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Abstract

In this paper, we present a novel framework for microscopic image analysis of nuclei, data

management, and high performance computation to support translational research involving

nuclear morphometry features, molecular data, and clinical outcomes. Our image analysis pipeline

consists of nuclei segmentation and feature computation facilitated by high performance

computing with coordinated execution in multi-core CPUs and Graphical Processor Units (GPUs).

All data derived from image analysis are managed in a spatial relational database supporting

highly efficient scientific queries. We applied our image analysis workflow to 159 glioblastomas

(GBM) from The Cancer Genome Atlas dataset. With integrative studies, we found statistics of

four specific nuclear features were significantly associated with patient survival. Additionally, we

correlated nuclear features with molecular data and found interesting results that support

pathologic domain knowledge. We found that Proneural subtype GBMs had the smallest mean of

nuclear Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength. We also found

gene expressions of stem cell marker MYC and cell proliferation maker MKI67 were correlated

with nuclear features. To complement and inform pathologists of relevant diagnostic features, we

queried the most representative nuclear instances from each patient population based on genetic

and transcriptional classes. Our results demonstrate that specific nuclear features carry prognostic

significance and associations with transcriptional and genetic classes, highlighting the potential of

high throughput pathology image analysis as a complementary approach to human-based review

and translational research.
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I. Introduction

Multi-platform molecular analyses of high throughput sequencing, gene expression,

epigenetic and genetic alterations have dramatically improved our understanding of the

molecular underpinnings of brain tumors. As a result, significant advances have been made

in the development of cancer therapies that target specific pathways in glioblastoma (GBM),

a high-grade astrocytoma with a dismal prognosis and molecularly distinct subsets [1], [2],

[3], [4]. By contrast, little effort has been made on extracting tissue phenotypic information

from imaging data and integrating features with clinical and molecular characterizations.

Pathologists make diagnostic and prognostic decisions primarily by visual assessments of

tissue samples in histologic sections. As a result, it is rational to assume that pathology

imaging data contains phenotypic information that could be measured precisely and be

linked to underlying molecular profiles and clinical outcome. Thus, high-throughput

pathology image analysis could serve as a valuable vehicle to assist clinical diagnosis and

tissue-based research. To strengthen our ability to extract such phenotypic information

embedded in tissue, we have made significant advances in large-scale pathology image

analysis within the In Silico Brain Tumor Research Center (ISBTRC) at Emory University.

Using mostly the emerging data from The Cancer Genome Atlas (TCGA) Project [5], we

have developed novel approaches and tools to uncover fundamental aspects of GBM tumor

biology by interrogating whole-slide digitized pathology images, molecular data and clinical

outcome [6], [7], [8], [9], [10], [11].

In this paper, we present our large-scale pathology image analysis pipeline and infrastructure

specifically developed for high throughput nuclei analysis. The overall schema of this work

is illustrated in Fig. 1. We also demonstrate a methodology for identifying imaging features

that have prognostic values or are related to transcriptional subtypes, gene expression,

genetic alterations, and epigenetics. To enable such a large-scale image and integration

analysis, we propose a database solution to model, manage, and query image analysis results

in a systematic and efficient manner. We also present our High Performance Computing

(HPC) paradigm that leverages a grid-computing environment consisting of machines

equipped with multi-core CPUs and Graphic Processor Units (GPUs) for efficient analyses

of imaging data. With our experiments, we demonstrate that large-scale microscopy image

analysis of pathologic features can uncover clinically meaningful molecular correlates.

II. Data Acquisition

Multiple types of data for analysis were downloaded from the TCGA portal [12] and the

Memorial Sloan-Kettering Cancer Center (MSKCC) [13], including digitized microscopic

images of TCGA GBM pathology slides, clinical information, and molecular data.

