the human transcriptome is far
more complex and dynamic than initially anticipated (21,37).
Here, we provide the most comprehensive transcriptional inven-
tory of human erythropoiesis described to date using RNA-seq.
In this study, the identification of thousands of novel transcripts
that mapped to intergenic and intronic regions, delineation and
analysis of thousands of known and novel alternative splicing
variants as well as assessments of transcript accumulation pro-
files and abundances in differentiating erythroid cells are
reported.

Accumulating evidence supports the notion that a large frac-
tion of the non-coding genome is actively transcribed: while
only 2% of the human genome encodes proteins (38), perhaps
surprisingly, primary and processed transcripts are derived
from nearly 75 or 62% of the genome, respectively (39–41).
In this study, we similarly identified thousands of intergenic
and intronic transcripts in non-coding genomic regions. We cate-
gorized most of these novel transcripts (54% intergenic and 66%
intronic transcripts) as lncRNAs using generally accepted cri-
teria. Further characterization revealed that these transcripts
were significantly shorter than their protein-coding equivalents
because of lower exon content. This finding is consistent with
the observation from a recent comprehensive survey demon-
strating that lncRNAs are principally composed of one or two
exons, leading to generally shorter transcripts than their protein-
coding counterparts (39). The fact that these putative lncRNAs
were less highly conserved than protein-coding transcripts
further supports this assumption, since lncRNAs are generally
thought to be under less selective pressure than protein-coding
genes (39,42–45). Moreover, the abundance of these putative
lncRNA transcripts was on average significantly lower than
known transcripts, also consistent with previous observations
(39,46).

Although the expression of the lncRNAs is generally lower
than their protein-coding counterparts, they were expressed in
a more lineage- and tissue-specific manner (39,47), suggesting
that they may play important roles in tissue-specific develop-
ment and differentiation (48). In support of this hypothesis,
erythroid-specific lncRNAs have been reported to play key

roles in the regulation of red cell maturation during mouse
erythropoiesis (49–51). However, since lncRNAs display poor
conservation across species, erythroid-specific lncRNAs identi-
fied in the mouse might not help us to glean new insights into
human erythropoiesis (51). Therefore, the present data provide
an important platform for revealing the identity of human eryth-
roid lineage-specific lncRNAs and for exploring their physio-
logical functions in the future. Since it has been speculated
that lineage-specific ncRNAs may constitute potential thera-
peutic targets for hematological malignancies (52), investiga-
tion of novel human erythroid-specific lncRNAs could lead to
new approaches for the treatment of erythroid-related disorders.

As revealed recently, extensive and dynamic alternative tran-
scription or splicing is one of the hallmarks of erythropoiesis
(53,54). The data described here revealed that the diversity and
dynamics of the erythroid transcriptome stem from the combina-
torial effects of alternative splicing and alternative transcription,
with the former predominating as the primary mechanism to gen-
erate alternative RNA isoforms. A similar conclusion was
reached in an earlier study that calculated the frequency of
each specific alternative event in 15 diverse human tissues and
cell lines (21). However, additional studies have more recently
proposed that alternative transcription was the primary driving
force for transcriptome diversity in mouse cerebellar develop-
ment as well as in the human genome without regard to tissue
preference (22,55). Whether this is due to the cell type specificity
(erythroid versus neuronal cells) or the application of different
gene annotation resources (RefSeq versus UCSC/RefSeq or
UCSC/RefSeq/Ensemble/MGI/Vega), the answer awaits more
detailed analyses of differentiated cell types and the continued
development of even more sophisticated analytical tools.

We observed progressively fewer overall alternative events,
either transcriptional or splicing, as erythroid differentiation
progressed. This is consistent with a previously observed phe-
nomenon referred to as ‘isoform specialization’ in which spli-
cing complexity is higher in immature, undifferentiated stem
cells than in more committed cells such as neurons (23) or
human lung fibroblasts (56). To account for this, it was postu-
lated that the higher isoform diversity is required to maintain
the pluripotency/multipotency of stem/progenitor cells, while
more specialized isoforms in differentiating cells may ensure
proper differentiation (23).

