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Abstract

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has been shown to have
hemodynamic and cardioprotective capacity in addition to its better characterized glucoregulatory
actions. Because of this, emerging research has focused on the ability of GLP-1 based therapies to
drive myocardial substrate selection, enhance cardiac performance and regulate heart rate, blood
pressure and vascular tone. These studies have produced consistent and reproducible results
amongst numerous laboratories. However, there are obvious disparities in findings obtained in
small animal models versus those of higher mammals. This species dependent discrepancy calls to
question, the translational value of individual findings. Moreover, few studies of GLP-1 mediated
cardiovascular action have been performed in the presence of a pre-existing comorbidities (e.g.
obesity/diabetes) which limits interpretation of the effectiveness of incretin-based therapies in the
setting of disease. This review addresses cardiovascular and hemodynamic potential of GLP-1
based therapies with attention to species specific effects as well as the interaction between
therapies and disease.

INTRODUCTION

Glucagon-like peptide-1 (GLP-1), a natural product of the intestinal L-cells, has been shown
to be physiologically important in maintenance of glucose homeostasis via insulin
stimulation and inhibition of glucagon secretion [1-3]. These glucoregulatory effects are
reportedly mediated predominantly by actions of full-length GLP-1 (i.e. GLP-1 (7-36)) on
its cognate receptor GLP-1R [4]. Based on these reported actions, GLP-1 (7-36) was
identified to have potential therapeutic benefits in patients with impaired glucose tolerance
[5, 6]. A broadly expressed protease, dipeptidyl-peptidase IV (DPP-4), rapidly truncates
GLP-1 (7-36) in the circulation via cleavage at the penultimate amino acid to GLP-1 (9-36)
[7]. This truncated form of GLP-1 does not activate the GLP-1R and is inactive as an
insulinotropic agent (although there is some debate on this point) [8]. DPP-4 action is
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sufficiently rapid to degrade exogenously administered GLP-1 (7-36) to GLP-1 (9-36) in
minutes. Because of this, administration of GLP-1 (7-36) results in proportionate increases
in GLP-1 (9-36) levels. Accordingly, DPP-4 resistant analogues (e.g. exendin-4, liraglutide)
have been developed to allow for clinical exploitation of the GLP-1 pathway [6].

Early studies performed soon after the discovery of GLP-1 suggested that this gut-derived
peptide has cardiovascular effects [9-11]. Subsequent work has clearly demonstrated that
GLP-1 modulates myocardial substrate selection and that GLP-1-based agents (GLP-1
fragments, GLP-1 mimetics, DPP-4 inhibitors) mitigate myocardial ischemia/reperfusion
injury [8, 12-18]. Interestingly, these actions appear to occur independent of the
glucoregulatory actions of GLP-1 and its analogues, and some evidence suggests they may
be mediated in part by contributions from GLP-1 (9-36) [8]. Here we review the effects of
GLP-1 and related agents on hemodynamic regulation, including blood pressure, heart rate,
and cardiac function. Although studies evaluating cardiovascular effects of GLP-1 have
been conducted in a variety of animal models and in humans, findings to date have yielded
model-dependent discrepancies and, in some cases, contradictory findings between species.
Nevertheless, evidence supports that GLP-1 and related agents elicit important
cardiovascular effects, especially on cardiac contractile function in the setting of ischemic
injury and heart failure.

GLP-1 EFFECTS ON BLOOD PRESSURE

Significant pressor effects of exogenous GLP-1 were first reported in rats by Barragan et al.
in 1994, following systemic infusion of GLP-1 [10]. Subsequent studies have established
that there is a demonstrable and significant dose-dependent relationship between
experimentally-increased GLP-1 concentration and elevations in blood pressure in otherwise
healthy rodent models [10, 11, 19-23] with significant effects (+20mmHg) demonstrated at
concentrations as low as the picomolar range [20]. Not all GLP-1 related peptides exert
these effects; rather, these hypertensive responses to GLP-1 in rodent models appear to be
induced only by those agents capable of activating the GLP-1R (i.e. GLP-1 (7-36),
exenatide, liraglutide) [19, 20, 24]. In particular, there is strong evidence to support that
exendin-4 induces significant and sustained elevations in systemic pressure in rodents [21—
23].

