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Abstract

Although many methods have been developed for inference of biological networks, the validation

of the resulting models has largely remained an unsolved problem. Here we present a framework

for quantitative assessment of inferred gene interaction networks using knock-down data from cell

line experiments. Using this framework we are able to show that network inference based on

integration of prior knowledge derived from the biomedical literature with genomic data

significantly improves the quality of inferred networks relative to other approaches. Our results

also suggest that cell line experiments can be used to quantitatively assess the quality of networks

inferred from tumor samples.
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1. Introduction/Methods

We have increasingly come to recognize that cellular regulatory processes are more complex

than we had once imagined and that it is generally not individual genes, but networks of

interacting genes and gene products, which collectively interact to define phenotypes and the

alterations that occur in the development of a disease [4]. The first application of network

reconstruction to gene expression used data from a yeast cell cycle experiment in which

synchronized cells were profiled over a carefully planned time-course [28]. Friedman and

colleagues analyzed these data in a Bayesian Network framework to develop a predictive

cell-cycle model. Since this early work, there have been many other methods developed to

model networks while addressing the intrinsic complexity of high-throughput genomic data

(high feature-to-sample ratio and high level of noise) [22]. However, few methods have been

widely used and often fail to produce useful network models, mainly because there are no

gold standards on how to build and validate large gene networks [12, 35].

One challenge in developing network inference methods is validation of the resulting

models. Most published network inference methods attempt to validate their models through

comparison with biological databases, calculating the proportion of interactions found both

in the inferred networks and those databases [2]. However, this assumes that the network

topologies are static and do not change between phenotypes or in response to perturbations.

Others have validated small network models using targeted biological experiments to assess

interactions between genes, but this is not feasible for a large number of genes and new

potential interactions. An alternate route based on simulated interventional data was used in

the NIPS2008 workshop on causality validating inferred networks by trying to predict the

results of interventions [16], but this method is biased to those network inference models

most closely resembling the simulation model.

Here we propose a new validation framework that enables a quantitative and unbiased

assessment of the performance of an inferred network model. This framework relies on

generating independent, single-gene knock-down experiments targeting a collection of genes

in a network or pathway of interest, and measuring gene expression data before and after the

knockdowns. With this data in hand, we apply the following iterative leave-one-out cross-

validation approach to assess the performance of a given network inference method (Fig. 1):

1. Select a single gene knock-down, including all replicates, from the collection as

validation set.

2. From the remaining knock-down experiments, build a predictive network model.

3. Use the validation set to assess the network’s quality, focused on connections local

to the perturbation.

4. Repeat steps 1–3 until all perturbations have been tested in the models and their

local predictive power assessed.
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This “dual use” of the data for model inference and validation allows the computation of a

performance score that quantitatively assesses the inferred network’s quality based on a

comparison between the genes that are empirically determined to be affected based on the

validation data set and those genes inferred to be affected based on the models. Since this

validation framework is not tied to a specific network inference method, it can be used to

assess the relative performance of different network inference methods. As a test of the

approach, we applied it to two methods that infer directed (causal) interaction network from

gene expression data: GeneNet [27] and predictionet [17]. GeneNet computes full partial

correlations and then orders the genes based on partial variances to identify directed acyclic

causal networks. This approach improves on Bayesian network inference methods as it

allows inference of large interaction networks containing hundreds of genes. However, its

current implementation (version 1.2.5) does not integrate prior knowledge about likely

network structure captured in published biomedical literature and pathway databases [9, 14,

18, 32]. Bayesian networks are inferred from different sources of information in [19, 29, 32]

but to the best of our knowledge there is no such method publicly available in R.

The use of prior network structures is at the heart of predictionet, which builds on reported

gene-gene interactions cataloged in the Predictive Networks (PN), web application [17].

predictionet infers an undirected network using mRMR (minimum Redundancy-Maximum

Relevance; [8, 26]) feature selection and then orients the edges in this network using the

interaction information [25]. In both steps, prior information can be used to adjust the

respective rankings based on the confidence in the interactions, as further described in

Section 1.1 of the Supplementary Information.

Here we will describe the application of our validation framework, which combines knock-

down experiments and network inference, to quantitatively assess inference methods for

large gene interaction networks. We will show that the integration of priors with gene

expression data yielded networks best at predicting the genes affected by a targeted

perturbation.