In this study, we used 416 whole-slide microscopic images from 159 GBM patients within

the TCGA dataset. These digitized slides were Hematoxylin and Eosin (H&E) stained

permanent sections of tissues that were formalin-fixed and paraffin-embedded. All slides

were scanned at 20× magnification with a high-resolution, high-throughput digitized

scanner. Tissue details, even at the cellular level, are visually perceivable, making it possible
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for application of machine-based image analyses. The size of the complete image data set

for study is approximately 175 Gigabytes with JPEG compression ratio of 5.11.

Numerous aspects of clinical data from TCGA dataset were captured in multiple data files,

including drug treatment, radio- and chemo-therapy, examination results, experimental

protocols, demographic data, surgery information, and tissue biopsy data. We parsed out all

clinical data grouped by patients, and recorded the following information for survival

analysis: survival and right censored status. Molecular data, including epigenetic DNA

methylation, genetic alterations (somatic mutations, and chromosome alterations), and gene

expression from multiple platforms were also obtained from TCGA and MSKCC portals.

Based on a recent study of TCGA GBMs, four clinically relevant transcriptional subtypes

have been defined based on unsupervised hierarchical clustering of gene expression, namely,

Proneural (PN), Neural (NR), Classical (CL) and Mesenchymal (MS) [4]. Each subtype is

defined by a characteristic gene expression profile, but also has characteristic genetic

alterations, including mutations and chromosomal changes (amplification/deletion). For our

study, transcriptional subtypes were obtained from the supplementary information of the

work in [4]. Subtypes for samples absent from this set were determined with Prediction

Analysis of Microarray (PAM) software version 2.21 using RMA normalized Affymetrix

HT-HGU133 mRNA expression platform data. A sample expression average was computed

for samples with multiple corresponding arrays. Unlogged expression was filtered to remove

probes with a fold change less than 1.5 or an expression range less than 20. Analyzed

somatic mutation data for gene IDH1, PTEN, TP53, and copy number data for gene CDK4,

EGFR, MDM2, NF1, and PDGFRA were obtained from MSKCC. Moreover, analysis of the

DNA sequencing data from TCGA GBM samples has led to identification of a CpG island

methylator phenotype (G-CIMP) that is associated almost exclusively with PN-subtype

cases and secondary GBMs with IDH1 mutantation [14]. Following the analysis procedure

in [14], we obtained a set of G-CIMP GBMs. In addition, we downloaded TCGA mRNA

expressions from RNA sequencing data via the MSKCC portal.

III. Nuclei Analysis with GBM Pathology Images

Of the large number of potential pathologic features in GBM, we focussed our analysis on

individual tumor nuclei as they are the dominant feature, carry important clinical

information, and are critical in the morphologic diagnosis of numerous diseases.

Segmentation of all nuclei within the digital slides is the first step in the nuclear analysis.

We started segmentation with a recognition module for non-tissue or red blood cell regions.

The percentage of area occupied either by blank spaces or red blood cells as indicated by

color was computed to determine whether a given image region contains sufficient

neoplastic tissue for analysis. With a priori knowledge on cell histology, nuclei are known as

compact, round-to-oval, and regular-shaped objects with dark color on H&E stains.

However, nuclei identification still presents serious challenges in that many other

histological structures and artifacts in microscopy images can appear similar to nuclei. To

remedy this problem, we need to reduce noise to an acceptable level and enhance nuclei

contrast. Meanwhile, it is readily noticeable in microscopy images that nuclei, even for those

in close proximity to each other, may have variable intensities or colors resulting from a
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large number of factors, ranging from variations in tissue section thickness to heterogeneous

tissue responses to chemical stains. As a consequence, no single cutoff is available to

identify nuclei regions from their surrounding areas.

One effective solution to this challenge is to normalize image background using the

morphological reconstruction [15], [10], a shape-based mathematical morphology operation

widely used in image processing. Morphological reconstruction is essentially a composition

of a series of morphological modules tightly coupled with the concept of connectivity [16].

With this technique, true foreground objects, i.e. nuclei in our study, can be uncovered from

image background severely corrupted by noise signals through local image “normalization”.

