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Abstract

Objective—Multilevel models have become a standard data analysis approach in intervention

research. Although the vast majority of intervention studies involve multiple outcome measures,

few studies use multivariate analysis methods. The authors discuss multivariate extensions to the

multilevel model that can be used by psychotherapy researchers.

Method and Results—Using simulated longitudinal treatment data, the authors show how

multivariate models extend common univariate growth models and how the multivariate model

can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the

treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome

related to change in the other?). An online supplemental appendix provides annotated computer

code and simulated example data for implementing a multivariate model.

Conclusions—Multivariate multilevel models are flexible, powerful models that can enhance

clinical research.
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Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

Multilevel (mixed) models (Hox, 2010; Raudenbush & Bryk, 2002) have become a standard

method for analyzing psychotherapy outcome data given the hierarchical structure of

psychotherapy data, for example: (a) observations (level-1) clustered within persons

(level-2) in longitudinal data (Singer & Willet, 2003), (b) patients (level-1) clustered within
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therapists or groups (level-2; Crits-Christoph & Mintz, 1991; Wampold & Serlin, 2000), and

(c) effect sizes (level-1) clustered within studies (level-2) in meta-analysis (Hox, 2010).

Moreover, it is not unusual to have additional grouping factors that can lead to three or more

levels within psychotherapy data (e.g., repeated measures on individuals nested within

couples; Atkins, 2005).

The hierarchical structure of psychotherapy data is important for both substantive and

methodological reasons. Substantively, we are often interested in variability among higher-

level factors, such as person-to-person variability or therapist-to-therapist variability

(Baldwin & Imel, 2013; Crits-Christoph et al., 1991; Imel, Baldwin, Bonus, & Maccoon,

2008; Saxon & Barkham, 2012). Methodologically, the hierarchical structure leads to

correlations among the observations within a cluster. For example, in group therapy, data

from patients within the same group are likely to be correlated relative to data from patients

in other groups. This correlation violates the assumption of independence of observations

common to most statistical tests, which can lead to biased p-values, incorrect confidence

intervals, and inflated effect sizes (Baldwin, Murray, & Shadish, 2005; Crits-Christoph &

Mintz, 1991; Wampold & Serlin, 2000). Multilevel models accommodate the correlation

among observations by modeling between-cluster variability via additional error terms

called random effects (Raudenbush & Bryk, 2002; Singer & Willet, 2003) and are also more

flexible regarding ignorable missing data and the correlation structure of the residuals than

earlier methods (e.g., ANOVA; Singer & Willet, 2003). In addition, multilevel models can

accommodate longitudinal data where participants are measured on different schedules

(Hox, 2010), treat time as categorical, continuous, or some combination (Singer & Willet,

2003), be extended to situations where clustering affects some participants but not others

(Baldwin, Bauer, Stice, & Rohde, 2011; Bauer, Sterba, & Hallfors, 2008), and accommodate

non-normal outcomes (Rabe-Hesketh & Skrondal, 2008). Overall, multilevel models

represent highly useful statistical tools for psychotherapy researchers.

However, one particular class of multilevel models has not been widely adopted within the

psychotherapy research community—multivariate multilevel models, which extend

multilevel models to two or more outcomes (Hox, 2010; MacCallum, Kim, Malarkey, &

Kiecolt-Glaser, 1997).1 It is unusual to find psychotherapy research studies that only involve

a single outcome variable. However, few researchers employ multivariate techniques when

evaluating multiple outcomes, especially when multilevel models were used to analyze

outcomes. As we will show, this omission results in a failure to test important theoretical

questions that are best examined in the multivariate, multilevel context.

Historically, psychotherapy researchers regularly used multivariate data analysis methods,

such as MANOVA, to control the experiment-wise Type I error rates. For example, a

common strategy was to test for a treatment effect across outcomes using MANOVA and

follow-up with series of ANOVA analyses on each outcome. Thus, even when MANOVA

was used, the fundamental focus of the analysis was on univariate hypotheses. However,

multivariate models can be used to address multivariate hypotheses. Examples of

1Occasionally, the term multivariate is used to refer to models with a single outcome variable but with multiple predictor variables. In
this paper, we use the term multivariate to refer to models with two or more outcome variables.
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multivariate hypotheses include testing whether outcomes have different average rates of

change (Kaysen et al., 2011) or whether change in one outcome is related to change in

another (Suvak, Walling, Iverson, Taft, & Resick, 2009).

The present paper introduces multivariate multilevel models for intervention research and

illustrates how to fit and interpret the models. Example data throughout focuses on

examining relationships between primary and secondary outcomes in a randomized trial. We

examine whether predictor variables (e.g., treatment condition) have different relationships

across outcomes and model relationships between outcomes (e.g., how is change in one

outcome related to change in another). Although a brief overview of univariate multilevel

models included as a bridge for to multivariate models, we assume that readers have a basic

familiarity with univariate multilevel models. Readers desiring a more in-depth discussion

of univariate models can consult a number of excellent textbooks (Gelman & Hill, 2007;

Raudenbush & Bryk, 2002; Singer & Willet, 2003). We have included an online appendix

that provides annotated code for fitting these models in Stata, SAS, SPSS, R, and Mplus.

