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Abstract

Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS)

begins early in systemic infection and continues throughout its untreated course. Despite a

common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for

much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a

severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use

of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection

and its neurologic severe consequence, HAD continues to afflict individuals presenting with

advanced systemic infection in the developed world and a larger number in resource-poor settings

where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader

prevalence, including in those treated with ART. Here we review the history and evolving

nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment.
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Infection of the central nervous system (CNS) is a universal facet of systemic human

immunodeficiency virus-1 (HIV) infection. It begins shortly after exposure during initial

systemic viremia1–3 and continues through the subsequent course of chronic untreated

systemic infection and disease.4,5 Importantly, the character and neurologic consequences of

this infection vary considerably among individuals and evolve over a protracted chronic

course, changing from seemingly innocent meningitis inmost patients to severe encephalitis

in a substantial minority late in systemic disease.6 In this review, we outline the general

characteristics of this infection, drawing mainly on findings in cerebrospinal fluid (CSF) that

have provided unique insight into the dynamics and evolving pathogenesis of this chronic

process.7

CNS infection is an offshoot of systemic infection that determines or influences events in

the CNS in several ways. Systemic viremia provides initial and likely continuous seeding of

blood-borne virus into the CNS, while in the background its effects on lymphocyte

populations orchestrate the changes in host immune function, inducing both

immunosuppression and immune activation that in turn further modulate not only systemic

infection and disease evolution,8 but also the course of CNS infection and injury.9 Although

HIV infects mainly CD4+ T lymphocytes, importantly it can also infect cells of the

monocyte-macrophage-microglia lineage; as infection evolves, its main CNS targets may

change from lymphocytes to macrophages and related cells.10

In this review, we consider different stages in the evolution of untreated CNS infection:

early, or primary HIV infection (PHI) spanning the first year after exposure and initial

viremia; evolving chronic neuro-asymptomatic infection (NA) that changes as the immune

system is progressively altered and blood CD4+ T cells fall with few or relatively mild

neurologic symptoms and signs; and overt HIV-associated dementia (HAD) presenting with

subacute onset and progression of substantial cognitive–motor dysfunction.11 This temporal

separation provides a convenient framework for examining the evolving pathobiology of

untreated CNS infection (treatment of infection is considered elsewhere in this issue).

Before discussing this evolution, we will first briefly consider the main interacting-disease

components and their biomarker indicators in CSF and blood.

Evolving CNS Infection and CSF Biomarkers

Fig. 1 presents a simplified model for considering CNS HIV infection and disease evolution

in relation to their systemic counterparts.7 The top of the figure is a diagram of the systemic

interaction of HIV and the host immune system: infection evolves over time with selection

and expansion of viral populations in concert with changes in the immune system that

exhibits both progressive deficiency and broad activation.12 Immunodeficiency leads to an

array of systemic diseases, most notably opportunistic infections that define acquired

immunodeficiency syndrome (AIDS), while immune activation is also critical to systemic

progression and likely contributes importantly to organ injuries including a variety of non-
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AIDS-related diseases.8,13–15 These systemic interactions are now routinely monitored by

blood biomarkers. Thus, plasma HIV RNA levels are used to predict the rate of disease

progression and response to antiviral therapy, while the blood CD4+ T cell count provides

an index of the cumulative damage to the immune system and the vulnerability to

opportunistic diseases.16 Soluble and lymphocyte phenotype markers that assess systemic

immune activation also predict disease progression and risk.17–19 These viral and immune

biomarkers have provided invaluable insight into the biology and natural history of HIV

infection, and their incorporation into standard practice has had a profound effect on the

clinical management and therapeutics of HIV infection.

The downward vertical arrows in Fig. 1 that cross the dotted line (representing the blood–

brain and blood–CSF barriers) emphasize the fact that both CNS HIV infection and

immune-inflammatory responses originate from their systemic counterparts with selective

transfer from the blood into the CNS of infection (including both infected cells and

uninfected target CD4+ T cells) and both virus-specific immune and broader inflammatory

reactions.20–22 Subsequently, each of these CNS-disease components can diverge from their

systemic origins, producing a distinct infected and reactive milieu within the CNS, including

the leptomeninges, perivascular compartment, and brain parenchyma. Additionally, both the

infection itself and immune-inflammatory reactions can impact nervous system integrity and

function,9 thus forming a pathogenic triangle with two main interacting agonists and a target

as diagramed below the dotted line in Fig. 1.