Two image morphological components, namely marker Φ and mask Ψ image, are involved

in a morphological reconstruction operation, which can be expressed as follows:

(1)

where  is a function recursively defined as:

(2)

In (1), n* is the smallest positive number such that , and ρ represents

the structural element with which marker image Φ is recursively dilated. In addition, ‘⊕’

represents a fundamental morphological operation, known as dilation. With this

morphological operation, the state of any given pixel in the output image is determined by

applying the “max” rule to the corresponding pixel and its neighbors in the input image. To

be more specific, dilation for either binary or grayscale image can be defined as follows:

(3)

where I(x, y) is the input image, and ρ(x, y) represents the neighborhood region of the

structural element centered at pixel (x, y). Users can specify the size and shape of

neighborhood region within the structural element to capture objects with specific shapes

and scales in image I(x, y).

For better presentation, an illustration visualizing a typical reconstruction process on a one-

dimensional signal is given in Fig. 2a, where the marker and mask signal are represented in

blue and green curves, respectively. Over the iterations of the reconstruction operation in

(2), the marker gradually arises across the light blue area and converges to the final

reconstructed signal represented by the black dashed curve. It is notable that the

reconstructed signal only differs from the mask at places where peaks reside. As a result, the

merit of “normalizing” the background variation with morphological reconstruction plays a

critical role in mitigating severe noise and artifacts that make nuclei identification a

challenging problem. In Fig. 2b, we present a three-dimensional surface of a small image

region before (left) and after (right) the application of morphological reconstruction
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operation. When subtracting the reconstructed image  from the mask image Ψ, the

difference image  (Fig. 2b right) consists of a near zero-level

background, and a group of enhanced foreground peaks, each representing an object of

interest. Bumpy areas in background (green and black arrows) in Fig. 2b (left) are flattened

in the difference image after the morphological reconstruction in Fig. 2b (right), therefore

improving the contrast between the background and foreground objects.

To conduct the morphological reconstruction operation, we converted the color image to a

gray level image by complementing its first color channel. This is simply supported by the

domain knowledge that nuclei tend to have lower intensities as compared with those of

background regions due to the Haematoxylin stain and by the fact that the first color channel

yields the best contrast between nuclear and non-nuclear regions after careful tests. As

morphological reconstruction operation can readily normalize background regions degraded

by artifacts arising from tissue preparation and the scanning process, it enables us to separate

the foreground objects from the normalized background with a user-provided threshold.

As a pathology image is a 2-D representation of a 3-D tissue biopsy, it is common to see a

large number of clumped nuclei in digital slides. It can be challenging to assign nuclear

boundaries to a specific group of overlapped nuclei, as these are often ambiguous in

microscopy images. An effective way to solve this problem is to think of a set of overlapped

nuclei as a group of basins in the image domain, where the ridges between basins are the

borders that isolate nuclei from each other. This is exactly the idea behind the watershed

algorithm [17]. In our application, we computed the distance transformation of the binary

mask image Γ(x, y) as follows:

(4)

where ∂Γ represents the boundary of a foreground object. Watershed algorithm is

subsequently applied to the distance map D(x, y) where ridges between pairs of connected

nuclear regions are detected as separating boundaries [18], [19]. In Fig. 2c, we present an

example where the nuclear boundaries of a group of connected nuclei are determined with

the watershed method. The distance transformation map superimposed with iso-contours is

illustrated on the left. Ridges (in green) detected by watershed algorithm over distance

transformation map are superimposed on the original color image in Fig. 2c (right).

After the aforementioned steps, some false positive nuclei, usually small in size and

irregular in shape, could be retained in image domain. Therefore, we removed these false

positive objects that were either too small or too irregular to be nuclei with size and shape

filters. The final segmentation result on a typical image region is shown in Fig. 2d.

