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ABSTRACT: Today’s highly accurate spectra provided by modern tandem mass MS Azanda

spectrometers offer considerable advantages for the analysis of proteomic samples of 1771
increased complexity. Among other factors, the quantity of reliably identified peptides is
considerably influenced by the peptide identification algorithm. While most widely used
search engines were developed when high-resolution mass spectrometry data were not
readily available for fragment ion masses, we have designed a scoring algorithm particularly
suitable for high mass accuracy. Our algorithm, MS Amanda, is generally applicable to 9921
HCD, ETD, and CID fragmentation type data. The algorithm confidently explains more

spectra at the same false discovery rate than Mascot or SEQUEST on examined high mass

accuracy data sets, with excellent overlap and identical peptide sequence identification for 13

most spectra also explained by Mascot or SEQUEST. MS Amanda, available at http://ms. =~ B QUEST
imp.ac.at/?goto=msamanda, is provided free of charge both as standalone version for 361 666

integration into custom workflows and as a plugin for the Proteome Discoverer platform.
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B INTRODUCTION Recent technological advance of instruments allows high-
throughput identification of thousands of proteins,"*'* which is
a prerequisite for the challenging analysis of complete
proteomes. Tackling the complete yeast proteome, the Mann
group was able to detect more than 2000 proteins in 48 h in
2006." Only a few years later, both the Mann group in 2012 as
well as Coon and co-workers in 2013 described comprehensive
analyses of the nearlﬁy complete yeast proteome at manifoldly
decreased runtimes.'®'” The continuous increase in throughput
and precision enables the research community to address

Mass spectrometry (MS)-based proteomics has evolved into an
indispensable approach in biological sample analysis."” In
shotgun proteomics experiments, proteins are proteolytically
cleaved to peptides, separated based on specific physico-
chemical properties, and subsequently analyzed in a mass
spectrometer.

Obtained spectra, containing mass-to-charge ratios of either
charged peptides (MS') or fragment ions (MS/MS or MS?)

associated with respective ion intensities, are matched to previously unsolvable scientific challenges, such as the in-depth
candidate peptides, and a score dependent on an identification analysis of mammalian proteomes.'® Recent studies identified
algorithm is assigned to each peptide spectrum match (PSM). more than 10 000 human proteins in the proteome of a human
Scoring algorithms such as Mascot,” SEQUEST,* X- cancer cell line, which is suggested to be close to
Tandem,” Andromeda,® OMSSA,’ MyriMatch,® Phenyx,® or completion.'* !
Morpheus'® incorporate various strategies to evaluate the Technological development of instruments leads to more
quality of a PSM. In particular, SEQUEST reports a cross- reliable data subsequently used by MS search engines for the
correlation score of the acquired mass spectrum matching a assignment of potential peptides to spectra.”” While newer
modeled peptide spectrum. In comparison, Mascot estimates instruments deliver potentially more MS/MS spectra per time
the probability that a particular peptide spectrum match is a unit, typically only up to 60% of these spectra are confidently
random event by probabilistic modeling. Other search engines assigned to peptides, suggesting a potential for improve-
are specifically designed for a particular purpose such as for the
analysis of post-translationally modified peptides (e.g., Mod- Received: March 7, 2014
ifiComb"" or InsPecT'?). Published: June 9, 2014
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ment.”>** We further consider the emergence of high-
resolution instruments with highly accurate mass record-
ings*>™* as a stimulus for the development of peptide search
algorithms particularly suitable to such data.

We here describe MS Amanda, a novel database search
engine, specially developed for high-resolution tandem mass
spectrometry data, taking advantage of high mass accuracy and
considering fragment ion intensities. To show the general
applicability of MS Amanda, the performance of the algorithm
was evaluated on HCD, ETD, and CID fragmentation type
data.

B MATERIALS AND METHODS

MS Amanda Identification Algorithm

We have designed MS Amanda based on a binomial
distribution function incorporating peak intensities and
determining favorable outcomes (successes) and possible
outcomes (sample space) in a specific manner. Our multi-
threaded implementation in C# incorporates the described
identification algorithm.