2. Results

In this section we will present our validation framework and the combination of targeted

perturbations and network inference methods it relies on. The data and the main parameters

used in our framework will be described in detail.

2.1. Targeted perturbations

One of the best approaches to test the quality of a network model is to quantify how well it

can predict the system’s response to perturbations. As a demonstration, we use a well-

studied model system - the RAS signaling pathway in colorectal cancer. We performed

RNAi-mediated gene knockdown experiments in two colorectal cancer cell lines, SW480

and SW620 [20], targeting eight key genes in the RAS pathway: CDK5, HRAS, MAP2K1,

MAP2K2, MAPK1, MAPK3, NGFR and RAF11. The experiments were done in six

biological replicates of each knockdown and controls in both cell lines. From each sample,

1http://www.biocarta.com/pathfiles/h_wntPathway.asp
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we profiled gene expression (Supplementary File 1) using the A ymetrix GeneChip HG-

U133PLUS2 platform. CEL files were normalized using frma [24]. We used the jetset

package to select a unique probeset for each of the 19,218 unique gene symbols represented

on the arrays; further annotations were obtained using biomaRt [11]. The raw and

normalized data are available from the NCBI Gene Expression Omnibus (GEO) repository

[5] with accession number GSE53091. A more detailed description of the knock-down

experiments is available in Section 1.6 in Supplementary Information.

Although our experimental perturbations were limited to eight genes, the goal was to infer a

larger network. Consequently, we needed to identify a broader set of genes linked to the

RAS pathway. We compared gene expression profiles of quiescent cell lines over-

expressing RAS [6]. These data were generated using the Affymetrix GeneChip HG-

U133PLUS2 and normalized using MAS5 [1] (GEO accession number: GSE3151). We used

the Wilcoxon Rank Sum test to compare the ten control cell lines with the ten cell lines

over-expressing RAS and selected the most differentially expressed genes (false discovery

rate FDR < 10% and fold change ≥ 4) between groups; this identified 332 RAS-associated

genes including HRAS itself. The unique set of 339 RAS-associated genes and our knock-

down genes are listed together with their corresponding statistics in Supplementary File 2.

With the gene expression data from the eight knock-down experiments, we used the

validation framework illustrated in Figure 2(a). Each knock-down was considered separately

during the validation process. In a first step this entails the separation of the samples into

those not related to the knock-down under consideration (the training samples) and the

samples related to it (the validation samples). The validation samples are then analyzed to

identify the list of RAS-associated genes significantly affected by the target knock-down. To

compare the expression of genes in control versus knock-down experiments we used the

Wilcoxon Rank Sum test with a FDR < 10%. The list of affected genes and their annotations

are reported in Table 1 and Supplementary File 3, respectively.

2.2. Network inference methods

Using the training samples (Figure 2(a)) we then proceed to the inference of a network using

either GeneNet or predictionet with different weights on the priors (prior weight w ∈ {0,

0.25, 0.5, 0.75, 0.95, 1}; see Supplementary Information Sections 1.1 and Section 1.2 for

details of the inference algorithm and the parameter choices, respectively). To define these

priors we used the Predictive Networks (PN) web-application to identify gene-gene

interactions reported in the biomedical literature and in structured biological databases [17]

for this collection of genes. The PN database was generated, in part, from PubMed abstracts

and full-text papers using a text mining method in which each interaction is represented as a

triplet [Subject, Predicate, Object] such as [PGC, is inhibited by, SIRT1] or [CCNT1,

regulates, PGC]. While the Subjects and Objects represent genes, the Predicates capture the

interactions between these genes and include terms like ‘regulates’ or ‘is inhibited by’ that

describe directional interactions, here Subject → Object or Subject ← Object, respectively.

PN contains 81,022 interactions from PubMed documents and 1,323,776 interactions from

the Human Functional Interaction [34] and the Pathways Common [7] databases (both

retrieved on 2012-11-16).
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Among the 339 RAS-associated genes, 325 are present in the PN database with a total of

37,212 interactions of which 602 occurred between pairs of RAS-associated genes

(Supplementary File 4). Each interaction was characterized by an evidence score represented

as the difference between the number of positive evidence citations and the number of

negative evidence represented by a predicate such as ‘does not regulate’. More details on

how the priors are used in predictionet are available in Section 1.1 in Supplementary

Information.