In the following sections we will examine changes in these three components through the

course of evolving infection, illustrated with some of our own data from a cross-sectional

study of CSF biomarkers (Fig. 2).7 Here we focus on a few biomarkers: blood CD4+ T cell

count and plasma HIV RNA as indices of systemic infection, CSF HIV RNA as a measure

of the magnitude of CNS infection, CSF white blood cell (WBC) count (consisting mainly

of T lymphocytes22) and neopterin (a pteridine metabolite produced within the CNS

primarily by cells of the monocyte–macrophage–microglial lineage, but also by

astrocytes23,24) as measures of inflammation; and CSF neurofilament light-chain protein

(NFL) as a sensitive indicator of active brain injury.25 We will examine how these

components change over the course of infection. After this, we will consider how these

changes might relate to the evolving genetic and phenotypic character of CNS HIV

infection. Finally, we will also briefly consider how these biomarkers might be used in

clinical practice.

The CNS in Primary Infection

HIV seeds the CNS very soon after initial inoculation during primary systemic viremia at a

time when systemic infection is marked by an early reduction of blood CD4+ T cells (Fig.

2A) and elevation of CD8+ cells (not shown). Simple comparisons of PHI with HIV groups

shows alteration of both T-cell subsets in PHI by Mann-Whitney (p = 0.0028 for CD4+ and

< 0.0001 for CD8+ cellsa). This initial phase is variable among patients and may establish

aAll statistical comparisons described here use nonparametric methods and were performed in Prism 6.0 (Graph Pad Software, Inc.,
San Diego, CA).
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the basic character and trajectory of subsequent infection. It is also sufficiently different

from later chronic infection, to be considered separately. Despite levels of plasma HIV RNA

comparable to those found later (Fig. 2B), the magnitude of CSF HIV RNA concentration is

generally relatively low compared with that of plasma in this early phase (Fig. 2C). Thus, in

PHI the CSF HIV RNA is generally closer to 100-fold lower than plasma compared with the

10-fold lower level characteristic of later chronic infection (except in those with blood

CD4+ counts below50 cells/µL as discussed below) (ratios between CSF and plasma HIV

concentrations in PHI differed from the three NA groups with higher CD4+ T cell counts

using Kruskal-Wallis test and Dunn’s post comparisons, p < 0.05 to 0.001, but not from NA

CD4+ T cells < 50). The reason for this relatively lower CSF HIV RNA level is not clear,

but presumably reflects more restricted entry of infected CD4+ T cells or subsequent viral

amplification within the CSF space (leptomeninges) in this early stage. Though immune

activation and inflammation appear to be generally important in augmenting CNS infection,

the elevated CSF WBC counts and neopterin levels in these patients (Fig. 2D and E) are

similar to those of chronic infection with CD4 T cells above 350 cells/µL, and thus these

simple measures do not provide a ready explanation for the relatively lower CSF viral levels

in PHI. Perhaps early antiviral immune responses can partially suppress this infection within

the CNS.

Of note, more than 25% of PHI patients exhibit mild elevations of CSF NFL (Fig. 2F),

indicating an initial phase of CNS injury (p = 0.0076 by Mann-Whitney comparing PHI to

HIV- groups).26 Presumably, this is caused by mechanisms similar to those responsible for

injury later in the course, including viral and inflammatory processes. However, it is not

clear why this occurs during this early period, but is less prevalent subsequently in patients

chronically infected with similar blood CD4+ T cell counts, CSF viral loads and

inflammatory responses. Whatever mechanismis involved, elevated CSF NFL

concentrations demonstrate that there is a clear impact of initial infection on the brain that

potentially might have lasting consequences despite its resolution.

Evolving Chronic Infection

The relations among CSF HIV, inflammation and neural injury change as systemic disease

progresses and blood CD4+ T cells fall. As shown in the results of the four NA groups in

Fig. 2, plasma virus levels rose as CD4+T cells fell below350 cells/µL, returning to the high

levels noted in the PHI group. However, CSF HIV RNA followed a different pattern—also

rising as CD4 T cells fell below 350, but then falling when CD4+ T cells were reduced to

below 50 cells/µL, providing a second setting characterized by a CSF: plasma ratio near

1:100. However, in contrast to the PHI group, the CSF WBC count was also markedly

attenuated in these patients (differing from all the other infected groups, p < 0.01 to 0.0001

by Kruskal-Wallis and Dunn’s correction for multiple comparisons), suggesting that reduced

CSF T-cell traffic might be important in limiting local infection, either by effects on the

influx of infected cells or the main cell targets capable of amplifying locally replicating

virus in the meninges. Despite the lack of lymphocytic inflammation, CSF neopterin levels

were similar to those of patients with blood CD4+ cells > 50 cells/µL, indicating divergence

among different components of inflammation in this setting. Indeed, this dissociation of

WBCs and neopterin suggests that macrophage inflammation in the CNS may have
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continued while lymphocytic inflammation was waning with the severe decrease in CD4+ T

cells in these individuals.