Interestingly, hypertensive responses have been produced with a wide variety of dosing and
exposure timing approaches. Bolus infusions lasting only seconds in duration [10, 22] and
longer infusions on the order of hours [20] both result in similar increases in systemic
pressure. This observation has informed studies examining mechanisms of GLP-1R
mediated elevations in pressure. Work by Barragan, Bojanowska, Isbil-Buyunkcoskun and
Yamamoto has established that central and peripheral factors both contribute to GLP-1R
mediated pressor responses [22—25]. In these studies, intra-cerebroventricular (ICV)
administration of GLP-1 (7-36) or exendin-4 results in elevations in systemic pressure in
anesthetized [24, 26] and in conscious [22] Sprague Dawley rats. Identical findings have
been demonstrated in Wistar rats, indicating that this phenomenon is not strain specific [19,
23]. However, there appear to be differences in the response to ICV versus intravenous
infusions. Notably, intravenous administration produces more rapid increases in pressure of
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greater magnitude, whereas ICV administration results in longer-lasting hypertensive
responses [24]. Additionally, ICV but not intravenous administration of the GLP-1R
competitive antagonist GLP-1 (9-39) was able to abolish the effects of ICV GLP-1 (7-36)
and blunt the effects of systemically administered GLP-1 (7-36). However, systemically
administered GLP-1R blockade with GLP-1 (9-39) had no effect on ICV administered
GLP-1 (7-36) effects [11, 24]. These observations point to an important central locus of the
pressor effect of GLP-1 in rats.

Pharmacological studies also support a role for central GLP-1R mediated autonomic effects
mediating hypertensive responses in rodents. Systemic administration of the p-blocker
propranolol enhanced pressor responses to systemically administered exendin-4 whereas
treatment with the a—blocker phentolamine resulted in dose dependent decreases in mean
arterial pressure in response to increasing levels of exendin-4 [26]. However, GLP-1 effects
to augment pressor responses were not seen in either adrenal demedullated rats or animals
receiving treatment with phentolamine [21]. Further evidence for central autonomic effects
include observations of GLP-1R mediated activation of “catecholamine neurons” and
stimulation of central nicotinic and muscarinic receptors respectively [22, 23]. In other
studies, the physiologic state of the animal has proven to be a modifier of the effects of
GLP-1 on blood pressure, in that increases in blood pressure are observed in rodent models
during hypovolemic challenge [19] whereas decreases in pressure are found following
GLP-1R activation in the setting of insulin resistant obesity and salt sensitive hypertension
[27-29].

Despite the near universal observation of increases in blood pressure following GLP-1
administration in rodent models, studies in higher mammals have failed to show this
“hypertensive” effect. In the earliest such report, systemic pressure effects of GLP-1 (7-36)
administration in conscious calves were evaluated. There was no observable pressor
response to GLP-1 (7-36) administered intravenously at 35pmol/kg/min for 10 minutes [9].
In normal mongrel dogs, direct intracoronary administration of GLP-1 (7-36) elicited no
change in systemic pressures across a range from 10pM to 1nM [30]. These studies used
relatively acute exposures to GLP-1 (~30 min); three studies by the Shannon laboratory
which used more prolonged exposures (~24—72 hours) similarly demonstrate essentially no
effect of intravenous GLP-1 (7-36) on mean arterial pressures in normal healthy dogs or in
dogs following the development of pacing induced cardiomyopathy [8, 31, 32]. In swine
GLP-1 [33, 34], exendin-4 [35] or the long acting analogue liraglutide [36] have all failed to
exert pressor effects. These swine studies employed treatment durations ranging from
minutes [34] to days [36], minimizing the likelihood of effects being missed due to
insufficient duration of exposure.