A comprehensive catalog of differentially expressed tran-
scripts between each erythroid developmental stage was also
generated here. As anticipated, Cluster 1 (successively more
induced transcripts at each erythroid maturation stage) was
enriched in erythroid lineage-specific physiological functions
(2,57). At the same time, the transcription factors that were pre-
dicted to be uniquely and significantly associated with those
genes also supported their erythroid-relevant functions. For
example, LMO2, TAL1 and GATA1 can form a stable protein
complex that promotes erythroid differentiation (58), and the en-
richment of HEN1 may be related to its potential interaction with
LMO2 (59). In a similar manner, Cluster 7 (uniformly repressed
down-regulated transcripts in successive differentiation stages)
was enriched in lymphocyte lineage-related functions (57).
The transcription factors predicted from these down-regulated
transcripts include NMYC, which is exclusively expressed in
hematopoietic stem cells as a fingerprint gene (60), MYOD, a
tissue-specific expression marker for muscle (61,62), and

Human Molecular Genetics, 2014, Vol. 23, No. 17 4537

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu167/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu167/-/DC1


PAX2, a specific expression marker of the kidney (63), all sug-
gesting that non-erythroid lineage-specific genes are the most
significantly down-regulated. However, some of the predicted
factors may have currently unrecognized roles during erythro-
poiesis, and therefore, further validation of their erythroid-
specific functions would be vital for continued expansion of
our understanding of the transcription regulatory networks that
control erythroid differentiation. The ability of RNA-seq tech-
nology to accurately measure the dynamic range of transcript
abundance (7,18–20) could result in the discovery of even
more differentially expressed genes. In this RNA-seq study,
we have identified 404 differentially expressed genes that were
undetected in all previous microarray studies (1–5). For
example, DYRK1B, which belongs to the subfamily of dual-
specificity tyrosine phosphorylation-regulated kinases, was
reported to be expressed in heart, muscle and testes (64);
however, we observed that DYRK1B was induced during late
erythroid differentiation, suggesting that it might play some
physiological roles there like its related family member
DYRK3 (65). Another potentially interesting candidate is
ACAT2 (acetyl-CoA acetyltransferase 2). It was shown that
during lymphocytic choriomeningitis virus (LCMV) infection,
ACAT2 was up-regulated and accompanied by an erythroid dif-
ferentiation block (66). In the current study, we observed
ACAT2 down-regulation during erythroid differentiation, sug-
gesting that the attenuation of ACAT2 might be required for
normal erythroid maturation.

In addition to the protein-coding genes identified here, we also
discovered 80 non-coding RNAs. Since non-coding RNAs lie
outside the coverage of normal microarray expression studies,
these 80 genes further contribute to the 404 previously over-
looked differentially expressed genes. Of these, 13 (out of 80)
were miRNAs, and it is now abundantly clear that the roles for
miRNAs in the regulation of erythropoiesis are well established
(67–72). In the present study, we found that miR223 expression
remains high until Day 11 (FPKM ¼ 16, 86 and 102 at Days 4, 8
and 11, respectively) but is undetectable by Day 14 (FPKM ¼
0); this suggests that miR223 might play important functions
in immature erythroblast cells, but is not required for enucleation
prior to the reticulocyte stage. In contrast, the expression levels
of miR210, miR3661 and miR3665 peaked on Day 14, suggest-
ing they might be involved in steps required for erythroid termin-
al maturation. The identification of these novel differentially
expressed genes in the current study provides substantial new in-
formation to the developmental stage-specific erythroid tran-
scriptome profile.

Microarraysareknowntobe lesssensitive thanqRT-PCR(1,2).
Thus any discrepancies between the results reported here and
earlier studies may be due either to the technological limitations
inherent in microarray quantification or to the distinct cell differ-
entiation conditions employed. We conclude that the improved
methodology of RNA-seq should lead to more precise estimation
of the dynamic changes in transcriptome profiles that occur as a
consequence of differentiation. The present data should serve as
a useful resource for future investigations into the molecular
dynamics of transcriptional regulation during human erythropoi-
esis and perhaps an initial platform for the identification of novel
biomarkers that can be used to predict the severity, or for detec-
tion, of human erythroid disorders.

MATERIALS AND METHODS

Ex vivo differentiation of purified human CD341 cells

Cryopreserved vials of purified human CD34+ hematopoietic
progenitor cells were purchased from the Fred Hutchinson
Cancer Research Center. The cells were collected from healthy
volunteers in full compliance with federal and institutional regu-
lations on informed consent and confidentiality. The CD34+ cells
were isolated from the peripheral blood after mobilization by
granulocyte colony-stimulating factor (G-CSF). The cells were
grown and differentiated ex vivo into erythroid cells by a two-
phase culture method described previously (24,25). Cell morph-
ology was examined by Wright-Giemsa staining (Sigma-Aldrich)
of cytospins. Hemoglobin content was monitored by neutral ben-
zidine staining as described previously (73).