Accompanying the lowered CSF HIV RNA and WBC counts in the group with blood CD4 +

T cells < 50 cells/µL was a substantial incidence of abnormal CSF NFL concentrations—

nearly 75% of subjects in this group had elevations of this neuronal injury biomarker. An

increase was also noted in > 25% of subjects with blood CD4+ T cells between 50 and 200

cells/µL, indicating substantial development of subclinical CNS injury in patients with blood

CD4+cells that define an AIDS diagnosis despite the absence of conspicuous neurologic

symptoms or signs. Vulnerability to serious opportunistic infections is thus paralleled by

sometimes cryptic neuropathogenic CNS HIV infection. In this cross-sectional study, neither

CSF HIV RNA, WBC counts nor neopterin clearly predicted this injury, though neopterin

has correlated more closely in larger cohorts.23

HIV-Associated Dementia

Although formal diagnostic criteria for HAD in the research setting now include poor

performance on extensive neuropsychological testing,27 the clinical presentation of these

cases generally conforms to the early descriptions of AIDS dementia complex (ADC) with

subacute evolution of distinct and disabling cognitive–motor dysfunction.11 The profile of

CSF biomarkers in our study suggest that many of these patients show pathogenetic

distinctions or at least depart from those with less symptomatic neurologic dysfunction with

respect to certain CSF features, including higher HIV RNA, WBC counts, neopterin, and

NFL.

Like subclinical injury, overt HAD predominantly develops in patients with < 200 blood

CD4+ T cells/µL.5,6 In the illustrated study, both plasma and CSF HIV RNA levels were

high in the HAD group, but CSF HIV levels were not above those of many NA patients,

including those with higher blood CD4+ counts. Likewise, CSF pleocytosis was common,

contrasting with the NA group with < 50 blood CD4+ T cells/µL (p < 0.01 by Dunn’s

multiple comparison test after Kruskal-Wallis test), but not with many of the NA subjects

with higher CD4 counts. CSF neopterin was notably elevated and NFL was consistently

very high, distinguishing this group. Thus, in this sample of HAD, robust inflammation was

often present and included both neopterin (macrophage) and WBC (lymphocyte) markers.

This inflammatory profile may be important in determining the particular severity and

clinical phenotype of these patients compared with those with less-apparent neural injury.

Evolving Genetic and Phenotypic Character of CNS Infection

The discussion above centered on the quantitative changes in CSF biomarkers, including

HIV RNA, without providing a clear explanation of what determines onset of neurologic

injury. Additional, likely critical factors in CNS disease are (1) the development of

independent local viral replication within the CNS, termed compartmentalized infection; and

(2) change in the phenotypic character of these compartmentalized viruses allowing them to

more readily infect macrophages and related cells that express low levels of the CD4

receptor on their surface, macrophage- (M-) tropism(Fig. 3).28–30 These infected
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macrophages may be the potent initiators of neuropathogenic pathways that are further

amplified by uninfected macrophages and other cells.31

Early in infection, most notably during primary infection, CSF viral isolates are virtually

identical to those found simultaneously in blood plasma. This is noncompartmentalized

infection and presumably reflects the origin of these CSF viral populations from blood-

borne CD4+ T lymphocytes characterized by recent entry and limited life span. Virus

isolates during this period are T-tropic and use the CCR5 coreceptor (hence, termed R5

viruses). Subsequently, after at least several months and more commonly during later

evolving chronic infection, CSF viral populations examined by direct cloning and

phylogenetic analysis can show evidence of bursts of local replication from a common

ancestor, so-called clonal expansion, which is one type of compartmentalized infection.

These appear to be relatively transient events, but confirm the capacity of the CNS to

support independent replication and viral amplification. These viral populations remain T-

cell tropic and R5, indicating that these expansions are supported within CD4+ T cells that

have entered the CNS, residing largely in the meninges but perhaps also in the perivascular

spaces. At times these amplifications will further evolve to somewhat more complex

diversification, though still as T-cell tropic populations.