Many GLP-1 related agents are now approved for clinical use in the treatment of diabetes,
and hemodynamic effects were monitored during the registration trials. Similar to
observations in dogs and swine but in contrast to observations in rodents, these clinical
studies in humans have not revealed a definitive effect of GLP-1 related agents to increase
systemic blood pressure. To the contrary, a meta-analysis of multiple clinical studies
comparing GLP-1 analogues with placebo suggested that exenatide and liraglutide elicit
modest decreases in systolic blood pressure (~2.39 & 1.79 mmHg respectively) [37]. These

Rev Endocr Metab Disord. Author manuscript; available in PMC 2015 September 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Goodwill et al.

Page 4

modest decreases may be attributable to findings reported by the Drucker group where
cardiac atrial GLP-1 receptor activation was found to promote secretion of atrial natriuretic
peptide; a finding with potential implications regarding mechanisms by which GLP-1 based
therapies may elicit decreases in systemic pressure [38].

In summary, the preponderance of evidence from human studies indicates that GLP-1R
activation does not result in elevations in blood pressure. Similarly, studies in large animal
models demonstrate no hypertensive response to GLP-1. These observations are in contrast
to pronounced hypertensive responses seen in rodents. From this we conclude that the rodent
is not a strong model of this aspect of human physiology. Is this difference itself
informative, however? The data explored above suggest that the pressor effect in rodents is
predominantly a phenomenon of regulation of central autonomic function; it is possible that
these observations highlight differences between rodents and humans in transfer of GLP-1
into the central compartments, or in the sensitivity of central regulatory pathways to effects
of GLP-1. There is a dearth of information regarding potential central effects of GLP-1R on
hemodynamics in larger animal models. Recent findings of GLP-1R expression in monkey
and human brain [39, 40] highlight the potential relevance of such central effects that should
be further explored.

GLP-1 EFFECTS ON HEART RATE

An early observation suggesting an effect of GLP-1R on heart came from the GLP-1R
knockout mice. The development of the heart is not normal in these animals, and at 2
months of age these animals maintain a resting heart rate that is ~100 beats/min faster than
their parent strain. This tachycardia is lost by 5 months of age via an undefined
compensatory mechanism [41]. This observation is confounded by the alteration in heart
size, but highlights the potential relevance of GLP-1 signaling in heart rate regulation. More
direct assessment of chronotropic effects has been evaluated in rodents and in higher
mammals, and again these effects differ across species. Perhaps not surprisingly, GLP-1R
mediated effects on heart rate are most pronounced in species exhibiting robust pressor
responses to GLP-1 administration. A GLP-1 dose-dependent tachycardia is consistently
reported in rodent models [10, 11, 19-23]. This phenomenon is particularly notable as it is
contrary to the otherwise expected baroreflexive response to elevated systemic pressure,
further supporting the notion of centrally mediated GLP-1 dependent cardiac actions. As
outlined above, these effects depend on activation of the classical receptor since infusions of
the degradation product GLP-1 (9-36) fail to elevate resting heart rates [11, 24]. Co-
administration of the nicotinic receptor antagonist mecamylamine is sufficient to abolish
GLP-1 mediated increases in heart rate in male Wistar rats [23], suggesting a role for
autonomic modulation in the tachycardia response. Further, exendin-4 administered ICV
produced dose-dependent increases in heart rate in conscious Sprague Dawley rats [22].

As was seen with the blood pressure effects of GLP-1, tachycardic effects are generally
absent in higher mammals [8, 14, 30-35]. Human studies have however reported an
extremely modest tachycardic response: A meta-analysis of 32 clinical trials concluded that
GLP-1 agonists increased heart rate an average of 1.86 beats/min versus placebo [37]. The
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relevance of these observations to long-term cardiovascular effects of GLP-1 related
treatments is uncertain, particular in context of the modest reductions in blood pressure.

