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Summary: The log-transformation is widely used in biomedical and psychosocial research to deal with skewed 
data. This paper highlights serious problems in this classic approach for dealing with skewed data. Despite the 
common belief that the log transformation can decrease the variability of data and make data conform more 
closely to the normal distribution, this is usually not the case. Moreover, the results of standard statistical 
tests performed on log-transformed data are often not relevant for the original, non-transformed data. We 
demonstrate these problems by presenting examples that use simulated data. We conclude that if used at all, 
data transformations must be applied very cautiously. We recommend that in most circumstances researchers 
abandon these traditional methods of dealing with skewed data and, instead, use newer analytic methods 
that are not dependent on the distribution the data, such as generalized estimating equations (GEE).  
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1. Introduction

The log transformation, a widely used method to 
address skewed data, is one of the most popular 
transformations used in biomedical and psychosocial 
research. Due to its ease of use and popularity, the 
log transformation is included in most major statistical 
software packages including SAS, Splus and SPSS. 
Unfortunately, its popularity has also made it vulnerable 
to misuse – even by statisticians – leading to incorrect 
interpretation of experimental results.[1] Such misuse 
and misinterpretation is not unique to this particular 
transformation; it is a common problem in many 
popular statistical methods. For example, the two-
sample t-test is widely used to compare the means of 
two independent samples with normally distributed 
(or approximately normal) data, but many researchers 
take this critical assumption for granted, using t-tests 
without bothering to check or even acknowledge this 
underlying assumption. Another example is the Cox 
regression model used in survival analysis; many studies 
apply this popular model without even being aware of 
the proportionality assumption (i.e., the relative hazard 
of groups of interest is constant over time) required for 
valid inference. 

In this article we focus on the log-transformation 
and discuss major problems of using this method in 

practice. We use examples and simulated data to show 
that this method often does not resolve the original 
problem for which it is being used (i.e., non-normal 
distribution of primary data) and to show that using 
this transformation can introduce new problems that 
are even more difficult to deal with then the problem 
of non-normal distribution of data. We conclude with 
recommendations of alternative analytic methods that 
eliminate the need of transforming non-normal data 
distributions prior to analysis. 

 
2. Log-normal transformation

2.1 Using the log transformation to make data conform 
to normality

The normal distribution is widely used in basic and 
clinical research studies to model continuous outcomes. 
Unfortunately, the symmetric bell-shaped distribution 
often does not adequately describe the observed data 
from research projects. Quite often data arising in real 
studies are so skewed that standard statistical analyses 
of these data yield invalid results. Many methods have 
been developed to test the normality assumption of 
observed data. When the distribution of the continuous 
data is non-normal, transformations of data are 
applied to make the data as ‘normal’ as possible and, 
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thus, increase the validity of the associated statistical 
analyses. The log transformation is, arguably, the most 
popular among the different types of transformations 
used to transform skewed data to approximately 
conform to normality. 

If the original data follows a log-normal distribution 
or approximately so, then the log-transformed data 
follows a normal or near normal distribution. In this 
case, the log-transformation does remove or reduce 
skewness. Unfortunately, data arising from many 
studies do not approximate the log-normal distribution 
so applying this transformation does not reduce the 
skewness of the distribution. In fact, in some cases 
applying the transformation can make the distribution 
more skewed than the original data.  

To show how this can happen, we first simulated 
data ui which is uniformly distributed between 0 and 1, 
and then constructed two variables as follows: 

xi=100(exp(μi)-1)+1, yi=log(xi). 
Shown in the left panel in Figure 1 is the histogram of 
xi, while the right panel is the histogram of yi (the log-
transformed version of xi) based on a sample size of 
n=10,000. While the distribution of xi is right-skewed, 
the log-transformed data yi is clearly left-skewed. In fact, 
the log-transformed data yi is more skewed than the 
original xi, since the skewness coefficient for yi is 1.16 
while that for xi is 0.34. Thus, the log-transformation 
actually exacerbated the problem of skewness in this 
particular example. 

In general,  for right-skewed data, the log-
transformation may make it either right- or left-skewed. 
If the original data does follow a log-normal distribution, 

the log-transformed data will follow or approximately 
follow the normal distribution. However, in general 
there is no guarantee that the log-transformation 
will reduce skewness and make the data a better 
approximation of the normal distribution. 