2.3. Inferred networks

Next, we used the genomic data and priors to infer a gene interaction network for each

knock-down (CDK5, HRAS, MAP2K1, MAP2K2, MAPK1, MAPK3, NGFR and RAF1)

and each network inference methods (GeneNet and predictionet with increasing prior

weights). As an example, we will describe the network inferred for the HRAS knock-down

using predictionet with prior weight w = 0.5 (Figure 3). Due to the size of the network and

the fact that we are primarily interested in the effect of the targeted perturbation (knock-

down of HRAS), we focus on that part of the inferred network which models these effects,

that are the children and grand-children (referred to as CH2) of HRAS.

In theory, the genes inferred to be descendants of the knockdown should correspond to the

genes identified as significantly affected in the validation experiments. That is, when

considering our validation samples one can evaluate which genes exhibit a significant

change in expression compared to the control samples; these affected genes should ideally

be present in the knock-down’s childhood (CH).

We then tested whether the inferred interactions (edges) in the network were present in the

prior (the blue edges) or not (grey edges). This together with the knowledge of which genes

were truly affected by the knock-down allows us to identify possible new paths such as

HRAS-POLA2-CCDC94 that although not previously reported in the literature, have

empirical support in the perturbation data set.

We find (Figure 3) that truly affected genes are present within the set of children as well as

with the grandchildren of HRAS; these nodes are colored yellow. Although there are

additional genes that are differentially expressed in response to HRAS knockdown, for

visualization purposes we focus on those that are predicted to be first or second-generation

descendants of the knockdown target. To evaluate the network’s overall quality, we

measured the ratio of those genes in the KD’s childhood that are affected by the perturbation

relative to those genes predicted to be in the childhood that are not affected. In the following

section we will use this idea to design a systematic quantitative validation procedure by

properly defining true positives, false positives and false negatives nodes.

2.4. Systematic validation

Given an inferred network and a list of genes significantly affected by a specific knock-

down, we can now classify the descendants of the knock-down in the inferred network

depending on their response to the perturbation. If this is the case, each of these descendants

is classified as true positive (TP), as false positive (FP) if it was not affected by the
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perturbation, and finally if we know that a gene was affected by the knock-down experiment

but it is not inferred as a descendant in the network, it is classified as false negative (FN), as

illustrated in Figure 4.

This classification then allows us to compute, for the inferred network, a quality measure

such as the F-score

(1)

where F=1 corresponds to perfect classification of the affected genes and F=0 to no correctly

identified affected genes.

The question of which genes in the network qualify as ‘descendant’ is difficult to answer

and we chose to consider the knock-down’s children and its grandchildren, that is the

childhood of distance two (CH2). In our experiments, we see that considering only the direct

children (CH1) will include too few genes and it is not possible to compute meaningful F-

scores. On the other hand, considering larger childhoods such as that of distance three (CH3)

or even all descendants usually leads to too many genes predicted as affected. Therefore, we

focus on analyzing results obtained for CH2 while reporting those for CH1 and CH3 in

Supplementary Information, Figure 4.

Because increasing the size of the childhood almost automatically leads to higher F-score

values due to the greater weight given to true positives versus false positives, one cannot

solely rely on this quality measure. Therefore, a second measure is needed that will penalize

networks with a greater number of edges. Our strategy is to generate a large number n of

random networks and compare their F-scores to the F-score obtained with the inferred

network to assess its significance using the following formula:

(2)

The larger the number of edges is, the easier it will be to beat the inferred network’s

performance with these random networks as the variation between networks is reducing with

growing number of edges.

We generated random networks by mimicking the inference using feature selection

strategies as implemented by predictionet. Keeping the number of edges and the maximum

number of parents equal to those of the inferred network, the random network generator

adds a uniformly distributed number of parents in [1, maxparents] to each gene in the

random network. This allows us to show that the feature selection and arc orientation

strategy implemented in predictionet indeed performs statistically significantly better than a

random edge addition procedure. Network performance is computed in terms of F-score

values associated with a knock-down’s childhood and any network with a p-value as defined

in equation (2) lower than 0.05 is considered to be significantly better than random

networks.
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2.4.1. Inferring networks with different prior weights for all knock-downs—
With this combination of two complementary quantitative validation measures we can now

evaluate the inferred networks, those obtained using GeneNet with only genomic data and

those obtained using predictionet with genomic data and priors for different weighing

schemes. We allowed the prior weights w to vary between 0 and 1, the former corresponding

to networks inferred from genomic data only and the latter to networks inferred from prior

knowledge only: w ∈ {0, 0.25, 0.5, 0.75, 0.95, 1}.