GLP-1 EFFECTS ON CARDIAC CONTRACTILE FUNCTION

Effects of GLP-1 and related agents on cardiac performance have been evaluated in the
context of normal physiology, in response to ischemia/reperfusion injury, and in the setting
of heart failure. The effects to protect the myocardium against ischemic insults are reviewed
elsewhere in this collection. Here we focus on the effects specifically on cardiac contractile
function (i.e. ejection fraction, stroke volume, developed pressures, cardiac output, etc.),
including evaluations of the functional effects of therapy in the setting of ischemia and heart
failure.

GLP-1 is important in supporting normal force development in the heart. Mice genetically
lacking a functional GLP-1R demonstrate significantly elevated left ventricular (LV) end
diastolic pressure at 2 months of age, although this is lost by 5 months (note that this time
course is concurrent with a similar self-limited interval of tachycardia observed in these
animals; see above). Interestingly, mice lacking GLP-1R demonstrate no defects on the rate
of LV pressure development or relaxation (+dP/dt or —dP/dt), but do develop significant LV
hypertrophy by 5 months of age. This likely reflects a functional contractile deficit that is
compensated by development of a LV hypertrophy [41]. GLP-1 (7-36) therapy in these
animals is sufficient to increase LV developed pressure along with cardiac myocyte glucose
uptake, indicating that these cardiac effects are independent of the classical GLP-1R [12].
These studies have implicated full-length GLP-1 (7-36) as well as the degradation product
GLP-1 (9-36) in producing these actions [12]. Nevertheless, activation of the classical
GLP-1R does appear to mediate at least some of the effects of GLP-1 and related factors, as
suggested by observations of similar functional effects using the degradation-resistant
GLP-1 analog liraglutide. In these studies, wild type mice subjected to 30 minutes of global
myocardial ischemia and treated with liraglutide showed enhanced rates of cardiac fractional
shortening and significantly increased LV developed pressure during recovery from
ischemia [42].

The cardiac effects of exogenous GLP-1 (7-36) administration in rat models have been
decidedly less consistent. Isolated buffer-perfused hearts from male Wistar rats exhibited
GLP-1 dependent decreases in LV developed pressure and +dP/dt. In contrast, when
identically handled and treated hearts were exposed to low-flow ischemia, GLP-1
administration was found to improve LV end diastolic pressure and LV developed pressure
[16]. Similar studies interrogating mechanisms of GLP-1 mediated effects on cardiac
performance have produced data demonstrating that exendin-4 and the GLP-1 degradation
product GLP-1 (9-36) are both capable of augmenting LV performance in isolated rat hearts
during recovery from ischemia, indicating receptor-dependent and receptor-independent
pathways for GLP-1 mediated enhancements to cardiac performance [43].

These observations have largely been interpreted as demonstrating effects of GLP-1 based
compounds on contractility (inotropy), i.e. increased myocardial force generation that occurs
independent of ventricular preload. However, studies exposing isolated rat cardiomyocytes
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directly to GLP-1 (7-36) result in elevations to cCAMP that occur independent of any positive
effect on contractility [44]. Further, studies in isolated rat and mouse hearts where infusion
of GLP-1 (7-36) demonstrated modest increases in LV mechanical performance during
reperfusion subsequent to global ischemia could be accounted for by the beneficial effects of
GLP-1 treatment to limit infarct size [45]. In obese Zucker rats in vivo GLP-1 therapies
enhance cardiac performance via increases in LV diastolic function (as assessed by Tau,
time constant of LV relaxation, and end diastolic pressure volume relationships) [27], i.e. an
effect on cardiac output that is not mediated by changes in contractility. Taken together,
these data suggest that GLP-1 mediated enhancements in cardiac performance could be
related to increases in diastolic filling (i.e. Frank-Starling effect) as opposed to increases in
inotropy/contractility per se. To date there exist no satisfactory dataset to evaluate load-
independent contractile function in response to GLP-1 therapies. This avenue of
investigation will be crucial for identifying mechanisms through which GLP-1 may act to
enhance cardiac function. These analyses need be conducted over a variety of infusion
ranges and conditions to address disparate results in the current literature that could be
simply due to differences in in duration of therapy or experimental condition. In terms of
molecular mechanisms that mediate these responses, an emerging body of evidence supports
effects of GLP-1 in the setting of ischemia to modulate effects on function via 5-AMP-
activated protein kinase (AMPK) [46] without a dependence on Akt [16], with
accompanying enhancements to cardiomyocyte SERCA activity [27].