2.2 Using the log transformation to reduce variability 
of data

Another popular use of the log transformation is to 
reduce the variability of data, especially in data sets that 
include outlying observations. Again, contrary to this 
popular belief, log transformation can often increase – 
not reduce – the variability of data whether or not there 
are outliers. 

For example, consider the following simple linear 
regression with only an intercept term: 

yi=β0+εi, εi~U(-0.5, 0.5).
Unlike the ordinary regression analysis where the 

error term is assumed to have a normal distribution, 
the error term in this regression is uniformly distributed 
between -0.5 and 0.5. Thus yi in the above model 
does not follow a log-normal distribution and the log-
transformed yi does not have a normal distribution. We 
then simulated data yi for this model with a sample size 
of n=100 and a value of the β0 parameter ranging from 
0.5 to 5.5. Note that β0 starts from 0.5, rather than from 
0, to ensure yi>0 and, thus, log (yi) is correctly estimated 
when performing the log transformation on the data 
simulated from the linear regression of the original data. 
We fit two different linear models on the same data. 
The first model used the data without transformation, 
the second model used the log-transformed data. The 

Figure 1. Histograms of original data (left plot) and log-transformed data (right plot) from a simulation 
study that examines the effect of log-transformation on reducing skewness.
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ordinary least square method was used to estimate the 
intercepts in both models. 

Table 1 shows the original and log-transformed 
estimates of β0 and its standard errors averaged over 
100,000 Monte Carlo (MC) simulations[1] from fitting 
the linear model to the original data. We use a large 
MC sample size to help reduce the sampling variability 
in the standard error estimates; thus the differences in 
the presented estimates from fitting the original and 
log-transformed data reflect true differences. The table 
shows that when β0=0.5, the standard errors from the 
model fit to the original yi were much smaller than those 
from fitting the log-transformed data. As β0 increased 
towards 5.5, the standard errors from fitting the original 
data remained the same, while their counterparts from 
fitting the log-transformed data decreased. When β0 

increased past the value 1, the standard errors from 
fitting the log-transformed data became smaller than 
those from fitting the original data. Table 2 presents the 
same estimates of β0 as those in Table 1, except that we 
introduced four outlying points (4, 6, 8 and 10) in the 
simulated data, thereby increasing the sample size to 
104. As can be seen in Table 2, the estimates of β0 and 
of the standard error of β0 changed after introduction 
of the outliers, but the pattern of differences in these 
estimates between the model for the original data and 
for the log-transformed data remains the same. This 
example shows that the conventional wisdom about 
the ability of a log transformation of data to reduce 
variability especially if the data includes outliers, is not 
generally true. Whether the log transformation reduces 
such variability depends on the magnitude of the mean 
of the observations — the larger the mean the smaller 
the variability. 

A more fundamental problem is that there is little 
value in comparing the variability of original versus log-
transformed data because they are on totally different 
scales. In theory we can always find a transformation 
for any data to make the variability of the transformed 
version either smaller or larger than that of the 
original data. For example, if the standard deviation of 
variable x is σ, then the standard deviation of the scale 
transformation x/K (K>0) is σ/K; thus by selecting a 
sufficiently large or small K we can change the standard 
deviation of the transformed variable x/K to any desired 
level.  

3. Difficulty of interpreting model estimates from log-
transformed data

3.1 Estimation of model parameters
Once the data is log-transformed, many statistical 
methods, including linear regression, can be applied 
to model the resulting transformed data. For example, 
the mean of the log-transformed observations (log yi),                               

LT =(1/n)*Σ i=1
 log y i is often used to estimate the 

population mean of the original data by applying the 
anti-log (i.e., exponential) function to obtain exp( LT). 
However, this inversion of the mean log value does not 
usually result in an appropriate estimate of the mean 
of the original data. For example, as shown by Feng and 
colleagues,[2] if yi follows a log-normal distribution (µ, 
σ2), then the mean of yi is given by E(yi)=exp(µ + σ2/2). 
If we log-transform yi, the transformed log yi follows a 
normal distribution with a mean of µ. Thus, the sample 
mean of the log-transformed data, LT=(1/n)*Σi=1

 log 
yi is an unbiased estimate of the mean µ of log yi , and 
the exponential function of LT, that is, =exp( LT), is an 