To assure a fair comparison between GeneNet and the network inferred from data only with

predictionet and the associated random network topologies, we constrained GeneNet

networks to have the same number of edges as those networks inferred using predictionet.

We chose to take the number of edges obtained with predictionet using prior weight of 0.5

for two reasons. Firstly, although GeneNet is not designed to natively integrate prior

knowledge, we tested whether combining data and prior using predictionet will yield better

results than a widely-used method that only use data. Secondly, F-score values tend to be

higher for networks with greater numbers of edges, therefore choosing a prior weight which

results in an advantageous number of edges, such as 0.5, seems reasonable.

Using our validation framework (Figure 2(a)), we analyzed our set of colorectal cancer cell

lines and computed F-scores of the inferred networks in cross-validation for each of the

eight KDs (Figure 5A). We first investigated the performance of networks inferred from

prior knowledge only (prior weight w = 1). To the best of our knowledge, the informational

value of priors retrieved from biomedical literature and structured biological databases has

not yet been quantitatively assessed in the context of gene network inference. Indisputable,

these known interactions are often the result of biological experiments that are valid in the

context in which they have been performed. However, this does not necessarily mean that

they carry information with respect to biological data sets generated outside of this context.

In our study we found that networks inferred from priors only are informative as they

yielded significant F-scores for all the knock-downs except NGFR (Figure 5A and Table 2).

This is due to the fact that we found only few prior information regarding the downstream

effects of NGFR, with only one direct child and no grandchild in the priors, which is not

sufficient to compute a meaningful F-score.

To test whether combining prior knowledge with genomic data leads to an improved

inference of gene interaction networks, we compared F-scores obtained for networks

inferred from data only (GeneNet and predictionet with prior weight w = 0), from priors

only (prior weight w = 1) and a combination of data and priors (prior weight w ∈ ]0, 1[). As

can be seen in Figure 5A, networks inferred from combination of priors and genomic data

yielded consistently higher F-scores than networks inferred from genomic data alone

(Wilcoxon signed rank test p = 0.004 for prior weight w = 0.5). When compared to networks

inferred from priors only, we observe statistically significant improvement in the F-score for

five out of eight KDs (CDK5, MAP2K2, MAPK1, MAPK3 and NGFR; Wilcoxon signed

rank test p = 0.01 for prior weight w = 0.5). Moreover the networks inferred from combined

data sources are significantly better than random networks in most cases, except for NGFR

for which the prior knowledge is limited (Figure 5A).
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We then assessed the benefit of combining data sources by counting how many true

positives can only be found by combining priors and genomic data, that is they are not

present in the data only and/or priors only networks (Figure 4). In other words it does not

suffice to fuse the data and prior-only networks to get these true positives. Figure 5B

represents the portion of true positives that can be found in the networks inferred from

genomic data only, priors only or the combination of both. We observe in Figure 5B that

there is little overlap between true positives identified in networks inferred from genomic

data only or priors only, suggesting that priors and genomic data provide very different

information regarding gene interactions. Moreover, we find that a substantial proportion of

new true positives could have only been found by combining data sources, highlighting the

benefit of combining priors and data to infer networks (Figure 5B, Table 2).

2.4.2. Extrapolate to tumor patient data—Having shown that the knock-down

experiments enable quantitative assessment of the quality of an inferred network, we apply

our validation framework to a large data set of 292 colorectal human tumors (expO data

set2). We infer gene interaction networks using the entire data set as training set and used

the knock-down experiments to assess networks quality as before (Figure 2(b)). Such

comparison between patient samples and laboratory models is recognized as imperfect as

colorectal cell lines are not precise models for patient’s tumors [15, 23].

The networks inferred from colorectal tumor data were denser than those inferred from cell

lines (Supplementary Information, Table 1); this is expected due to the larger sample size of

the tumor data set (~300 vs ~100 for the colorectal tumor and cell lines, respectively) and its

correspondingly greater diversity. Despite the difference in network density the F-scores

were not statistically significantly different to those found for the cell line knock-down

experiments (Wilcoxon signed rank test p ≥ 0.10, Figure 6).