After segmentation, a diverse set of features was computed to characterize segmented

nuclei. To fully describe distinct nuclear features from complementary perspectives, we

computed 23 features from four categories for each segmented nucleus, namely nuclear

morphometry, region texture, image intensity and gradient statistics, as shown in Table I. In

the nuclear morphometry feature class, the degree of elongation, size, and regularity of
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nuclei are characterized, as nuclear morphology has proved to correlate with the expression

of oligodendrocyte specific genes, and carry discriminating information between

astrocytoma and oligodendroglioma nuclei [11]. Nuclear texture information is also captured

with multiple texture descriptors, as nuclei of distinct categories exhibit variable degrees of

uneven staining that result from heterogeneous clumping of chromatin. Features relevant to

cytological intensity and degree of inhomogeneity as depicted by gradient are included in

the feature suite as well.

IV. Large-scale Pathology Image Representation, Management, and Queries

With recent advance in technology, modern slide scanners can now efficiently produce high-

resolution images of whole tissue slides. With systematic whole slide image analysis, a vast

amount of morphological information can be extracted from various biological scales.

However, the large scale of derived data and the complexity of spatial data correlation pose

a major challenge to data management infrastructures appropriate for managing and

querying analytical results and annotations of whole slide images.

To remedy this problem, we have developed the Pathology Analytical and Imaging

Standards (PAIS) model [20] to provide a flexible, efficient, and semantically enabled data

model for pathology image analysis and characterization. The data model represents virtual

slide related image reference, annotation, markup and feature information. This set of

information includes 1) context relating to patient data, specimen preparation, special stains,

among others; 2) image reference information that describes an image or a group of images

used as the base for markups and annotations, including resolutions, regions; 3) human

observations involving pathology characteristics; and 4) algorithm and human-described

segmentations, features and classifications. Moreover, it supports the provenance of the

markups and annotations through a description of the computation and an identification of

input and output datasets. The logical model of PAIS consists of 62 classes and associations

across them. As information from pathology images is spatially related, PAIS provides a

Markup class to delineate a spatial region in images and represents a set of values derived

from pixels, which can be in the form of geometric shapes, surfaces, and fields. Modeling

such markup information provides the foundation for supporting powerful spatial queries.

We have also developed an XML based schema for representing and exchanging PAIS data

as PAIS XML documents. To reduce the storage size of PAIS documents, we compress

PAIS documents as zip files by default.

Based on the data model, we have designed and implemented a relational database

infrastructure with spatial database extension to manage image analysis results and human

annotations (Fig. 3). The architecture includes components for result validation, data

representation, data uploading and mapping, data management and queries, parallel database

component, Web APIs for queries and application integration, and integration with

pathology image data management component (PIDB database) and relevant clinical and

molecular annotations. The PAIS data management component encapsulates the database,

the data loading and query subcomponents. We have used IBM DB2 with Spatial Extender

[21] in our implementation. The spatial extension provides support of spatial tables for

managing geometric shapes, and the Structure Query Language (SQL) for writing spatial
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queries. Efficient spatial query support is through a spatial index engine, i.e., a grid based

index in DB2 by partitioning space into many small grid cells [20], [21]. The database is

designed to support queries on both metadata and spatial features for data retrieval,

comparative data analysis, and algorithm validation. The query types include: 1) queries

involving combinations of image and algorithm metadata to retrieve analysis results; 2)

queries involving combinations of image and algorithm metadata to retrieve analysis results;

3) spatial queries, such as those used to assess relative prevalence of features or classified

objects in slides or to assess spatial coincidence of combinations of features or objects.

V. High Performance Computing for Large-scale Pathology Image Analysis

To accommodate the massive data and computational demands of image analysis

algorithms, we employed high-performance techniques to accelerate our image analysis

procedure with the large TCGA image dataset. The high-performance version of our

application has been built targeting modern hybrid computing systems equipped with multi-

core CPUs and graphics processing units (GPUs). The computation power of GPUs has been

rapidly increased in the last few years. Contemporary GPUs provide very fast memories and

massive multi-processing capabilities, which typically exceed those of CPUs. As a

consequence, GPUs have been successfully used as general purpose processing devices by

many applications [22]. The efficient use of machines equipped with CPUs and GPUs,

however, is very challenging. A programmer needs to consider the distribution of work not

only across cluster nodes in a distributed memory machine, but also among processors (CPU

cores and GPUs) within each machine. Additionally, the acceleration attained by different

application operations ported to GPUs may vary according to their suitability for parallel

execution. This variability should also be taken into account during the scheduling of

operations for execution with a CPU or GPU in order to achieve maximum performance.