Differential Fixed Effects Across Outcomes

Most intervention studies include multiple outcomes. For example, a study comparing

cognitive-behavioral therapy and acceptance and commitment therapy for depression may

include depression measures as well as quality of life measures, which could be classified as

primary (depression) or secondary (quality of life) outcomes. Researchers may be interested

in whether treatment effects differ by outcome type for both clinical and theoretical reasons.

Clinically, patients presenting for treatment of depression may be most keenly interested in

the impact of treatment on their depressive symptoms, though improvement in all areas of

their life would likely be welcome. Further, a cognitive-behavioral therapy that explicitly

targets depression symptoms might be expected to have an earlier and potentially larger

impact on these symptoms (i.e., quality of life might improve as a result of decreases in

depression). Theoretically, some have argued that larger treatment effects for primary

outcomes are consistent with the hypothesis that factors specific to a treatment package,

rather than factors common across treatment packages, are partially responsible for change

(Hofmann & Lohr, 2010).

Most researchers do not directly test for differential treatment effects across outcomes, yet

they often interpret their results as if they had tested for differential effects. Indeed, in our

review work, we often find researchers invoking the “eyeball test” in such situations, noting

simply that effects for primary outcomes were “larger” than those for secondary outcomes.

Thus, results sections from clinical research usually involve using multilevel models, or a

similar analysis technique, to examine intervention effects one outcome at a time. Even if

the outcomes are grouped in primary and secondary categories, such grouping is usually for

the purposes of the written report rather than incorporated directly into the data analysis. The

results are then summarized with respect to which outcomes had significant treatment

effects and which did not. For example, McDonagh et al. (2005) randomized participants

meeting criteria for posttraumatic stress disorder (PTSD) to cognitive-behavioral therapy

(CBT), present centered therapy (PCT), and wait-list (WL). In the analysis, the authors

examined treatment effects across each outcome (using the group×time interaction in a
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repeated measures ANOVA and post-hoc tests). The authors found a statistically significant

intervention effect for PTSD symptoms but not for depression. The authors interpret the

statistical significance for one outcome but not the other as important: “The fact that this

treatment [PCT] had more of an impact on PTSD symptoms than on depressive symptoms

suggests its mechanism is not simply an antidepressant effect such as has already been

demonstrated for problem-solving therapy” (p. 522).

However, comparisons of intervention effects require a statistical test of the difference (cf.

Nieuwenhuis, Forstmann, & Wagenmakers, 2011). In other words, we need an explicit test

of whether the size of the intervention effect depends upon the outcome type—we need to

test the intervention effect by outcome interaction. The idea is similar to moderator analyses

in psychotherapy meta-analyses, in which one tests whether an effect size (i.e., treatment

effect) varies as a function of study characteristics.

To get a sense of how often researchers analyze multiple outcomes and do not investigate

whether treatment effects vary across outcomes, we reviewed randomized trials that used

multilevel models published in the Journal of Consulting and Clinical Psychology from

2009 to 2012. We coded whether the study included multiple outcomes and whether the

authors used multivariate methods to investigate differential treatment effects. We identified

60 randomized trials that used multilevel modeling to estimate treatment effects for multiple

outcomes. Of these 60, one tested for differential treatment effects across outcomes (Jouriles

et al., 2009), suggesting a profound mismatch between study design—with multiple

outcomes—and study analysis.

Extending the Univariate Multilevel Model

Testing multivariate hypotheses about fixed effects can be accomplished by extending

multilevel models to accommodate two or more outcomes. To illustrate the extension, we

simulated data to mimic a clinical trial comparing cognitive-behavioral therapy (CBT) to a

no-treatment control for the treatment of depression, three timepoints (baseline,

midtreatment, posttreatment), 100 participants (50 per condition), and two outcomes—

depression and quality of life. We coded time as 0, 1, and 2, with 0 representing the baseline

timepoint. We also coded treatment condition (Tx) as 1 for CBT and 0 for control. In the

population model, the treatment effect for depression was a .5 standard deviation difference

at posttreatment (time 2) between CBT and control and there was no treatment effect for

quality of life.

