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Abstract

Mycosin protease-1 (MycP1) cleaves ESX secretion-associated protein B (EspB) that is a

virulence factor of Mycobacterium tuberculosis, and accommodates an octapeptide, AVKAASLG,

as a short peptide substrate. Because peptidoboronic acids are known inhibitors of serine

proteases, the synthesis and binding of a boronic acid analog of the pentapeptide cleavage product,

AVKAA, was studied using MycP1 variants from M. thermoresistible (MycP1mth), M. smegmatis

(MycP1msm) and M. tuberculosis (MycP1mtu). We synthesized the boropentapeptide,

HAlaValLysAlaAlaB(OH)2 (1) and the analogous pinanediol PD-protected

HAlaValLysAlaAlaBO2(PD) (2) using an Fmoc/Boc peptide strategy. The pinanediol

boropentapeptide 2 displayed IC50 values 121.6±25.3 μM for MycP1mth, 93.2±37.3 μM for

MycP1msm and 37.9±5.2 μM for MycP1mtu. Such relatively strong binding creates a chance for

crystalizing the complex with 2 and finding the structure of the unknown MycP1 catalytic site that

would potentially facilitate the development of new anti-tuberculosis drugs.

Mycobacterium tuberculosis exerts a staggering human and economic toll: in 2012, an

estimated 8.6 million people developed tuberculosis and 1.3 million died from the disease1.

M. tuberculosis secretes several highly immunogenic proteins across the cell wall using the

ESX-1 transport system2, and these virulence factors cause lung tissue inflammation and

necrosis3. In vivo inhibition of MycP1 protease, in a mouse model of infection4, led to a

lower mortality rate than in untreated animals. In addition, a M. tuberculosis strain with a

mutation affecting the catalytic activity of MycP1 was less virulent than a wild type strain4.
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Inhibition of MycP1 protease, which is one of the components of the ESX-1 transport

system, is an attractive target for drug development5-11

It was recently shown that M. smegmatis MycP1
11 and M. thermoresistibile MycP1

12

process M. tuberculosis EspB at positions Ala358 and Ala386. We confirmed that the

octapeptide, (H)AVKAASLG(OH), mimicked the natural substrate in a fluorescent

resonance energy transfer (FRET) experiment using an internally quenched peptide,

(Abz)AVKAASLG(DNP) with an N-terminal, ortho-aminobenzoic acid (Abz) fluorescent

group and a C-terminal, 2,4-dinitrophenyl (DNP) quencher12. Cleavage of this octapeptide

substrate by MycP1 liberated the readily measured, fluorescent pentapeptide

(Abz)AVKAA(OH), and this FRET system also provided a convenient means for screening

potential MycP1 inhibitors13. Peptidyl boronic acids and their cyclic boronic esters with 1,2-

diols are known inhibitors of various serine proteases14-17 in the nanomolar range, including

peptidoboronic acids that show selectivity towards M. tuberculosis.18 The mechanism of

action of peptidoboronate inhibitors involves the formation of tetrahedral complexes with

active-site serines.19-21 Variability in the activity of structurally related peptidoboronic acids

and peptidoboronates in the literature22 prompted us to determine if either the boronic acid

analog 1 or the boronate 2 (Fig. 1) of the pentapeptide (H)AVKAA(OH) would inhibit the

MycP1 protease and provide lead structures for the development of still other, clinically

useful inhibitors.

Solution-phase synthesis of HAlaValLysAlaAlaB(OH)2 (1) and the pinanediol PD-protected

HAlaValLysAlaAlaBO2(PD) (2) involved the initial coupling of FmocLys(Cbz)OH (3) to

HAlaOtBu to afford the dipeptide, FmocLys(Cbz)AlaOtBu, Fmoc-deprotection, and an

additional coupling to (Cbz)AlaVal(OH) to provide the tetrapeptide intermediate,

(Cbz)AlaValLys(Cbz)AlaOtBu (4) (Fig. 2). Acid-catalyzed removal of the tert-butoxy group

furnished the Cbz-protected tetrapeptide, and HATU-promoted condensation23 with ((R)-

boroalanine-(1S,2S,3R,5S)-(+)-2,3-pinanediol ester provided the protected pentapeptide 5,

purified by a combination of flash silica gel and preparative layer silica gel chromatography.

Hydrogenolysis24 afforded 2 and acid-catalyzed hydrolysis of 2 provided

(H)AlaValLysAlaAlaB(OH)2 (1), albeit in low yield.