During preprocessing, peaks corresponding to precursor ions
are removed and an optional de-isotoping of fragment ions is
applied (intensities of discarded isotopes are added to C12
peaks). In order to discriminate ion signals from noise, peak
picking is performed. In each 100 Da window, the m most
intense peaks are picked, where m is a value between 1 and 10.
All possible values for m are tested, and the value representing
the maximum PSM score is selected.”®’

Theoretical fragment ions of each candidate peptide, thus, of
all peptides in the (forward or decoy) database that match the
precursor mass of a certain spectrum considering a specific MS!
mass tolerance, are matched to E, the set of picked peaks,
allowing a given MS” mass tolerance (). The first part of the
scoring algorithm used in MS Amanda is based on a cumulative
binomial distribution function defined as

N (N
P(n, p, N) = ( )p"u— -k
P ; k F (1)

that is, the probability to match at least #n out of N peaks by
chance. This formula assumes that the random variable
denoting the number of matched peaks follows a binomial
distribution as the sum of Bernoulli random variables X {i
1,...N}. For each X, p is the probability to match one peak by
chance (see formula 3). In our usage of the cumulative
binomial distribution function, n is the number of matched
peaks, and N is the number of picked peaks. We assume
independence of the X

The probability p to match one peak by chance is the fraction
of the m/z range that is covered by the theoretical ions f(pep)
and the total mass window (first peak to last peak in the
experimental spectrum) considering peak picking depth m. The
covered m/z range of f(pep) is based on fragment ion tolerance
t, considering solely fragment masses in the mass range of the
first peak (e;(s,m)) and the last peak (ey(s,m)) of spectrum s.
Given the set F, which are all theoretical fragment ions f(pep)
within the mass of the first and the last picked peak of the
experimental spectrum considering the fragment ion tolerance ¢
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E(s, pep, m) = {f(pep)l(e,(s, m) — ¢)
< f(pep)
< (en(s, m) + )}
probability p is defined as

(IF(s, pep, m)l x 2t) — O(E(s, pep, m))
(ex(s, m) +t) — (e(s, m) — 1)

)

p(s, pep, m) =

€©)

The overlap O(F(s,pep,m)) is the sum of all overlapping

ranges in the theoretical spectrum F considering mass tolerance

t. With peaks f; sorted by m/z in ascending order, this overlap
between consecutive peaks f; and f;,, is calculated as

fi+1 _fi > 2t

else

0
o(fi’fiﬂ) =
(G +0 =0 -t 0

IFl-1

O(F) = Z o(fys fiyy)

i=1

©)

where o(f, fi1) is the overlap between two consecutive
fragment ions f; and f;,;. For a graphical illustration see
Supporting Information Figure S1.

P(n,p,N) indicates the reliability of a peptide spectrum match
under the null hypothesis of a random match based on a
binomial distribution. As a consequence, more reliable PSMs
are characterized by a low probability (for randomly matching
peaks). To improve the distinction between false and correct
identifications, we additionally consider the intensities of the
peaks: The calculated probability to match at least n out of N
peaks by chance is weighted by the reciprocal of the explained
ion current eif(s,pep,m).

. _ ZxEM(s,pep,m)I('x)
eif (s, pep, m) = ——————
ZyEE(s,pep,m) I(‘y) (6)

eif(s,pep,m) is the fraction of the sum of the intensities I(M) of
the matched peaks M (IM| = n) and the sum of the intensities
I(E) of all picked peaks E (IEl = N). The weighting rewards
peptides matching more intense peaks over those matching less
intense peaks.

Finally, the quality of the match of peptide pep with spectrum
s is represented by the MS Amanda score S(s,pep). The score
S(s,pep) is the basis for further false discovery rate (FDR)

estimation.