The univariate growth-curve models for each outcome can be written as follows (Singer &

Willet, 2003):

(1)

(2)

Focusing on Equation (1), y1ij is the depression outcome at time i for person j. β10 is the

overall intercept, and like all intercepts, it represents the expected depression value (i.e.,
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mean) of the outcome when all predictors are equal to 0, in this case when Timeij = 0

(Baseline) and Txj = 0 (control). Changing the coding method for time or treatment

condition (or by including other variables in the model) will alter the specific interpretation

of the intercept (see Singer and Willet, 2003, for a discussion of alternative methods for

coding time). β11 is the average rate of change in depression symptoms during treatment for

the control condition, β12 is the mean difference between CBT and control at baseline, β13 is

the difference in rate of change between CBT and control (i.e., the treatment effect), u1j is a

random effect representing person-specific differences at baseline (i.e., unique baseline

values for each participant), v1j is a random effect representing person-specific differences in

change during treatment (i.e., unique rate of change for each participant), and e1ij is residual

error. The parameters in Equation (2) have identical interpretations except they pertain to

quality of life.

Because the data in our example are longitudinal, the repeated observations within an

individual are correlated. The random effects described above allow us to accommodate this

correlation. Specifically, the models in Equations (1) and (2) assume that observations are

independent conditional on the random effects (i.e., uncorrelated once the random effects are

taken into account) and that the random effects are normally distributed (Singer & Willet,

2003):

(3)

(4)

Focusing on Equation (3) the random effects for depression, u1j and v1j, come from a normal

distribution with a mean of 0, variances of  and , and a covariance of . The

parameters in Equation (4) have identical interpretations except that they pertain to quality

of life. It may not be obvious at first glance, but Equations (3) and (4) encapsulate one of the

advantages of multilevel models. The models shown in Equations (1) and (2) model the

person-to-person variability in intercepts and slopes via random effects. However, multilevel

models accomplish this by assuming that these intercepts and slopes come from a

distribution of intercepts and slopes that are normally distributed. Thus, as opposed

estimating 100 distinct intercept and 100 distinct slopes to capture between person

heterogeneity in intercepts and slopes, multilevel models accomplish this by estimating two

variances and a covariance.2 The residual errors are also normally distributed, with unique

residual variances for each outcome:

2Note that the when using maximum likelihood methods to estimate these models, the random effects are not estimated. Rather, the
variance/covariance matrix of the random effects is estimated. The random effects can be predicted using empirical Bayes methods
(Raudenbush & Bryk, 2002).
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(5)

(6)

By fitting two independent models in Equations (1)–(6), we implicitly assume that

depression and quality of life are independent. This is untenable as two outcomes from the

same participant are almost certainly related. For example, change in depression is likely

correlated with change in quality of life; thus, we should estimate the covariance between

the random slopes (v1j and v2j). Further, because the outcomes are repeated measures on the

same person, there will likely be a relationship between the residual errors (Fieuws &

Verbeke, 2004). As discussed below, ignoring these relationships across outcomes will

cause problems for tests of the difference between treatment effects.

A multivariate model can address these limitations because it allows us to model the

relationships between the variables via correlations amongst the random effects and amongst

the residuals (Hox, 2010; MacCallum et al., 1997). To help bridge the univariate and fully

multivariate model, we describe a form of the multivariate multilevel model that makes the

same assumptions as the two univariate models described above and is identical except that

both outcomes are model simultaneously rather than sequentially. We then show how the

assumptions inherent to the univariate models can be relaxed so that a fully multivariate

model can be estimated.

In the univariate models, we described the random effects as coming from two distinct

multivariate normal distributions described in Equations (3) and (4). In a multivariate model

—that is, a model that includes both depression and quality of life simultaneously—the

random effects are drawn from a single multivariate normal distribution (Snijders & Bosker,

2012). A multivariate normal distribution consistent with Equations (3) and (4) can be

expressed as follows:

(7)

The covariance matrix for the random effects in Equation (7), ΩG, contains the same four

variance components and the same two covariances as in Equations (3) and (4). However,

Equation (7) makes explicit that we assume no relationship among the random effects across

outcomes by constraining the between-outcome covariances to 0. For example, the

covariance in the third row and first column is fixed to 0 and represents the covariance

between the random intercept for depression and the random intercept for quality of life.

Like the random effects, the multivariate model assumes the residuals come from a single

multivariate normal distribution rather than two univariate normal distributions (Snijders &

Bosker, 2012). A multivariate normal representation of Equations (5) and (6) is:

Baldwin et al. Page 6

J Consult Clin Psychol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(8)

We refer to a multivariate model the estimates the growth models in Equations (1) and (2)

and covariance matrices described in Equations (7) and (8) as the multivariate independent

outcomes model. The independent outcomes model is simply a multivariate version of our

earlier univariate models that we use as a baseline to compare multivariate models that allow

a relationship between the outcomes.

As noted previously, the problem with the independent outcomes model is that it assumes

that depression and quality of life are unrelated. If we are interested in testing parameters

that are fundamentally multivariate, the independence model will lead to problems. For

example, if our goal was to understand whether CBT had a stronger effect relative to no

treatment on depression than on quality of life (i.e., a parameter that involves multiple

outcomes), then the independence model will produce an incorrect hypothesis test and

confidence interval, as we show below.