The overall parallelization strategy we followed is organized into three steps: (i) efficient

implementation of application individual operations for CPUs and GPUs; (ii) multinode

parallelization of the application targeting distributed memory systems; and, (iii)

coordination of the execution within each of the hybrid nodes, which includes performance

aware assignment of operations to CPUs and GPUs available in a machine. To have an

efficient implementation of the individual operations to CPUs and GPUs, we tried as much

as possible to reuse codes from other research groups or publicly available libraries. For

those operations with no preexisting efficient implementation, however, we have created our

own implementation, which uses C++ for CPU-based operations or CUDA (Computing

Unified Device Architecture) for GPU-based implementations. In our implementations, we

have identified the common computation patterns used by the operations, which were further

ported to GPUs and used as building blocks for implementing the required operations [23],

[24], [25].

The multi-node parallelization approach employed combines the coarse-grain dataflow

pattern with the bag-of-tasks pattern in order to facilitate the implementation of the analysis

application from a set of operations on data. In further detail, the application is described as

a pipeline with “Nuclei Segmentation” and “Feature Extraction” as the coarse-grain stages

to be applied to each of the input image sub-regions. These coarse-grain computation stages
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are assigned to nodes of a distributed memory machine in a demand-driven basis as their

dataflow dependencies are satisfied. Each of the coarse-grain stages could then be described

as another dataflow of fine-grain operation, which can be executed using either CPU or

GPU. This hierarchical dataflow representation lends itself to a separation of concerns and

enables the use of different scheduling approaches at each level. In order to maximize the

performance in hybrid machines, the scheduling decision on the assignment of fine-grain

operations to CPUs and GPUs is made upon whether operations are expected to have

accelerations on a GPU. In our scheduling, fine-grain operations are maintained into a sorted

list by the expected GPU acceleration (speedup), and those operations with highest expected

speedups are assigned to GPUs, while CPUs execute operations with lowest expected

speedups. Fig. 4 presents an overview of the environment that coordinates the execution in

each machine.

VI. Clinical and Molecular Correlates of Nuclear Features Derived from

Microscopy Image Analysis

Microscopic features of cancer, such as tumor cell morphology, are measurable and have

biologic, diagnostic and therapeutic significance. In our study, the derived nuclear features

of hundreds of millions of nuclei from 416 whole-slide pathology images processed by

image analysis algorithms with HPC and parallel computation infrastructure support were

used to correlate with clinical and molecular data. As there are millions of nuclei in slides of

each patient, we calculated mean and standard deviation of each nuclear features from each

patient. Therefore, each patient is represented by 46 nuclear feature statistics. Multiple

integrative experiments were conducted to explore the potential prognostic values and

molecular links embedded in nuclear features.

A. Nuclear Features with Prognostic Significance

We first interrogated clinical correlates of nuclear features by regularized least-squares

regression using Least Absolute Shrinkage and Selection Operator (LASSO) [26] and Cox

proportional hazards regression [27]. LASSO is a quadratic programming problem

penalizing the number of regression coefficients:

(5)

where yi is the survival, xi is the nuclear feature vector, β is the coefficient vector, and λ is a

nonnegative regularization parameter. As we increase λ, we force more predictor

coefficients to zero. In our experiment, we set it to 0.58, excluding only highly correlated

nuclear features while retaining fitting Mean Squared Error (MSE) low.

After exclusion of highly confounded nuclear feature statistics in LASSO screening process,

we next used Cox proportional hazards regression method to identify those features with

prognostic value. The Cox proportional hazard model can be described as:

(6)
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where hazard H(t) is the multiplication of a baseline hazard H0(t) and an exponential factor

determined by the sum of a set of nuclear features x weighted by coefficients b.