We compared the performance of MS Amanda based on four
data sets: an HCD HeLa sample, a synthetic peptide library, a
histone data set, and a CID HeLa sample. The HCD HelLa
sample, published by Michalski et al,*® consists of three
replicate measurements of tryptic peptides derived from one
human cancer cell line. The synthetic peptide library, as
described by Marx et al,*' is composed of more than 200 000
phosphorylated and nonphosphorylated peptides. Performance
comparisons were based on provided HCD and ETD data. The
histone data set is composed of four different preparations,

P(s, pep, m)

S(s, pep) = maxme[l--w](_lo % log[ eif (s, pep, m)

(7)
Data Sets
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namely, Histone II-A from calf thymus (Sigma), Histone III-S
from calf thymus (Sigma), Histone IV from Xenopus laevis,
recombinantly expressed in Escherichia coli (Upstate), and Core
Histones from chicken erythrocytes (Millipore). The published
CID HeLa sample>* covers three replicates measured with a 1 h

gradient (1 pg).
Histone Sample Preparation

Samples were reduced and alkylated using dithiothreotiol
(DTT; 2 mM, final concentration) and methyl methanethio-
sulfonate (MMTS; S mM final concentration). Proteins were
digested overnight with endoproteinase Glu-C (from Staph-
ylococcus aureus V8, Sigma) in 100 mM ammonium bicarbonate
at 37 °C.

Peptides were separated on a reversed-phase column
(Acclaim PepMap RSLC column, 2 g, 100 A, 7S um X 500
mm, Thermo Fisher) by a linear gradient from 0.8 to 32%
acetonitrile in 0.1% formic acid over 30 min on an RSLC nano
HPLC system (Dionex). The eluting peptides were directly
analyzed using a hybrid quadrupole-orbitrap mass spectrometer
(QExactive, Thermo Fisher). The QExactive mass spectrom-
eter was operated in data-dependent mode, using a full scan
(m/z range 350—2000, nominal resolution 140000, target
value 1 X 10°) followed by MS/MS scans of the 12 most
abundant ions. MS/MS spectra were acquired at a resolution of
17 500 using normalized collision energy 30%, isolation width
of 2, and the target value was set to S X 10* Precursor ions
selected for fragmentation (charge state 3 and higher) were put
on a dynamic exclusion list for 10 s (dynamic exclusion
tolerance is 10 ppm on QExactive by default). Additionally, the
underflll ratio was set to 20%, resulting in an intensity threshold
of 2 X 10*. The peptide match feature and the exclude isotopes
feature were enabled.

Database Search Settings

Proteome Discoverer version 1.4.288 (PD) was used for
peptide identifications. All data sets were searched with Mascot
(version 2.2.1), SEQUEST (with probability score calculation)
as provided in PD, and MS Amanda. Advanced search settings
in PD were changed from default in order to store all PSMs in
the result file (all cutoff filters and thresholds were disabled).

Searches for the HelLa and the histone data sets were
performed with 7 ppm precursor mass tolerance and 0.03 Da
fragment ion mass tolerance (0.5 for CID). Following Marx et
al, we used 5 ppm precursor mass tolerance and 0.02 Da
fragment mass tolerance for the synthetic peptide library. For
HCD and CID, considered fragment ions were left at defaults
for Mascot and SEQUEST, and set to b and y ions for MS
Amanda. ETD searches with Mascot and MS Amanda were
performed using ¢, ¥, z + 1, and z + 2 ions.

For the HeLa data sets, oxidation(M) was set as variable
modification, carbamidomethyl(C) as fixed modification, and
trypsin as enzyme allowing up to two missed cleavages. The
peptide library was searched with oxidation(M) and
phosphorylation(S,T,Y) as variable modifications and up to
four missed cleavage sites for trypsin.

Variable modification settings for the histone data set were
oxidation(M), phosphorylation(S,T,Y), methyl(K,R), dimethyl-
(K,R), trimethyl(K), and acetyl(K). Methylthio(C) was set as
fixed modification, GluC (C-terminal cleavage after D or E) as
enzyme, and two as the maximum number of missed cleavages.

Performance comparisons were based on 1% FDR.**** We
generated concatenated forward and reverse (decoy) protein
databases with contaminants using MaxQuant Sequence
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Reverser (v1.0.13.13).'"* We searched the HeLa data sets
against Swiss-Prot_human®® (release 2013 _10), merged the
synthetic peptide sequences with Swiss-Prot_human for the
peptide library, and searched the histone data against the
complete Swiss-Prot (release 2013 _10). For FDR calculation,
peptides shorter than 7 amino acids were discarded and
conservative FDR estimation was ensured by preferring the
decoy peptide to an equally scored peptide. Peptide grouping
for unique peptide level FDR estimation was solely based on
the peptide sequence, and the highest score was kept for each
peptide group.