A multivariate model that estimates the relationships between random effects across

outcomes and residuals across outcomes will produce appropriate estimates and standard

errors for multivariate parameters. We call this type of model a multivariate related

outcomes model. In the related outcomes model, all covariances between each random effect

are estimated:

(9)

Thus, we now estimate the covariance between any combination of random intercepts and

slopes—we no longer constrain the between-outcome covariances to 0 as we did in Equation

(7). For example, the covariance between the random slopes, which describes the covariance

between the rate of change in depression and quality of life, is σv1v2. The related outcomes

model also estimates a covariance among the residual errors rather than constraining the

covariance to 0 as we did in Equation (8):

(10)

The only difference between the independent outcomes and related outcomes models are the

covariances among the random effects across outcomes and the covariance among the

residuals. These covariances can be important because they (a) can be interpreted

substantively (e.g., what is the correlation between intercepts and slopes across the two

outcomes?) and (b) impact statistical tests for multivariate parameters.
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Data Set-up for Multivariate Models

Before turning to the application and results of the multivariate multilevel models, we

briefly comment on data set-up. Multilevel modeling software developed from a structural

equation model framework (e.g., Mplus) will typically expect the data to be in the wide

format shown in Table 1. Consequently, multiple equations much like those represented

above in Equations (1), (2), (9), and (10) can be specified. However, for most multilevel

software packages (e.g., xtmixed in Stata, PROC MIXED in SAS, lme4 in R), we must

combine Equations (1) and (2) into a single equation using a set of indicator variables to

define which observations go with depression and quality of life. The long dataset in Table 1

provides an example of how the data must be organized for a single equation model. The

values for depression and quality of life are combined into a single outcome variable, yhij,

where h indexes the outcome measure. We also create two indicator variables, dj and qj,

where dj = 1 for depression and 0 for quality of life and qj = 1 for quality of life and 0 for

depression. (Connecting the symbols to the actual column names in Table 1: yhij = Y, dj =

Depression, and qj = Quality of Life.) We then combine Equations (1) and (2) with the

indicator variables to produce a single equation:

(11)

The random effects (u1j, u2j, v1j, and v2j) and residual errors (e1ij and e2ij) are distributed as

in Equations (9) and (10), respectively.

We can verify that Equation (11) is identical to Equations (1) and (2) by examining the

value of yhij when plugging in the appropriate values of dj and qj for depression and quality

of life. The value of yhij for the depression outcome is:

(12)

Likewise, the value of yhij for quality of life is:

(13)

Differential Treatment Effects

Using the simulated treatment data, we examined the differential treatment effects of CBT

versus control on depression and quality of life. The online appendix material provides the

data and annotated syntax for estimating these models in Stata, SPSS, SAS, Mplus, and R.

We report the output from xtmixed in Stata using maximum likelihood estimation, although

the software packages provide identical results out to 4 to 5 decimals places. In this section,

we first compare the results and fit of the univariate, multivariate independent outcomes, and

multivariate related outcomes models so that we can compare the results of each model.

Second, we show how to test for differential treatment effects using a post analysis contrast

and how the standard error for this contrast differs across the multivariate independent
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outcomes and multivariate related outcomes models. Third, we describe two methods in

addition to the post analysis contrast for testing differential treatment effects. Finally, testing

differential treatment effects across outcomes requires that the outcomes be on the same

metric. We discuss why outcomes need to be on the same metric and how one can use

standardized scores in situations where outcomes are on different metrics and one wants to

test differential effects.

Table 2 provides the estimates and standard errors for the fixed effects, the variance and

covariance estimates for the random effects and residuals, and the deviance for each model.

Table 2 makes clear that the independent outcomes model is identical to the two univariate

models put together. The independent outcomes model estimates all the parameters in the

two univariate models. Furthermore, the deviance, a measure of model fit (Singer & Willet,

2003), of the independent outcomes model is the sum of the deviance of the two univariate

models. Thus, we can use the independent outcomes model as a comparison to investigate

whether the multivariate related outcomes model improves upon the univariate models

typically used in clinical research.

Because the independent outcomes model is nested within the related outcomes model, we

can test whether the addition of the covariances among outcomes in the random effects and

residuals significantly improves fit using a likelihood ratio test. The independent outcomes

model is considered nested within the related outcomes model because the independent

outcomes model (a) uses the same data as the related outcomes model and (b) is a

constrained version of the related outcomes model (i.e., the between-outcome covariances

are constrained to zero). The likelihood ratio test compares the difference between the

deviances of the models (1501.63 − 1444.80 = 56.83; smaller is better) to a χ2-distribution

with degrees of freedom equal to the difference in the number of parameters between

models (21 − 16 = 5). There are five additional parameters as the related outcomes model

includes four additional covariances in the random effects of intercepts and slopes, and also

allows the residual errors to be correlated. The likelihood ratio test equals χ2(5)=56.83, p<.