Flow cytometry

For cell surface marker analysis, cells were collected, washed
and re-suspended in ice-cold phosphate-buffered saline with
2% fetal bovine serum (PBS–FBS). For each assay, 106

cells in 100 ml PBS–FBS were stained with phycoerythrin
(PE)-Cy7-conjugated anti-CD34 (eBioscience), PE-conjugated
anti-CD71 (eBioscience), fluorescein isothiocyanate (FITC)-
conjugated anti-CD36 (eBioscience), or PE-Cy5-conjugated
anti-glycophorin A (BD Biosciences) antibodies for 30 min on
ice. Cells were then washed twice, re-suspended in 500 ml
ice-cold PBS–FBS, and subjected to flow-cytometric analysis
on a FACS Canto II instrument (BD Biosciences).

RNA purification

Total RNA was purified with an ISOGEN (Nippon Gene)
reagent from primary human erythroid cells after 4, 8, 11 or 14
days of ex vivo differentiation of CD34+ cells. The integrity
and quality of RNA were assessed by the RNA integrity
number (RIN) determined with an Agilent 2100 Bioanalyzer
(Agilent Technologies). RINs of all the RNA samples used in
this study were 10, indicating RNA of the highest integrity.

RNA sequencing

The construction of the RNA-seq libraries was performed accord-
ing to standard instructions from Illumina. In brief, poly-A+ RNA
was purified by poly-dT oligo-attached magnetic beads from
10 mg total RNA extracted from primary human erythroid cells
after 4, 8, 11 or 14 days of ex vivo differentiation, and then
sheared into short fragments of 200–300 bp in length by heating
in the presence of divalent Zn2+ cations. These RNA fragments
were reverse-transcribed using random primers into double-
stranded cDNA fragments, which were end-repaired and then sub-
jected to addition of a single adenine followed by ligation with an
Illumina adapter to both ends. After PCR amplification, cDNA
fragments �200 bp in length were selected to generate a library
to be sequenced in a paired-end 72-bp sequencing format using
the Illumina Genome Analyzer IIx system in the DNA sequencing
core facility of the University of Michigan. Two replicate RNA
samples at each differentiation stage (Days 4, 8, 11 and 14) were
prepared from independent CD34+-cell cultures to generate two
biological replicates of RNA-seq libraries and data sets.
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Identification and quantification of previously annotated
transcripts

For RNA-seq data analysis, we aligned the raw reads from
ELAND to the human genome (build hg18) using TopHat
(version 1.3.3) at the default settings (74). We then used Cuf-
flinks (version 1.2.1) to identify previously annotated tran-
scripts, and then to determine gene- and isoform-specific
expression levels of those transcripts in units of fragments per
kilobase of exon per million fragments mapped (FPKM). The
results from two biological replicates were merged using Cuff-
merge, and then Cuffdiff was used to identify differentially
expressed transcripts at the different stages (Days 4, 8, 11 or
14). The RNA-seq data at distinct differentiation stages have
been deposited in the NCBI Gene Expression Omnibus [acces-
sion number GSE54602]. The abundance of all annotated iso-
forms for each gene was summed for gene-based expression
level comparisons with qPCR assays.

Identification of novel transcript isoforms and intergenic
or intronic transcripts

To identify novel transcript isoforms as well as intergenic or in-
tronic transcripts from the RNA-seq data sets, we performed de
novo assembly of the transcripts (without supplying gene model
annotations) by using Cufflinks to processes output BAM files
from TopHat. The results from replicates were then merged
using Cuffmerge, and then Cuffdiff was used to perform differ-
ential expression analysis as described above.

Analysis of cross-species conservation of transcripts

To estimate the sequence conservation of transcripts from previ-
ously annotated genes and for intergenic or intragenic transcripts,
we usedPhastCons conservation scores derived from analignment
of 17 vertebrate genomes (29). For each transcript, we first
summed the PhastCons score of individual nucleotides in all
exon sequences, and then normalized to the transcript size to
achieve an average PhastCons score. Thus, transcripts with
higher conservation scores are better conserved across all verte-
brates.