We found that GeneNet performed better on the tumor data than on the KD data, possibly

due to the larger sample size. However GeneNet only provides significant results for

MAPK1 compared to random networks (Figure 6). On the contrary, networks inferred using

combination of genomic data and priors with predictionet yielded significant F-scores in

most cases, except for NGFR which is consistent with the cell line knock-down experiments.

Again, combining data with the prior knowledge improved F-scores for CDK5, MAP2K1,

MAP2K2, MAPK1, MAPK3 and RAF1. This is again consistent with the cell line results.

Given that the networks inferred from colorectal cancer cell lines and tumor data

(Supplementary Files 5–8) yielded similar F-scores, we compared their topologies to

identify the edges inferred in both data sets and those specific to either cell lines or tumors.

For this, because we do not use the test data for validation, we infer a single network using

the entire knock-down data set. This cell line network and the tumor network shared on

average 22% of edges depending on the methods (4%, 5%, 20%, 31%, 33%, 33% for

GeneNet, predictionet with prior weight w=0, 0.25, 0.5, 0.75, 0.95, respectively;

Supplementary Information, Table 2). As expected, the proportion of common edges

increases with the prior weight; however the networks shared fewer than one third of their

2https://expo.intgen.org/geo/
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edges, suggesting that either the gene interactions present in cell lines and tumors

significantly differ from each other or that the sample size in the cell line knockdown

experiments was not sufficient to infer networks that are generalizable to other data sets.

Moreover we observed that most of the common interactions involve one of the eight KD

genes (41%, p<0.001) for predictionet with prior weight w=0.5), suggesting that more

generalizable networks could be inferred when performing targeting experiments, which is

supported by recent studies [3, 30]. We illustrated this result in Supplementary Information,

Figure 8 which represents the gene interaction network surrounding HRAS, which shows

that most common interactions involve at least one of the KD gene.

3. Discussion

Inference of biological networks from genomic and other data has the potential to provide

insight into mechanisms driving complex phenotypes including diseases such as cancer.

However, the validation of large gene interaction networks remains a challenging task. The

most widely used validation approaches consist of comparing network edges to ‘known’

gene-gene interactions derived from the literature or pathway databases. However, such

validation is in many ways limiting and imperfect.

Firstly, it prevents the use of prior knowledge in network inference if this is to be used

subsequently for validation as it would lead to over-fitting and thus provide an

overoptimistic performance evaluation for the inferred networks. Secondly, it may be that

most prior knowledge are not specific to the biological conditions or phenotypes under

investigation, which makes it difficult to identify a set of standard references of relevant

interactions. Further, we and others have suggested that prior knowledge could be used to

improve network inference [9, 18]; therefore we developed a new network inference

approach, called predictionet, to efficiently integrate priors, in the form of gene-gene

interactions extracted from biomedical literature and structured biological databases [17].

The field of network inference lacks quantitative, unbiased validation frameworks purely

driven by data [10, 21, 31]. In this paper we present a new validation framework using (I)

experimental knock-down data to compute the inferred network’s performance (F-score) and

(II) to assess network’s performance based on p-values computed using random networks as

null hypothesis to ensure statistical significance of the results. These two parts are

complementary as only relatively sparse networks are likely to be significantly better than

random networks and networks with more interactions are more likely to yield higher F-

scores. Within this framework, we showed how difficult it is to infer networks solely based

on genomic data both for GeneNet and predictionet. Furthermore, we provided evidence for

the quality of prior knowledge retrieved through the Predictive Networks web-application.

Finally, we were able to show that combining genomic data and prior networks lets us

achieve higher F-scores than either of the sources achieves by themselves, while at the same

time inferring networks that were also significantly better than random networks. When

using patients’ tumor data, we obtained comparable results, suggesting that cell line

experiments can be used for the validation of patient data.
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This study has some potential limitations. First, we targeted a small set of eight key genes

from the RAS signaling pathway but assessed their effect on other genes from the entire

genome. Second, these KDs were performed for single genes, which do not allow us to

assess the effect of multiple simultaneous KDs. Third we performed the KD experiments on

two colorectal cancer cell lines; extension of our validation framework to a larger number of

cell lines and additional single and multiple gene KDs is likely to improve our ability to

infer robust gene interaction networks. Lastly, we focused on a RAS signature of 339 genes

to limit the computational time required to infer multiple networks; we are working on

parallelizing the predictionet package to enable network inference from more genes,

potentially the whole genome.