001, which indicates that the related outcomes model fits the data better than the

independent outcomes model. This test is also a joint test of the significance for the

additional covariance parameters in the related outcomes model.

Although the related outcomes model has the best fit, Table 2 indicates that the parameter

estimates do not change from independent model to fully multivariate model. Thus, it is

reasonable to ask why should we bother with the multivariate model? All parameter

estimates in Table 2, except for the covariances among the random effects between

outcomes and covariance among residuals between outcomes, are univariate parameters—

only data from one of the outcomes contributes to the univariate estimates. Consequently,

the estimates and standard errors, for both the fixed effects and variance/covariances, are

identical across models. In some cases, some parameters are not estimated and thus assumed

zero but that does not affect the estimates of the univariate parameters. However, when we

consider multivariate parameters, the differences between the independent outcomes and

related outcomes models is important.
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The additional covariances will affect tests of whether the treatment effects differ across

outcomes. First, consider the univariate treatment effects for depression and quality of life,

which are the two time×treatment interactions terms, β13 and β23. Each coefficient describes

the difference in rate of change among the intervention conditions for each outcome

separately, with the null hypothesis being that there is no difference between conditions. The

time×treatment interaction for depression was β13=−.41 (p < .05, 95% CI = −.60, −.22)

whereas the time×treatment interaction for quality of life was β23=−.09 (p = .41, 95% CI =

−.30, .12). Thus, we reject the null hypothesis of no treatment effect for depression but not

for quality of life. We may be tempted to also conclude that the effects of treatment versus

control are larger for depression than quality of life. However, this would be incorrect

because we have only tested the univariate null hypothesis that each coefficient is zero. We

have not tested whether the coefficients differ from one another—that is, we have not tested

the multivariate null hypothesis that β13 − β23=0.

To test the null hypothesis that β13 − β23=0 we can use a post-analysis contrast. A common

form for this test is:

(14)

where the denominator is the standard error of the difference between treatment effects, 

and  are the expected variability of the treatment effect across samples and σβ13β23 is the

covariance between the treatment effects across samples.3 As we have seen, the independent

outcomes and related outcomes models will provide identical estimates of β13 and β23, so the

numerator in Equation (14) will be identical across models. Thus, the key part of Equation

(14) is the standard error, specifically the covariance, σβ13β23. If depression and quality of

life are correlated, then independent outcomes misspecifies the relationships among the

random effects and among the residuals and σβ13β23 will incorrectly be set to 0. In contrast,

the related outcomes model correctly specifies the relationships among the random effects

and residuals and σβ13β23 will be positive. The misspecification in the independent outcomes

model means the standard error will be too large and will thus reduce power.

The test of differential treatment effects was significant in both the independent outcomes

(β13 − β23=−0.32, se = 0.15, z = −2.23, p = 0.03) and related outcomes model (β13 − β23=

−0.32, se = 0.10, z = −3.14, p = 0.002). Note, however, that the standard error in the

independent outcomes model was 50% larger than in the related outcomes model because

the independent outcomes model does not take into account the correlation among the

outcomes. To provide a sense of how the larger standard error will impact power, we

simulated 10,000 additional datasets using the population parameters described above and fit

the independent and related outcomes models to each dataset. To assess power, we

computed how often the test of the differential treatment effects was significant across the

10,000 datasets. Power was 0.81 for the related outcomes model and 0.68 for the

independent outcomes model, a 16% decrease in power.

3These variances and covariances are part of the asymptotic variance/covariance matrix of the fixed effects. See the online appendix
for instructions how to request this information within statistical packages.
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Equation (14) is not the only method for evaluating differential intervention effects. A

second method is to use a likelihood ratio test to compare the fit of a model that estimates

distinct treatment effects by outcome such as Equation (11) to a model that estimates a

common treatment effect for outcomes. The model with a common treatment effect is

identical to Equation (11) except in the second model we estimate a common time×treatment

interaction (underlined):

(15)

The common time × treatment is constructed by multiplying the time variable and the

treatment indicator irrespective of outcome type. This is in contrast to Equation (11) where

the time × treatment interaction is multiplied by the outcome variable indicators so that

unique treatment effects can be estimate for each outcome. The null hypothesis for the

likelihood ratio test is that there is no difference in model fit between the model with a

common time×treatment interaction—Equation (15)—and the model with unique

time×treatment interactions—Equation (11).4 In our example, the likelihood ratio test was

significant, χ2(1)=9.43, p<.01, indicating that the model with unique treatment effects for

outcome types fit the data better than the model with a common treatment effect.

The third method for testing for differential treatment effects is to add a three-way

interaction between time, treatment, and either dj or qj to Equation (15):

(16)

It does not matter whether we use dj or qj; however, because we used dj then β3 is

interpreted as the time×treatment interaction for quality of life and β4 is difference between

the time×treatment interaction for depression and the time×treatment interaction for quality

of life. Thus, the null hypothesis for β4 is that there is no difference between the

time×treatment interaction across outcomes—that is, the treatment effect does not differ

with respect to outcome. The significance test for β4 is identical to the post-analysis contrast

of the difference between β13 and β23 from Equation (11).