B RESULTS

We compared PSM and peptide identifications of MS Amanda
to Mascot and SEQUEST, two search algorithms widely used
for peptide identification in mass spectrometry. Performance of
MS Amanda was evaluated on an HCD Hela set (Figure 1), on
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Figure 1. Performance comparison on HCD HeLa data set.*® The
previously published data set is composed of three replicates measured
on a Thermo Fisher QExactive instrument. For all three replicates,
consistently more PSMs were identified at 1% FDR (PSM level) with
MS Amanda as compared to Mascot or SEQUEST.

a synthetic peptide library (Figure 2), a histone data set (Figure
3), and on a CID HelLa set. In addition to PSM identifications
based on a forward decoy database approach at 1% FDR, we
show results for unique peptides at 1% FDR in Supporting
Information Table S1.

Performance of MS Amanda

For HCD data, the numbers of identified PSMs by Mascot,
SEQUEST, and MS Amanda are depicted in Figure 1 for the
Hela data set and Figure 2(AB) for the synthetic peptide
library. Results for the histone data set are shown in Figure 3.
We report identified PSMs in the synthetic peptide library
separately for nonphosphorylated (Figure 2A) and phosphory-
lated (Figure 2B) peptides.

Consistently higher quantities of PSM identifications were
observed for MS Amanda as compared to both Mascot and
SEQUEST for all high-resolution data sets. In the three HCD
HeLa replicates, we identified between 11 and 22% more PSMs
with MS Amanda compared to Mascot and SEQUEST.

While SEQUEST performed slightly better than Mascot on
the nonphosphorylated peptide library subset (2A), the
reciprocal situation was observed on the phosphorylated
peptide library subset (2B). Still, MS Amanda outperformed
both search engines for both subsets by 4—22%.

dx.doi.org/10.1021/pr500202e | J. Proteome Res. 2014, 13, 3679—3684
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Figure 2. Identified PSMs in a synthetic peptide library comprising HCD and ETD data.®’ Applying MS Amanda led to the highest number of
identified PSMs on the HCD data set for both nonphosphorylated (A) and phosphorylated (B) peptides. A similar performance increase was
observed on the ETD data set for nonphosphorylated (C) and phosphorylated (D) peptides.
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Figure 3. Performance comparison of identified PSMs in a histone
data set. We used four different histone preparations originating from
three species and measured them on a Thermo Fisher QExactive mass
spectrometer. HCD raw files were combined for peptide identification.
At 1% FDR, we identified more PSMs with MS Amanda as with
Mascot and SEQUEST.

For the histone data set, we identified 620 target PSMs with
Mascot and 778 with SEQUEST. By applying MS Amanda we
identified 969 PSMs, which corresponds to a performance
increase in identified PSMs of 56 and 25%, respectively.

We further analyzed the performance of MS Amanda to
Mascot on the peptide library ETD data subset. Both search
algorithms identified considerably more PSMs than SEQUEST,
a comparison with SEQUEST on the ETD subset was therefore
omitted.

In accordance with our analysis of the HCD data subset, we
report both PSMs of nonphosphorylated (Figure 2C) and
phosphorylated (Figure 2D) peptides. While we identified 13

3682

489 PSMs of nonphosphorylated peptides with Mascot in the
ETD data, we found notably more PSMs (16 400) with MS
Amanda, which is a 22% increase in identified PSMs at 1%
FDR. For the phosphorylated subset, we found a comparable
trend. Here, we identified 12 016 PSMs with Mascot and 12
979 PSMs with MS Amanda (an increase of 8%).

Benchmarking MS Amanda, Mascot, and SEQUEST on the
low-resolution CID data reported comparable performance for
all three search engines, with slightly higher PSM identification
rates for MS Amanda (1—5%; see Supporting Information
Table S2).

We list the numbers of identified PSMs for all three high-
resolution data sets in Supporting Information Table S2. In
Supporting Information Table S1, we show identified unique
peptides at 1% FDR (peptide level) for the HCD and CID
HeLa data set and for the HCD and ETD peptide library data
sets. The limited number of proteins in the histone data set did
not allow for accurate peptide level FDR estimation. On these
data, we only report PSM level FDR estimation.