However, in some patients, most characteristically those presenting with HAD, further viral

evolution will produce more complex populations of M-tropic viruses that can replicate in

cells expressing low levels of the CD4 viral receptor. These continue to use the CCR5

coreceptor, associate with a macrophage-related inflammatory responses and appear to be

more neuropathogenic through inflammatory signals that alter brain function and structural

integrity by indirect mechanisms.6,9 With immunosuppression, blood viruses remain T-

tropic, but in some patients an additional viral lineage will appear that has switched its

coreceptor preference to CXCR4 and this is associated with more rapid progression of

immunosuppression, although cause and effect are still unclear.32 These T-tropic X4 viruses

(or commonly dual-tropic viruses with capacity to interact with both CCR5 and CXCR4

coreceptors) may also appear in the CSF, presumably carried within infected CD4+T cells,

but have not been associated with HAD, though data on this issue are limited.33

How does this viral evolution reconcile with the evolving patterns of CSF HIV RNA

concentrations, inflammation and NFL elevations? Answering this takes us further into the

realm of speculation, and invites future study to address this critical question. In some

patients with HAD the role of M-tropic viruses seems assured: not only do the predominant

viral populations found in the CSF exhibit the M-tropic phenotype, but they also shows low

decay in the face of antiviral therapy, implying production from a long-lived cell such as a

macrophage, in contrast to T-cell-tropic viruses, which decay at rapid a rate (being produced

from short-lived T cells) similar to those of plasma, just as is seen in nondemented

patients.5,29,34,35 The relatively low CSF HIV RNA content and absence of pleocytosis

despite rising CSF NFL in the NA groups with low blood CD4+ T cells likely indicates

inflammation driven by an expanding infection of macrophages and related cells without an

inflowing CD4+ T-cell population to contribute to the local viral load or provide target cells

for amplification of the either T- or M-tropic viruses. However, some patients with HAD

exhibit rapid decay and T-tropic viruses in CSF.29 There are at least two plausible
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explanations: (1) T-tropic CNS HIV infection can also cause neurologic injury, and thus, M-

tropism is not a strict requirement; or (2)M-tropic viruses may still be involved in neural

injury, but may evoke a T-cell inflammatory response with pleocytosis in that influx of T

cells brings in T-tropic viruses that obscure the underlying neuropathogenic infection. These

are not mutually exclusive mechanisms and could explain the greater range of pleocytosis

and high CSF HIV RNA in our HAD patients that contrast with the NA with CD4 cells

below 50. In our previous small study, there was a trend toward higher CD4+ T cell counts

and pleocytosis in the HAD subjects with T-cell-tropic virus compared with those with M-

tropic virus in the CSF.29

Clinical Diagnosis and Management

At present, diagnosis of CNS disease related to HIV infection involves a two-pronged

approach: (1) to demonstrate the presence and severity of neurologic dysfunction, and (2) to

implicate HIV as the likely cause. The first uses the neurologic history and examination, but

to conform to formal research criteria also entails rather detailed neuropsychological testing

depending on the severity and setting.27 The second often focuses on ruling out other causes

by history (e.g., active drug use, past head trauma or other neurological insults, etc.) or by

laboratory testing including neuroimaging and CSF analysis primarily focused on detecting

alternative diagnoses that account for the clinical phenotype.36 It is reasonable to ask if the

biomarker patterns we have observed can help in diagnosis and management of patients.

Currently, CSF neopterin and NFL are not generally available for real-time clinical use,

though we suggest that they should be. Other, more readily available, inflammatory markers

with similar characteristics might be substituted for the former, for example, CSF β-2-

microglobulin (β2M).37 However, like neopterin, β2M has limited diagnostic specificity in

distinguishing HAD from opportunistic infections. It might be helpful in distinguishing

active from static brain injury from past causes, but because of elevations related to

meningeal inflammation, this use is probably largely applicable to treated patients rather

than those off treatment.38 On the other hand, CSF NFL we feel may be more useful in this

regard. It would more sensitively detect the presence or absence of CNS injury and thus

active from static CNS injury, though again without distinguishing cause.39 Nonetheless,

one can readily see where such a test could be used in HIV infection.