Suppose that none of the tests of the differential treatment effect was significant. This would

indicate that the outcomes share a common treatment effect. In that case, the model in

Equation (15), which estimates a common treatment effect across outcomes, could be used

in place of the model in Equation (11), which estimates unique treatment effects. Note that

this simplification is justified because we formally tested whether the coefficients differed.

4Because Equations (11) and (15) differ with respect to the fixed effects, the likelihood ratio test can only be used if maximum
likelihood rather than restricted maximum likelihood estimation was used (see Singer & Willet, 2003, for an introductory disscussion
of likelihood ratio tests).
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Simply evaluating the significance of the coefficients in Equation (11) does not provide a

basis for estimating a common effect.

Although we have focused on using these tests to evaluate differential treatment effects

across outcomes, the three methods we described can be used to test whether any fixed

effect differs across outcomes. For example, in a psychopathology study, we could use these

methods to evaluate whether the average growth in one variable differs from the average

growth in a second variable. Furthermore, these tests can be extended to more than two

outcomes in which once can test whether all effects are equal.

In order for the tests of differential treatment effects, or any test of differences between fixed

effects, to be interpretable, it is essential that the outcome variables be on the same metric as

they were in our example. Recall that the null hypothesis for the differential treatment effect

is that β13 − β23=0. The scale of β13 and β23 are dictated by the scale of the outcome

variable. If depression and quality of life are on different metrics then the difference

between the coefficients may be non-zero as function of the metrics rather than a real

difference. Consequently, the difference will be difficult, if not impossible, to interpret and

the hypothesis test incorrect. This is precisely the same problem faced in meta-analysis. In a

meta-analysis of randomized trials we aim to compare treatment effects across different

measures with different scales. To solve this problem we standardize the treatment effects

using effect sizes. In treatment meta-analyses, we often use Cohen’s d, which expresses

mean differences in terms of standard deviation units. We recommend a similar strategy for

multivariate models where the outcome variables are on different metrics and where the aim

of the analysis is to test differences in fixed effects across outcomes. The standardization

could take several forms but a reasonable choice would be to create z-scores using the mean

and standard deviation from all time points.

Examining the Relationship Between Outcomes

Up to this point we have used the multivariate multilevel model to examine whether the

relationship between a predictor variable (e.g., treatment condition) and the outcome

variable differed across outcomes type (e.g., depression versus quality of life)—that is, we

compared the fixed effects across outcomes. We can also use the multivariate model to

examine the relationship between the outcomes. Suvak et al. (2009) used multivariate

multilevel models to explore the relationship between intrusion and avoidance over time in a

sample of trauma survivors. For example, they examined the correlation between rate of

change in intrusion symptoms and avoidance symptoms (i.e., the correlation between the

random slopes) as well as the correlation between initial intrusion symptoms and rate of

change in avoidance symptoms (i.e., the correlation between the random intercept and

random slope) and vice versa.

In our example data, we considered the two categories of correlations used by Suvak et al.

(2009). The first category of correlation is to examine the relationship between similar

parameters across outcomes. We can examine the relationship between the random

intercepts from each outcome to assess how the person-specific baseline values are related.

Likewise, we can examine the relationship between the random slopes from each outcome to
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assess how the person-specific rates of change are related. The formulae for the correlation

between intercepts, rI, and slopes, rS, are (Fieuws & Verbeke, 2004):

(17)

(18)

Each of the components in Equations (17) and (18) are drawn from the covariance matrix of

the multivariate related outcomes model described in Equation (9) and displayed in Table 2.

Thus, the numerator of Equation (17) is the covariance between the random intercepts and

the denominator is the product of the square root of the variance of the intercepts. Equation

(18) is identical except it involves the variances and covariance of the random slopes. The

correlation among the intercepts was rI =.26,5 indicating a small positive relationship

between the person-specific baseline values of depression and quality of life. The correlation

among the slopes was rS =.76, indicating a strong positive relationship between the person-

specific rates of change for depression and quality of life.

Power can be a significant challenge when estimating the relationship between slopes.

Hertzog, Lindenberger, Ghisletta, and von Oertzen (2006) showed that power to detect

relationships among slopes can be low even with large samples and several measurement

occasions.6 A key factor in determining power is what they called Growth Curve Reliability,

which can be defined as the proportion of the total variability in an outcome that is

accounted for by person-to-person variability in intercepts and slopes. If the reliability is

low, power for examining the relationship between slopes will typically be low, even when

sample sizes are large. Researchers wishing to examine relationships between outcomes will

need to consider these issues when designing their studies and interpreting the results of the

multivariate models.