For completeness, we also compared the performance of MS
Amanda with the noncommercial search engine Morpheus, a
recently described search algorithm which was also specifically
designed for high mass accuracy MS” spectra (see Supporting
Information Table S3).

PSM Overlap

To show the validity of our approach, we investigated the
overlap in target PSM identification for all three search
algorithms. Analyzing one replicate of the HCD HeLa data set
(MS Amanda 15091 PSMs, Mascot 12 386 PSMs, SEQUEST
12 858 PSMs), 9921 spectra were commonly identified by all
three search engines (Figure 4). While MS Amanda identified
considerably more unique PSMs than compared search engines,
the capability of MS Amanda to identify large fractions of

dx.doi.org/10.1021/pr500202e | J. Proteome Res. 2014, 13, 3679—-3684
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Figure 4. Overlap of target PSMs based on one HCD HelLa replicate.
MS Amanda explains large fractions of PSMs also identified by Mascot
and SEQUEST. Further, our algorithm explains many peptides
otherwise uniquely identified by either Mascot or SEQUEST.

peptides found by either Mascot or SEQUEST is noteworthy;
92% of the PSMs identified by Mascot and further 92% of those
identified by SEQUEST are reliably found by MS Amanda,
while only 80% of PSMs identified by SEQUEST and 83% of
PSMs identified by Mascot are also found by the respective
other search engine. This highlights that MS Amanda is
remarkably capable of explaining spectra otherwise uniquely
identified by either Mascot or SEQUEST.

B DISCUSSION

Current state-of-the-art mass spectrometers provide highly
accurate m/z data of both intact peptides and fragment ions.
These instruments were not readily available at the time when
Mascot and SEQUEST were developed. Still, Mascot and
SEQUEST are among the most widely used search engines and
perform generally well for both low- and high-resolution data.
Here we present MS Amanda, a peptide identification
algorithm shown to outperform these established search
engines on examined data sets.

MS Amanda is based on a cumulative binomial distribution
function, which estimates the probability to match n out of N
peaks by chance. In our implementation of the cumulative
distribution function, N is the number of picked peaks, and n
the number of matching peaks (formula 1). We consider this
strategy beneficial for spectra where the number of theoretical
fragment ions is large (e.g, for spectra with many different
types of neutral loss peaks). In addition, our estimation of the
probability p to match one peak by chance (formula 3)
provides the advantage that fragment ion tolerances can be
specified in parts per million. Further, our scoring system
considers the intensities of all matched peaks for reporting the
score of each potential peptide spectrum match.

We found that MS Amanda provides an increased peptide
identification performance in comparison to the well-
established search engines Mascot and SEQUEST, as high-
lighted both for HCD and ETD data sets (increase in PSMs
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between 11 and 22% on the HCD HeLa set). The number of
detected PSMs in a data set correlates with the number of
unique peptides. More identified PSMs lead to potentially more
identified peptides, which subsequently influences protein
scoring and potentially increases the number of identified
proteins. While MS Amanda uniquely identified many addi-
tional PSMs, our search engine further incorporates large
fractions of PSMs otherwise uniquely reported by either
Mascot or SEQUEST.

We suggest MS Amanda as particularly well-suitable for high-
resolution data sets, as we observed a substantial performance
gain for HCD and high mass accuracy ETD data. In addition,
by showing small but consistent improvements for CID data,
we further highlight its general applicability. We want to
emphasize the performance of MS Amanda on our
modification-rich histone data set, where we observed a 24—
56% increase in identified PSMs. This observation suggests that
one possible explanation for the increased performance might
be that MS Amanda is particularly well-suited for the
identification of peptides of large mass and higher charge
state (charge states +4 to +8 constitute almost middle-down
data).

With its remarkably consistent performance and provided as
downloadable version (standalone and integrated in PD), we
believe that our ready-to-use implementation is of particular
value for the proteomics community. MS Amanda is available at
http://ms.imp.ac.at/?goto=msamanda.

B ASSOCIATED CONTENT
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available free of charge via the Internet at http://pubs.acs.org.
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