On the other hand, given the state of therapy and evolving guidelines, the direct need for

these distinctions may be eclipsed by the broader call for earlier antiretroviral treatment for

all viremic patients, at least in theory. As discussed elsewhere in this volume, this may only

be important if CNS disease is to be treated with different drug regimens than currently

recommended therapies that have been based on systemic treatment characteristics.40,41

Still, more than 50% of HIV-patients in many centers in the United States and Europe, and

even higher proportions in resource-poor areas of the world, are currently diagnosed as so-

called late presenters with low CD4 cell counts (< 350/L)42,43 and accordingly with an

increased risk of neurocognitive disease. In these patients, monitoring neurologic status may

be helpful. In those diagnosed earlier, their utility might be largely confined to (1)

monitoring the group of patients who still choose not to be on therapy for evidence of

advancing neuronal damage that might persuade them to begin treatment, (2) evaluating and
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monitoring individuals with neuroasymptomatic CNS escape,44 and (3) assessing ongoing

low-level replication in the CNS of patients on therapy with chronic neurologic symptoms

and signs.45,46

Conclusions

Chronic CNS exposure and likely infection by HIV is a nearly ubiquitous facet of systemic

infection that may evolve in parallel with systemic infection, but may also pursue an

independent course with respect to CNS injury and neurologic manifestations. Recent

studies using CSF biomarkers and molecular analysis of viral evolution and phenotypes has

led to clearer understanding of this special aspect of HIV infection and its consequences.

The details of this evolution are not only biologically interesting, but have implications for

the understanding neuropathogenesis and for therapeutic mitigation of disease.
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Fig. 1.
Schematic diagram of the salient systemic and central nervous system (CNS) disease

components of human immunodeficiency virus (HIV) infection. CNS HIV infection and

immune responses originate as extensions across the blood–brain and blood–cerebrospinal

fluid barriers (horizontal dashed line) of their systemic counterparts, though with variable

selection and local evolution depending on the stages of disease, and likely individual host

factors. Within the nervous system, both the virus and immune responses may alter the

integrity and function of the CNS in the depicted triangle of pathogenetic components.
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Fig. 2.
Changes in blood and cerebrospinal fluid (CSF) biomarkers with disease progression. The

panels show the changes in key biomarkers across seven subject groups as described in the

text. The blood CD4 counts (A) define the division of the four neuroasymptomatic (NA,

includes neurologically normal and those without overt or clinically recognized neurologic

complaints before recruitment into the cohort) and shows the early reduction during PHI and

the low counts in the HIV-associated dementia (HAD) group; the numbers under the

columns show the number of subjects in each group as previously described.47 Notably, the

CD4+ T cell counts in the HAD group (median 55, IQR 35–160 cells/µL) were comparable

to those of the combined NA 50–199 and NA < 50 groups (median 59, intraquartile range

[IQR] 20–122 cells/µL; p = 0.31, Mann-Whitney). Plasma (B) and CSF (C) HIV RNA

concentrations showed different patterns of change over the subject groups, most notably in

the NA group with CD4+ T cells < 50 µL. Elevated CSF WBC counts (D) were common in

all HIV-infected groups except in the NA subjects with blood CD4+T cell counts < 50

cells/µL (p < 0.01 to < 0.0001, Kruskal-Wallis test and Dunn’smultiple comparison test).

CSF neopterin (E) was elevated in all HIV-infected groups, increased when CD4+cells fell

below 350 cells/µL and was notably elevated in the HAD group. CSF NFL (F) was high in

all the HAD subjects, but also elevated in > 25% of those with CD4+ counts between 50–

199 cells/µL and nearly 75% of those with CD4+ cells below 50 cells/µL.
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Fig. 3.
Model of types of central nervous system (CNS) infection reflected in cerebrospinal fluid

(CSF). Systemic infection is shown on left and CNS on right. Acute and chronic infection by

T-tropic, CCR5-using (R5) viruses generally derive from circulating systemic virus

populations and likely relate to transport into the CSF by CD4+ T cells with limited or short-

lived local amplification. Only occasionally do these undergo clonal amplification, one form

of compartmentalization, and rarely do they further evolve and diversify locally. This

contrasts to macrophage- (M-) tropic HIV-1 populations, which do not require high CD4
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levels to infect cells and can propagate within the CNS in macrophages and related cells—

comprising the second and more pathogenic type of compartmentalized infection associated

with HIV encephalitis and HIV-associated dementia HAD. The location and events

underlying emergence of M-tropic viruses in the CNS remain uncertain. An independent

evolution occurs systemically with the emergence of T-tropic CXCR4-using (X4) viruses

systemically in some patients; these are associated with low-blood CD4 cells and rapid

progression, and may be found in CSF. However, there is no evidence that they are directly

neuropathic. In fact, R5 viruses continue to predominate in patients with low CD4 cells, but

are not included in the bottom portion in this crowded figure. The figure derives from

concepts developed by Swanstrom and colleagues in their work on CSF-virus phylogeny

and tropism.30

Price et al. Page 14

Semin Neurol. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