GLP-1 effects to augment cardiac performance that are seen in rodents have also been
observed in higher mammals. In 2004, Nikolaidis and colleagues first demonstrated GLP-1
dependent increases in LV +dP/dt, stroke volume and cardiac output with concurrent
decreases in LV end diastolic pressure [14]. This same group reported that systemic GLP-1
administration (1.5 pmol/kg/min) was sufficient to protect against myocardial stunning
resulting from a 10-minute occlusion of the left circumflex coronary artery followed by 24
hours of reperfusion, by improving regional wall motion and thereby enhancing isovolumic
relaxation [32]. These reports were followed by two seminal studies in canines investigating
differential effects of full length (7-36) vs truncated (9-36) GLP-1 on cardiac function [8,
14]. In the context of pacing induced cardiomyopathies, GLP-1 (7-36) and (9-36) both
significantly reduced LV end-diastolic pressure and increased LV +dP/dt, indicating that
both forms of GLP-1 are capable of augmenting cardiac performance in the setting of
myocardial dysfunction [8]. Notably, in healthy canines the direct intracoronary delivery of
GLP-1(7-36) exerted no effect on heart rate or degree of regional shortening [30]. These
findings support the hypothesis that the cardiac effects of GLP-1 are predominantly evident
in the setting of underlying disease such as myocardial ischemia and heart failure, and
suggest that these effects are centrally mediated rather than depending on direct activation of
myocardial GLP-1R.

Studies evaluating effects of GLP-1 and related agents on cardiac function in humans have
relied on measures that are load-dependent, requiring careful interpretation in light of the
above discussion. Nevertheless, the above observations in animal models aid in the
interpretations of these measures of cardiac function. In one such study, GLP-1 (intravenous
infusion at 1.5 pmol/kg/min for 72 hours) was added to background therapy in patients with
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acute myocardial infarction and ejection fractions < 40%. Under these conditions, GLP-1
administration significantly improved ejection fraction and wall motion [15]. Similar
improvements in ejection fraction were reported with longer duration of therapy (2.5
pmol/kg/min subcutaneously for 5 weeks) in patients with class 111/1V heart failure, but
effects on ejection fraction were not observed in otherwise healthy control subjects [47].
Read and colleagues examined effects of GLP-1 therapies in a more acute setting to
determine whether GLP-1 would convey protection against ischemic dysfunction resulting
from a 1 minute coronary occlusion [48]. This study was the first in humans to provide real
time pressure volume analyses of hearts receiving GLP-1 therapy. The study did not directly
assess end systolic pressure volume relationships, but using pressure-volume loops they
were able to demonstrate that GLP-1 therapy was sufficient to improve LV systolic and
diastolic function during a 30 minute reperfusion period. GLP-1 infusion produced
significant increases in load-dependent measures of contractility (+dP/dt) and improved
relaxation (tau) and cardiac function (ejection fraction and stroke volume) [48].

In summary, there is a clear body of evidence supporting the ability of GLP-1 to enhance
cardiac performance, especially in the setting of ischemia and/or cardiac failure. However,
these studies do not fully explain the physiologic or molecular mechanisms underlying these
effects of GLP-1. A more thorough understanding of these effects will be essential in
determining how best to apply GLP-1 based therapies in settings of cardiac dysfunction.
GLP-1 has been demonstrated to enhance myocardial glucose uptake, as covered in detail in
other sections of this collection. If GLP-1 agents act via Frank-Starling mechanisms rather
than as direct inotropes, the augmentation of function may be energetically less demanding
and this could prove advantageous. These speculations require systematic study and careful
evaluation of the clinical effects of GLP-1 based therapies already in use.