We have previously characterized the activity of MycP1 variants from M. thermoresistible

(MycP1mth) and M. smegmatis (MycP1msm) using a quenched fluorescent peptide assay13. In

addition to these variants, we also expressed and purified MycP1 from M. tuberculosis

(MycP1mtu). We characterized the activity MycP1mtu and found significant differences in

enzyme activity relative to other MycP1 homologs. In particular, the specific activity of

MycP1mtu was 28.2±2.0 nmol/min/mg, which was four times higher than that of MycP1mth

homolog (Table 1). This difference in enzyme activity was not surprising because the

peptide substrate, (Abz)AVKAASLGK(DNP)OH was based on the cognate M. tuberculosis

substrate EspBmtu residues 354-362 (AVKAASLG). This recognition region displayed

sequence variations in M. thermoresistible EspBmth (i.e., SVKPAAGG) and in M.

smegmatis EspBmsm (i.e., SLKPASAG), and consequently, the affinity determinants in the

MycP1mth and MycP1msm binding sites differed from those of MycP1mtu. Nevertheless, all

three species variants had measureable activity using the quenched fluorescent octapeptide

as a substrate.
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The potency of the synthetic boronic acid analogs 1 and 2 was tested using the three MycP1

variants. Because compound 1 exhibited poorer inhibition than compound 2 in preliminary

testing, we focused on the characterization of compound 2. As expected, all were inhibited

to some extent, but the inhibitor showed relatively tighter binding to the cognate MycP1mtu

enzyme (Fig. 3) than their binding to the two others. The concentrations necessary to

achieve 50% inhibition of MycP1 (IC50 values) were as follows: MycP1mtu = 37.9±5.2 μM,

MycP1mth = 121.6±25.3 μM, and MycP1msm = 93.2±33.7 μM. It has been reported that the

inhibition of boronic acid peptides could vary over several orders of magnitude depending

on the chemical structure of amino acid at critical positions of peptide18. While the

inhibition of MycP1 variants by the boronic acid analog 2 is relatively moderate, it could be

improved by using a combinatorial chemistry approach to analyze a library of peptides with

variable sequence. For example, MycP1 displays a higher activity against a substrate peptide

with Met in P1 position.12 therefore, boronic acid analogs with aliphatic side groups in this

position could be explored in the future.
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Figure 1. Boronic acid analogs, HAlaValLysAlaAlaB(OH)2 (1) and the pinanediol PD-protected
HAlaValLysAlaAlaBO2(PD) (2)
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Figure 2. Synthesis of HAlaValLysAlaAlaB(OH)2 (1) and HAlaValLysAlaAlaBO2(PD) (2)
Legend : a, HAlaOtBu, hydroxybenzotriazole (HOBt), iPr2NEt, EDC-HCl, N,N-

dimethylformamide (DMF), 0°C to 25°C, 24 h; b, piperidine, DMF, 25°C, 1 h; c,

CbzAlaValOH, HOBt, iPr2NEt, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

hydrochloride, DMF, 0° to 25°C, 24 h; d, CF3CO2H, CH2Cl2, 25°C, 24 h; e, ((R)-

boroalanine-(1S,2S,3R,5S)-(+)-2,3-pinanediol ester hydrochloride, i-Pr2NEt, 1-

[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide

hexafluorophosphate (HATU), DMF, 0°C, 0.5 h; f, H2, 10% Pd/C, 25°C, 17 h; g, 2-

methylpropylboronic acid, 3M HCl, 25°C, 17 h.
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Figure 3. Determination of IC50 of HAlaValLysAlaAlaBO2(PD) (2) for MycP1 variants
The IC50 of 2 was measured for MycP1 variants from M. tuberculosis (MycP1mtu), M.

thermoresistible (MycP1mth), and M. smegmatis (MycP1msm), using a quenched fluorescent

peptide (Abz)AVKAASLGK(DNP)OH). Activity of MycP1 is plotted as a function of the

logarithm of the concentration of 2. Calculated IC50 values were: MycP1mtu = 37.9±5.2 μM,

MycP1mth = 121.6±25.3 μM, and MycP1msm = 93.2±33.7 μM.
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Table 1
Michaelis-Menten parameters for the three MycP1 variants

MycP1 variant Km (μM) Vmax (nmol/min/mg)

M. tuberculosis 79±11 28.2±2.0

M. thermoresistible 60±12 6±0.6

M. smegmatis 86±42 1.8±0.4
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