We found statistics of four specific nuclear features that were strongly correlated with

patient survival, as summarized in Table II. Interestingly, the mean of nuclear Circularity

was positively correlated with survival. This could be related to the fact that Circularity

reflects an oligodendroglioma population (or a degree of oligodendroglioma differentiation)

within the GBM, which is composed mostly of tumor cells with astrocytic differentiation.

Nuclei of oligodendroglioma are rounder and smaller with relatively uniform nuclear

textures, in contrast to astrocytoma nuclei. Clinically, oligodendroglioma morphology

presence is associated with prolonged survival as compared to astrocytoma typically

enriched with elongated and irregular nuclei. As a result, GBMs with a mixed morphology

have a better prognosis than pure astrocytic neoplasms. While taking an average operation

could reduce the true signal strength substantially, we were still able to demonstrate the

significant role of nuclear Circularity as an important phenotypic feature on predicting

survival, suggesting a strong correlation between morphometry features and survival. To

further demonstrate the clinical correlates of nuclear features, we illustrate in Fig. 5 the

survival difference between two equally numbered patient groups divided by the four

nuclear feature statistics (the upper and lower 50%). The associated p-values with logrank

test [28] were 1.05e-1 for mean of Circularity, 2.98e-3 for mean of MinIntensity, 2.18e-1 for

standard deviation of MajorAxisLength, and 2.08e-2 for standard deviation of

MeanIntensity. Although mean of Circularity and standard deviation of MajorAxisLength do

not reach significance on survival analysis in the log-rank test, the Cox proportional hazards

model agrees with all four Kaplan-Meier plots in Fig. 5, where the upper 50% of patients

identified by nuclear features with negative Cox proportional hazards regression coefficients

(i.e. means of Circularity and MinIntensity) have more favorable survival than the lower

50% (Fig. 5a and b). For standard deviations of MajorAxisLength and MeanIntensity (Fig.

5c and d), the upper 50% of patients have shorter survival than the lower 50% as these two

features have positive Cox proportional hazards regression coefficients.

B. Correlation of Nuclear Features with Molecular Data

We next investigated whether nuclear features were correlated with GBM molecular

signatures. For patients divided by each type of molecular data, we carried out one-way

analysis of variation (ANOVA) to test if group means of nuclear features were significantly

distinct from each other [29]. For those nuclear feature means significantly different across

groups, we further applied a multiple comparison procedure to identify which specific pairs

of means were significantly different [30]. There are numerous ways to partition patients in

terms of molecular signature affinity. We present molecular criteria for patient stratification

and the associated findings as follows.

i. Four transcriptional subtypes of GBM have been recognized: Proneural (PN),

Neural (NR), Classical (CL) and Mesenchymal (MS). Results: Eccentricity mean

in PN is lower than that in MS and CL (p=3.81e-4). MinorAxisLength mean in PN

is greater than that in MS and CL (p=8.87e-3). Extent mean in PN is greater than

that in MS (p=3.20e-2). These results are most compatible with PN GBMs having

rounder nuclei than those of the other transcriptional classes.
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ii. GBM CpG island methylator phenotype (G-CIMP). Results: Standard deviations

of Area, Perimeter, MinorAxisLength, and means of Entropy and MeanGradMag of

G-CIMP group are greater than those of non-G-CIMP group (p=9.78e-3, 7.36e-3,

2.71e-3, 1.63e-4, and 9.60e-3, respectively). Mean of Energy in G-CIMP GBM

nuclei is less than that in non-G-CIMP group (p=2.28e-5). G-CIMP GBMs appear

to have more nuclear variability in size than the non-G-CIMP tumors.

iii. Chromosome 1p/19q co-deletion status. Results: Means of Circularity and Extent

of 1p/19q deleted GBMs are greater than those of 1p/19q intact GBMs (p=1.16e-2

and 1.92e-2, respectively). Means of Eccentricity and MajorAxisLength of the

1p/19q deleted GBM group are less than those of the 1p/19q intact group

(p=3.89e-2 and 1.44e-2, respectively). Thus, nuclei of 1p/19q deleted GBMs are

rounder and smaller than GBMs with 1p/19q intact.