GLP-1 EFFECTS ON TISSUE PERFUSION

Initial studies designed to address the vascular effects of GLP-1 suggested that GLP-1R is
expressed in endothelial [49-53] and vascular smooth muscle cells [12, 30, 33, 54].
Although there is reason to question immunodetection of GLP-1R expression using
antibody-based methodologies available prior to 2013 [55], there is considerable evidence
that GLP-1R is functionally expressed in the endothelium, as activation with GLP-1 (7-36),
GLP-1R agonists, or DPP-4 inhibitors results in phosphorylation of endothelial nitric oxide
synthase (eNOS) at Ser1177, production of nitric oxide, and suppression of endothelin-1
expression [53, 56-59]. Studies in isolated aorta [60, 61], pulmonary arteries [62], and
rodent hearts [12, 16] also support that GLP-1 mediates vasodilation via an endothelial-
dependent mechanism. Signaling pathways implicated in these endothelial effects of GLP-1
include AMPK [56] and cAMP/PKA-PI3K/Akt dependent activation of Katp channels
(Summarized in Figure 1) [51, 59, 61, 63]. In contrast, in isolated rat femoral arteries GLP-1
produced endothelium-independent vasodilation [64], and other studies report little or no
effect of GLP-1 (7-36) in isolated conduit coronary arteries [30]. These observations may
highlight species differences, but may also reflect differing responsiveness in micro versus
macro vessels.
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There is little evidence to support prominent direct vasodilator effects in vivo in higher
mammals; systemic administration of GLP-1 based therapeutics failed to significantly alter
blood pressure in dogs or pigs [8, 14, 30, 33, 35]. In humans, as reviewed above, there is a
modest effect to lower blood pressure; no studies have directly evaluated vasodilator
function in large vessels in humans.

With regard to microvascular flow and tissue perfusion, GLP-1 has been shown to augment
skeletal muscle microvascular blood flow in rats [59, 65] and to augment coronary blood
flow in dogs and humans [14, 66], however, it is likely that the vasodilation observed in
these experiments was directly related to increases in metabolism; i.e. mediated by local
metabolic vasodilator influences [67]. This contention is supported by data demonstrating
that GLP-1 mediated increases in coronary blood flow are accompanied by increases in
myocardial oxygen consumption [14] and by experiments that found no effect of
intracoronary GLP-1 administration (10 pM to 1 nM) on coronary blood flow or coronary
venous PO, [30]. Furthermore, other studies also report little or no effect of GLP-1 on
skeletal muscle blood flow in humans [68] or on coronary blood flow in large animal models
[8, 13, 33, 69] and humans [33]. GLP-1 was found to augment endothelium-dependent, but
not endothelium-independent, vasodilation in the forearm of non-diabetic [70] and type 2
diabetic humans [49]. However, in the context of a more complex pathology (i.e. Metabolic
Syndrome), GLP-1 was found to enhance both endothelium dependent and independent
insulin mediated forearm vasodilator responses [71]. Taken together, these findings indicate
that activation of GLP-1R can protect against endothelial dysfunction and therefore possibly
be of benefit regarding the initiation and progression of vascular disease. However, GLP-1
has little effect on systemic vascular resistance or blood flow to skeletal or cardiac muscle.
At present, many large clinical trials to address the efficacy of GLP-1 based therapies to
attenuate atherosclerotic disease are underway but the only completed studies, both using
DPP-4 inhibitors, failed to observe a net cardioprotective effect of this therapy [72, 73].