The second category of correlation is to examine the relationship between distinct

parameters across outcomes. Substantively, we might consider whether baseline quality of

life affects the rate of change in depression symptoms. The formula for the correlation

between the random intercepts for quality of life and the rate of change for depression is:

(19)

5Standard errors for this correlation, as well as the others described in this section, can be obtained using the delta method (Fieuws &
Verbeke, 2004). Stata and Mplus will provide standard errors based on the delta method. However, the delta method assumes the
sampling distribution of these correlations is normally distributed, which it is not. Consequently, the delta method can produce
problematic results, such as confidence intervals that exceed the boundary of a correlation. Alternatives include fitting a model with a
covariance a model with the covariance constrained to zero and using a likelihood ratio test to compare the fit. Additionally,
bootstrapping the confidence intervals can be helpful. Finally, Bayesian methods provide a useful alternative for interval estimation
for correlations (Baldwin & Fellingham, 2012).
6We thank an anonymous reviewer for pointing us toward this reference.
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The formula the correlation between the random intercepts for depression and the rate of

change for quality of life has the same form but uses the appropriate parameters. There was

a small negative correlation between baseline values for quality of life and rate of change in

depression, rIS = −.23. The correlation between baseline values in depression and rate of

change in quality of life was also small and negative, rIS = −.16. Thus, there was little

relationship between a participant’s baseline standing on one outcome and the rate of change

on the other outcome.

Extending the Model to Three or More Outcomes

The multivariate model can be extended to three or more outcomes by adding fixed and

random effects for the third outcome. For example, suppose in addition to depression and

quality of life we also measured anxiety symptoms. To Equations (1) and (2) we would add

the following equation:

(20)

where the parameters have the same interpretation as before except the pertain to anxiety. In

order to accommodate the model with three outcomes in software that expects the data in

long format, we would again use indicator variables to identify which parameters go with

particular outcomes. In this case, we create three indicator variables, dj, qj, and a j, where dj

= 1 for depression and 0 for the others, qj = 1 for quality of life and 0 for the others, aj = 1

for anxiety and 0 for the others. As previously, we use the indicator variables to create a

single equation:

(21)

The variance/covariance matrices for the random effects and the residuals are also extended.

The random effects matrix includes all six random effects:

(22)

The residual matrix includes all three residuals:

(23)
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For both matrices the interpretation of the parameters is the same as discussed previously

except now the matrices include additional variances and covariances involving the third

outcome.

The types of question we can examine with three or more outcomes are similar to the model

with two outcomes. We can compute the correlations among the random effects. Likewise,

we can compare whether treatment effects differ across the three outcomes or whether the

treatment effect on depression differs from the average of the other outcomes. As before,

scaling of the outcome variables needs to be identical for the comparisons to be meaningful.

We can also estimate a joint test of whether all three treatment effects are zero using a post-

analysis contrast. However, the simplest way is to use a likelihood ratio test that compares

the fit of the model in Equation (21) to a model that is identical to Equation (21) except that

it excludes all time × treatment effects (i.e., fixes all treatment effects to zero).

The model with three outcomes is considerably more complex than even the model with two

outcomes. For example, the model with three outcomes involves 39 parameters and the

model with two outcomes involves 21 parameters. It can be challenging to ensure that the

more complicated model is correctly specified in software programs as there are many

variables and interactions in both the fixed and random effects portions of the model.

Furthermore, most multilevel software was not explicitly designed to model multivariate

data in this way. Consequently, estimation can be slow, especially with large datasets.

Multilevel software that is multivariate in nature, such as Mplus, typically does not have

much trouble estimating these models, even with large datasets.

Extensions

In the present paper, we detailed how to use multivariate multilevel models to examine the

relationship between multiple outcomes in a clinical trial. However, this is one of many

possible applications of multivariate models that psychotherapy researchers might use. For

example, models for dyadic psychotherapy data can be framed as a multivariate model.

Suppose one had collected martial satisfaction data three times for 100 couples. One way to

model this data is to use a 3-level multilevel model, with observations at level-1, participant

at level-2, and dyad at level-3. Alternatively, we could use a 2-level multivariate model with

two outcomes, one for each partner (Atkins, 2005, describes the benefits and drawbacks for

both 2- and 3-level models). This multivariate model is similar to our differential treatment

effects examples, except we would exchange the primary and secondary outcomes with the

partners’ outcomes. The actor-partner interdependence model for dyadic data can also be

estimated using a multivariate multilevel model (Kenny, Kashy, & Cook, 2006).