In conclusion, we demonstrated that performance of gene interaction networks inferred from

high-throughput genomic data can be quantitatively assessed and compared using targeted

experiments. Moreover we showed that priors, in the form of gene-gene interactions

extracted from biomedical literature and structured biological databases using the Predictive

Networks web-application, produce relevant networks on their own and substantially

improve networks’ performances when efficiently integrated in the inference process.

Finally we were able to use the gene perturbation data generated in cell lines to assess the

performance of networks inferred from patient tumor samples, suggesting that our validation

framework could be applied in a translational research setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Although many methods have been developed for inference of biological networks, the

validation of the resulting models has largely remained an unsolved problem. Here we

present a framework for quantitative assessment of inferred gene interaction networks

using knock-down data from cell line experiments and show that network inference based

on integration of prior knowledge significantly improves the quality of inferred networks.
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Fig. 1.
Validation algorithm using single-gene knock-down experiments in a leave-one-out cross-

validation scheme.
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Fig. 2.
In Fig. 2(a) a gene interaction network is inferred at each fold of the cross-validation

whereas in Fig. 2(b) a single network is inferred from all the tumors in the data set. In both

settings we used the knock-downs (KD) of n = 8 key genes of the RAS pathway performed

in colorectal cancer cell lines in order to quantitatively assess the network’s quality.
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Fig. 3.
Children and grandchildren of HRAS (red node) inferred using predictionet, equal weight

between training data and prior knowledge (prior weight w = 0.5). The yellow nodes (genes)

are the ones identified as significantly affected by HRAS based on the validation samples.

The remaining nodes, colored in blue, have been predicted as affected during network

inference while they were not identified as significantly affected in the validation samples.

Blue edges are known interactions (priors) while grey edges represent new interactions.
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Fig. 4.
Given a set of genes affected by a knock-down gene KDi and a gene interaction network,

one can define nodes as true positives (TP), false positives (FP) and false negatives (FN). In

theory, all the affected genes should be inferred to be members of the knock-down’s

childhood, denoted by CH. If they are found within CH, they are classified as true positives

(TP). All other genes in CH are classified as false positives (FP). Affected genes that are not

inferred to be in the knock-down’s CH are classified as false negatives (FN). This

classification of nodes into TP, FP and FN is then used to compute a quality score, such as

the F-score.
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Fig. 5.
Bar plots reporting the performance of gene interaction networks, in cancer cell lines,

inferred from genomic data only (GeneNet and predictionet (pn) with prior weight w = 0),

predictionet with priors only (prior weight w = 1) and predictionet using combinations of

both data sources (prior weight w = {0.25, 0.5, 0.75, 0.95}). Each column reports the

performance of the network validated in each KD. (A) Bars represent the F-scores of each

network in each validation experiment; they are colored with respect to their significance,

that is in red and purple when network’s F-score is higher than 5% and 10% of random

networks, respectively. (B) Bars’ heights represent the percentage of true positives with

respect to the total number of affected genes for each KD’s network; they are colored based

on their origin: black for true positives identified in the network inferred from genomic data

only, dark grey from priors only, light grey in both, and orange for true positives that are

uniquely found in networks inferred by combining genomic data and priors.
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Fig. 6.
Bar plots reporting the performance of gene interaction networks, in patients’ tumors,

inferred genomic data only (GeneNet and predictionet (pn) with prior weight w = 0),

predictionet using priors only (prior weight w = 1) and predictionet using a combination of

both data sources (prior weight w=0.25, 0.5, 0.75, 0.95). Each column reports the

performance of the network validated in each KD. Bars represent the F-scores of each

network in each validation experiment; they are colored with respect to their significance,

that is in red and purple when network’s F-score is higher than 5% and 10% of random

networks, respectively.
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Tab. 1

Number of genes significantly affected by KD (out of 339 genes) based on gene expression data with FDR <

10%.

KD CDK5 HRAS MAP2K1 MAP2K2

Number of affected genes 73 122 33 38

MAPK1 MAPK3 NGFR RAF1

117 59 99 61
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