iv. Somatic mutation status for signature genes, including gene IDH1, PTEN and

TP53. Results: Standard deviations of MinorAxisLength and means of Entropy and

MeanGradMag in IDH1 mutant GBMs are greater than those in the wild type

(p=2.40e-2, 6.46e-3, and 4.44e-2, respectively). Mean of Energy in IDH1 mutant

tumors is less than that in the wild type (p=2.75e-3). Means of Circularity and

Extent in PTEN mutant GBMs are less than those in the wild type (p=9.68e-3 and

1.76e-2, respectively). In TP53 mutant tumors, the mean of Extent is less than that

of wild type tumors (p=3.77e-2). Thus, PTEN and TP53 mutations are likely

associated with nuclei that are less regular and round.

v. Signature gene copy number data, including gene CDK4, EGFR, MDM2, NF1, and

PDGFRA. Results: Standard deviation of Area and MinorAxisLength and mean of

Perimeter in CDK4 amplification group are greater than those in the wild type

group (p=3.27e-2, 1.29e-2, and 4.78e-2, respectively). Means of Area, Perimeter,

and MinorAxisLength in MDM2 amplified GBMs are greater than those in the wild

type group (p=3.43e-2, 2.93e-2, and 1.42e-2, respectively). Means of Eccentricity

and MeanCanny in EGFR amplified tumors are greater than those in EGFR wild

type tumors (p=4.38e-2 and 4.90e-2). PDGFRA amplified tumors have lower mean

of Eccentricity (p=2.31e-2) and higher mean of Extent (p=3.19e-2) than PDGFRA

wild type tumors.

These quantitative results conform to neuropathologists subjective descriptions regarding the

relationship between nuclear morphometry and molecular signatures. For example, GBMs in

PN subtype are enriched in cases with PDGFRA amplification, which has been associated

with a greater oligodendroglioma morphology (more nuclear regularity and roundness). In

our experiments, we found that GBMs of PN subtype had the smallest mean of nuclear

Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength (Fig. 6), all

supporting the typical nuclear features of oligodendroglial differentiation.

C. Gene Expression Correlates of Nuclear Features

To explore the potential biological links between morphology and molecular data, we next

correlated nuclear features with gene expression related to specific GBM properties: 1) stem

cell markers, SOX2, MYC, and NANOG; 2) the glial differentiation marker GFAP; 3) the
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hypoxia markers carbonic anhydrase IX (CAIX) and VEGFA; and 4) the cell proliferation

markers PCNA and MKI67. We correlated mRNA expression of these signature genes with

nuclear feature statistics by the Spearmans rank correlation method [31]. A heat map of the

correlation result is shown in Fig. 7, where we find that 1) MYC gene expression is

negatively correlated with the mean of nuclear Circularity (ρ = −0.306); and 2) gene

expression of MKI67 is positively correlated with the means of nuclear Perimeter and

MajorAxisLength (ρ = 0.388 and 0.369) and negatively correlated with Circularity and

Extent (ρ = −0.525 and −0.355, respectively). These results suggest that MYC expression is

lower in cells with round nuclei and that cell proliferation is greater in GBMs with elongated

and larger nuclei, typical of more anaplastic cells with pure astrocytic differentiation.

D. Identification of Representative Nuclei

To inform human-based pathologic review, we found representative nuclear instances from

GBMs of specific molecular classes. In this manner, we could establish a nuclear

morphometry reference library to assist neuropathologists to standardize nuclear instances

associated with specific molecular signatures. In our experiments, we grouped patients based

on transcriptional subtypes, 1p/19q co-deletion status, and genetic alterations. With each

molecular criterion for patient stratification, we carried out one-way analysis of variation

(ANOVA) to test if group means of nuclear features are significantly distinct. For each

nuclear feature with a significant difference across patient groups, we computed its mean

and standard deviation within each group and queried for the most typical nuclear instances

with feature values of μ − 3σ, μ − 2σ, μ − σ, μ, μ + σ, μ + 2σ, and μ + 3σ along the feature

distribution. For example, we present reference nuclei examples from the four

transcriptional subtypes of TCGA GBMs in Fig. 8. This analysis demonstrates the potential

to develop a large-scale quantitative image analysis workflow, high performance computing

infrastructure, database solution for large-scale pathology imaging information and

multidimensional data integration platform capable of informing human-based pathologic

review.