Multivariate multilevel models can be used in social relations modeling (Kenny, 1994;

Kenny et al., 2006) approaches to psychotherapy data. For example, Marcus, Kashy, and

Baldwin (2009) used a multivariate multilevel model to apply a social relations model to

therapeutic alliance data (see also Marcus, Kashy, Wintersteen, & Diamond, 2011). In this

study, patients and therapists each rated the alliance. The primary question was whether

therapists and clients agree with respect to their alliance ratings. That is, if a therapist

consistently rates her alliances as high across her caseload, do her patients also rate the
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alliance high across her caseload—the correlation among the patient and therapist alliance

ratings at the therapist-level. Additionally, they examined whether therapists and patients

agree within caseloads—the correlation among the patient and therapist ratings at the

patient-level (see also Imel, Hubbard, Rutter, & Simon, 2013).

Other examples of multivariate multilevel models relevant to psychotherapy data include

using them: (a) to examine mediation hypotheses in a multilevel context (Bauer, Preacher, &

Gil, 2006), in which both the dependent variable and the mediator(s) are included as

outcomes in the multilevel model; (b) to fit measurement models where item responses are

included as outcomes in the multilevel model (Zheng & Rabe-Hesketh, 2007); (c) to fit

multivariate meta-analyses where two or more effect sizes from a single study are analyzed

simultaneously (Riley, Abrams, Sutton, Lambert, & Thompson, 2007; White, 2011); (d) to

examine the relationship between outcomes with different distributional forms (e.g.,

comparing a normally distributed outcome to a binary outcome; Hadfield, 2010); and (e) to

simultaneously examine predictors unique to each outcome or different functional forms for

change across outcomes (e.g., linear change for one outcome and quadratic change for

another; MacCallum et al., 1997).

Another extension to the models we have presented is to estimate them from a structural

equation modeling perspective or from a perspective that combines multilevel modeling and

structural equation modeling.7 For example, Bollen and Curran (2006) discuss a multivariate

latent growth curve model similar to our example but where one estimates regression paths

between the random intercepts and slopes, rather than covariances only. For example, in an

alcohol treatment study, if we hypothesized that variability among patients in depressive

symptoms prior to treatment (i.e., random intercept for depression) would predict variability

in the rate of change in drinking behavior (i.e., random slope for drinking behavior), we

could estimate the regression path between the random intercept for depression and random

slope for drinking behavior.

Mehta and Neale (2005) also illustrate how multilevel factor analysis is an extension of the

multivariate multilevel models. They fit a multilevel factor analysis model to literacy data

that included five measures of literacy taken on students clustered within schools. They fit a

multilevel model with random intercepts for each of the schools. Rather than estimating

correlations among the random intercepts and residuals, they estimated a common factor at

both the school-level (i.e., random intercept) and student-level (i.e., residual). To be sure,

fitting such a model is challenging and may require more data than is typically available to

psychotherapy researchers. Nevertheless, Mehta and Neale’s (2005) example provides an

additional illustration of how we could extend the models discussed in this paper. Other

interesting methodological developments are likely to occur at the intersection of multilevel

modeling and structural equation modeling.

7The intersection between structural equation modeling and multilevel models has been discussed at length (e.g., Bauer, 2003; Curran,
2003; Skrondal & Rabe-Hesketh, 2004), with a number of writers illustrating how one can parameterize structural equation models to
reproduce a multilevel model (Bauer, 2003; Curran, 2003; Mehta & Neale, 2005). Theoretical work has been done to frame multilevel
models and structural equation models as special cases of a broader class of models known as generalized latent variable models
(Skrondal & Rabe-Hesketh, 2004). In fact, the notion that multilevel models and structural equation models are both latent variable
models is a foundational idea for some software programs including gllamm (which stands for Generalized Linear Latent and Mixed
Models) in Stata (Rabe-Hesketh, Skrondal, & Pickles, 2002) and Mplus (Muthén & Muthén, 2012).
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Conclusion

We introduced the multivariate multilevel model as a way to examine hypotheses that are

important to psychotherapy research. As with any methodology, advances in psychotherapy

research are not going to take place simply because we apply multivariate multilevel models

to our data. However, many, if not most, theories about how and why psychotherapy works

are multivariate in nature. As we have shown, these multivariate hypotheses can be

addressed with a multivariate multilevel model in ways that are not possible with univariate

models. We suspect as more researchers become familiar with these techniques we will see

more creative uses of multivariate models that improve our understanding of psychotherapy.
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Table 1

Wide and Long Datasets for Multivariate Multilevel Data.

Wide

ID Time Depression Quality of Life

1 0 −1.37 −0.58

1 1 −1.31 0.24

1 2 −0.52 0.01

2 0 0.05 2.00

2 1 −0.84 1.83

2 2 −1.86 0.31

Long

ID Time Y Depression Quality of Life

1 0 −1.37 1 0

1 1 −1.31 1 0

1 2 −0.52 1 0

1 0 −0.58 0 1

1 1 0.24 0 1

1 2 0.01 0 1

2 0 0.05 1 0

2 1 −0.84 1 0

2 2 −1.86 1 0

2 0 2.00 0 1

2 1 1.83 0 1

2 2 0.31 0 1
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