IMPLICATIONS FOR CARDIOVASCULAR RISK IN GLP-1 TREATED
POPULATIONS

With the widespread adoption of GLP-1 mimetics and DPP-IV inhibitors into clinical
practice for the treatment of diabetes mellitus there is now a worldwide population of
individuals with pre-existing cardiovascular risk being exposed to these agents. As reviewed
elsewhere in this collection and in the above review, there is reason to believe that these
GLP-1 related agents may exert beneficial effects in the setting of ischemia. Similarly, the
available animal data suggest that GLP-1 related therapeutics could produce beneficial
effects on cardiac function through reductions in afterload, improvements in diastolic
relaxation, and improved flow-metabolism matching in the myocardium. There are,
however, two important caveats. First, the majority of the data evaluating the hemodynamic
and anti-ischemic effects of GLP-1 related agents have been conducted in hon-obese, non-
diabetic animal models. The important and promising data that have been produced in
humans [66] demonstrating a clear beneficial effect of exenatide to minimize myocardium at
risk with infarction were collected in a majority non-diabetic population; this study is
underpowered for subgroup analyses to evaluate effects specifically within diabetic patients.
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Data from our laboratory and others suggest that obesity and diabetes impair the beneficial
effects of GLP-1 treatments in the heart, with the clear implication that the population who
will most commonly be treated with GLP-1 related agents may not accrue the anticipated
metabolic and anti-ischemic benefits [33, 66, 74]. This lack of effect in the setting of
metabolic disease may help explain the observed lack of cardioprotective effects in the
recently published large-scale clinical trials evaluating cardiovascular safety of aloglitpin
and saxagliptin [72, 73].

SUMMARY AND FUTURE DIRECTIONS

Extensive data exist supporting a role for GLP-1 based therapies in mitigating cardiac
damage and modulating cardiovascular behavior. However, despite an overwhelming body
of evidence supporting cardiovascular actions of GLP-1 and its analogues, results are
tremendously discrepant across species. Small animal models demonstrate significant dose-
dependent pressor responses to GLP-1 with accompanying modifications of heart rate.
These effects, which appear to be mediated largely through central actions, are absent in
larger animal models and humans (See Figure 2). Future investigation must examine the
origins of this discrepancy to establish whether these effects in small animals are
informative regarding central control of hemodynamics, but the net physiologic effects are
not adequately informative regarding human disease. Of particular interest will be
investigations in the heretofore uninvestigated potential for central actions in large animals.

Regardless of animal model, GLP-1 mediated cardiovascular responses are heavily modified
by the presence of overt cardiovascular disease. In large animals effects of GLP-1 have
predominantly been investigated in models with cardiac disease (i.e. ischemia or dilated
cardiomyopathies); only a limited dataset allows evaluation of healthy animal responses.
There is a clear need for further studies in the setting of, metabolic disease such as obesity or
type 2 diabetes. These investigations are key as obese subjects with type 2 diabetes are the
primary populations that are prescribed these agents. Recent work by Moberly and
colleagues has highlighted the potential for cardiac GLP-1 “resistance” in the setting of
obesity and type 2 diabetes. Whether this phenomenon has a functional consequence with
regard to cardiac performance is unknown.

Finally, load-independent assessments of changes cardiac contractility in response to
exogenous GLP-1 based therapies are essential in determining the potential therapeutic
value of GLP-1 and its analogues. While evidence clearly suggests effects to augment
cardiac output and developed pressure, investigations of the underlying physiologic
mechanisms both support and refute true inotropic effects of GLP-1 compounds. If GLP-1
acts to augment function via a Frank-Starling effect, this may prove to be energetically
favorable compared to effects of direct inotropes and this may allow for a safer approach to
treating myocardial dysfunction.
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Figure 1.
A graphical representation of putative pathways downstream from GLP-1 receptor

activation in endothelial cells, vascular smooth muscle cells and cardiomyocytes. Pathways
presented within this figure represent a compilation of data from multiple species.
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Figure2.
A schematic summary of cardiovascular outcomes resulting from GLP-1 based therapies in

rodents (left), higher mammals (center) and humans (right). Black arrows reflect physiologic
responses in healthy animals whereas gray arrows indicate responses measured with in
animals with concurrent cardiovascular disease.
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