Definition and classification of alternative transcriptional
and splicing events

(1) Alternative transcription initiation (ATI) and termination
(ATT). For each isoform, the 5′ end of the first exon was com-
pared with all other isoforms derived from the same gene. If
any pair of 5′ ends was more than 5 nt apart, it was counted as
an independent ATI event. A similar definition was applied to
ATT. (2) Intron retention (IR). For each isoform, each intron pos-
ition was compared with the exon positions of all other isoforms
derived from the same gene. If the intron was entirely contained
in an exon of another isoform, it was scored as an independent
intron retention event. (3). Alternative 5′ splicing (A5′S) and
3′ splicing (A3′S). For each isoform, the 5′ splice sites of
introns were compared with those of all other isoforms derived
from the same gene. If a particular 5′ splice site was not
present within 5 nt of 5′ splice sites of other isoforms, and yet
the exons preceding the 5′ splice sites of the two isoforms

shared a common genomic segment, it was counted as an inde-
pendent A5′S event. If no part of the exons preceding the differ-
ential 5′ splice sites of the two isoforms was shared, it was rather
considered as an ES event (described below). A similar defin-
ition was applied to A3′S. (4) For each isoform, the start and
end positions of each exon were compared with the exon posi-
tions of all other isoforms derived from the same gene. If no
part of a given exon (except the first or last) was shared by
another isoform, it was counted as an independent ES event.

RNA quantification by qRT-PCR

qRT-PCR (reverse transcription and quantitative real-time PCR)
assays were performed to quantify 37 transcripts that displayed
broad expression ranges during erythroid differentiation in
RNA-seq assays, as described previously (75). The same RNA
samples that were used for RNA-seq library construction were
used as templates for qRT-PCR. The relative abundance of the
mRNAs was determined using 18S rRNA as an internal
control, based on threshold cycle (Ct) values and the experimen-
tally determined amplification efficiency for each primer pair.
All the primer pairs except for 18S rRNA were designed to
span introns (Supplementary Material, Table S9). The 37 tran-
scripts examined (Supplementary Material, Fig. S2B) were com-
prised of three groups: (1) transcripts that are abundantly
expressed during erythroid differentiation, such as a- and
b-globin mRNAs (with expression levels up to 316 119
FPKM); (2) transcripts whose expression level fluctuated the
most during erythroid differentiation; (3) erythroid-biased tran-
scription factors, which were all expressed at low abundance
levels (,1 FPKM).

Validation of intergenic transcripts by RT-PCR
and amplicon sequencing

Potential novel protein-coding transcripts identified in inter-
genic regions were validated by RT-PCR (reverse transcription
and PCR) using primers that spanned predicted exon junctions
(Supplementary Material, Table S10). cDNA was synthesized
from RNA extracted from differentiating primary human eryth-
roid cells on Days 4, 8, 11 and 14, and then pooled as templates
for PCR, essentially as described previously (75). The authenti-
city of PCR amplicons was confirmed by size determination on
agarose gel electrophoresis and Sanger sequencing using the
same PCR primers.

Heatmap generation

Java Treeview software was used to generate the heatmaps that
represent differentially expressed or highly expressed tran-
scripts, where the hierarchical clustering method (average or
complete linkage clustering) was used to identify groups of tran-
scripts with similar expression patterns.

Analysis of functional characteristics of transcript sets

We used the web-based implementation of the enrichment
testing and concept mapping tool, ConceptGen (http://concep
tgen.ncibi.org) (76) to identify biological categories that were
enriched in each transcript set of interest, setting the P-value
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to ,0.05 (by modified Fisher’’s exact test) as a significance
level. Web-based implementations of the database for annota-
tion, visualization, and integrated discovery (DAVID; http://da
vid.abcc.ncifcrf.gov/) (33), the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database (http://www.genom
e.jp/kegg/) (77) and the UCSC_TFBS database were used to
identify over-represented pathways and TFBS lying near or
within the genes specifying each transcript set. For the
UCSC_TFBS analysis, the DNA sequence used for identifica-
tion of potential regulatory TFBSs was from 10 kb 5′ to the tran-
scriptional start site to 3 kb 3′ of the TES, which are conversed
among human, mouse and rat species. The set of all transcripts
in the Entrez Gene database was used as a control to determine
the statistical significance of any over-represented characteris-
tics of each transcript set.

Web-accessible database

We generated a web interface using MySQL database for query-
ing gene expression during human erythroid differentiation (in-
cluding differentiation Days 4, 8, 11 and 14) from the data
presented here. In this database, the transcript abundance can
be queried both in FPKM, which was measured by the protocol
entitled ‘Quantification of reference annotation only’ in Cuf-
flinks (26), or in reads count, which was measured using
DESeq (34). The database is available at http://guanlab.ccmb.
med.umich.edu/data/Shi_L_Developmental/index.php.

Statistical analysis

For evaluation of reproducibility of RNA-seq data, or overall
changes in transcriptomes during erythroid differentiation, we
determined Pearson’s correlation coefficients for logarithmic
transformations of each transcript abundance in two biological
replicate RNA samples, or at two different differentiation
stages, respectively.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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