VII. Conclusion

In this paper, we present a new framework for computer-based microscopy image analysis

and large-scale integrative research, enabled by a pathology analytical imaging database

(PAIS) and high performance computing using multi-core CPUs and Graphical Processor

Units (GPUs). We applied our image analysis workflow to whole slide pathology images of

glioblastomas from The Cancer Genome Atlas dataset. With integrative studies, we found

statistics of four specific nuclear features were significantly associated with patient survival.

We correlated nuclear features with molecular data and found interesting results that support

pathologic domain knowledge. Additionally, gene expressions of stem cell marker MYC and

cell proliferation maker MKI67 were found correlated with nuclear features. To inform

pathologists, we also queried the most representative nuclear instances from each patient

population determined by molecular classes. These results suggest that the developed

framework holds promise for building an integrative model supported by the high

throughput nuclear morphology analysis pipeline that can complement human-based

pathologic review and improve ongoing large-scale translational research.
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Fig. 1.
Architecture of pathology image analysis and integration framework.
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Fig. 2.
Nuclei segmentation modules. (a) One dimensional illustration of the morphological

reconstruction process with a marker signal (blue) recursively dilated and suppressed with

the mask (green) until no change occurs between two successive iterations. (b) Three

dimensional view of the effect of the morphological reconstruction. (c) Clumped nuclei are

segregated with watershed segmentation. (d) A segmented image region is shown.
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Fig. 3.
Pathology analytical imaging data management architecture.
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Fig. 4.
An overview of the parallel job execution environment.
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Fig. 5.
Kaplan-Meier plot of upper and lower 50% of GBMs divided by (a) mean of nuclear

Circularity; (b) mean of MinIntensity features; (c) standard deviation of MajorAxisLength;

and (d) standard deviation of MeanIntensity.
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Fig. 6.
Scatter plots of nuclear feature measures for four transcriptional subtypes of GBMs. Nuclear

features include mean of (a) Eccentricity; (b) Extent; and (c) MinorAxisLength.
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Fig. 7.
Heat map of Spearmans Rank correlation coefficients of nuclear feature statistics (y-axis)

and biologically relevant gene expression (x-axis).
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Fig. 8.
Spectrum of representative nuclei from the nuclear reference library for each of four

transcriptional subclasses of GBM. Nuclei are queried based on the location along the

morphologic distribution of four nuclear features.
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TABLE I

NUCLEAR FEATURES.

Feature Group Feature Names

Nuclear Morphometry Area, Perimeter, Eccentricity, Circularity, MajorAxisLength, MinorAxisLength, Extent

Texture Entropy, Energy, Skewness, Kurtosis

Intensity Statistics AvgIntensity, StdIntensity, MaxIntensity, MinIntensity

Gradient Statistics AvgGradientMagnitude, StdGradMag, Enropy-GradMag, EnergyGradMag, SkewnessGradMag, KurtosisGradMag,
Sum of Canny Edge Pixels, Mean of Canny Edge Pixels
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TABLE II

STATISTICS OF NUCLEAR FEATURES WITH PROGNOSTIC SIGNIFICANCE IDENTIFIED FROM

COX PROPORTIONAL HAZARD REGRESSION.

Feature Statistics Regression Coeff. (b) p value

Circularity Mean −41.43 1.34e-2

MinIntensity Mean −24.69 2.32e-2

MajorAxisLength Standard Deviation 3.29 3.80e-2

MeanIntensity Standard Deviation 156.21 4.88e-2
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