Table 1. Simulation results for simple linear 
regression without outliers (n=100; 100,000 
simulations)

β0

original data log-transformed data

Estimated 
Intercept

SE
Estimated 
Intercept

SE

0.50 0.5000 0.0288 −0.9999 0.0998

0.51 0.5100 0.0289 −0.9440 0.0887

0.55 0.5499 0.0289 −0.7993 0.0718

0.60 0.6001 0.0290 −0.6647 0.0608

0.70 0.7002 0.0289 −0.4591 0.0480

0.80 0.8000 0.0288 −0.2977 0.0401

0.90 0.8999 0.0288 −0.1626 0.0347

1.00 1.0001 0.0288 −0.0451 0.0307

1.50 1.5000 0.0289 0.3863 0.0198

5.50 5.5000 0.0289 1.7034 0.0053

Table 2. Simulation results for simple linear 
regression with outliers (n=104; 100,000 
simulations)

β0

original data log-transformed data

Estimated 
Intercept

SE
Estimated 
Intercept

SE

0.50 0.7501 0.0277 −0.8886 0.0960

0.51 0.7599 0.0277 −0.8350 0.0849

0.55 0.7999 0.0277 −0.6956 0.0689

0.60 0.8500 0.0278 −0.5660 0.0585

0.70 0.9500 0.0278 −0.3678 0.0461

0.80 1.0499 0.0277 −0.2119 0.0386

0.90 1.1500 0.0278 −0.0811 0.0335

1.00 1.2501 0.0277 0.0323 0.0296

1.50 1.7499 0.0278 0.4497 0.0190

5.50 5.7501 0.0278 1.7328 0.0051
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estimate of exp(µ). However, the mean of the original 
data yi is exp(µ+σ2/2), not exp(µ). Thus, even in this ideal 
situation, estimating the mean of the original yi using 
the exponent or anti-log of the sample mean of the log-
transformed data can generate inaccurate estimates of 
the true population mean of the original data.

 
3.2 Hypothesis testing with log-transformed data
It is also more difficult to perform hypothesis testing 
on log-transformed data. Consider, for example, the 
two sample t-test, which is widely used to compare the 
means of two normal (or near normal) samples. If the 
two samples have the same variance, the test statistic 
has a t-distribution. For skewed data (when the variance 
of samples is usually different), researchers often apply 
the log-transformation to the original data and then 
perform the t-test on the transformed data. However, 
as demonstrated below, applying such a test to log-
transformed data may not address the hypothesis of 
interest regarding the original data. 

Let y1i and y2i denote two samples. If the data 
from both samples follow a log-normal distribution, 
with log-normal (µ1, σ1

2) for the first sample and (µ2, 
σ2

2) for the second sample, then the first sample has 
the mean exp(µ1+σ1

2/2) and the second has the mean 
exp(µ2+σ2

2/2). If we apply the two-sample t-test to 
the original data, we are testing the null hypothesis 
that these two means are equal, H0: exp(μ1+σ1

2/2)= 
exp(μ2+σ2

2/2).
If we log-transform the data, the transformed 

data have the mean μ1 and variance σ1
2 for the first 

sample and mean μ2 and variance σ2
2 for the second 

sample. Thus, if we apply the two-sample t-test to the 
transformed data, the null hypothesis of the equality of 
the means becomes, H0: μ1=μ2.

The two null hypotheses are clearly not equivalent. 
Although the null hypothesis based on the log-
transformed data does test the equality of the means of 
the two log-transformed samples, the null hypothesis 
based on the original data does not, since the mean of 
the original data also involves the parameters, σ1

2 and 
σ2

2. Thus, even if no difference is found between the 
two means of the log-transformed data, it does not 
mean that there is no differences between the means in 
the original data of the two samples. For example, if the 
null hypothesis for the log-transformed data, H0: μ1=μ2, 
is not rejected for the log-transformed data, it does not 
imply that the null hypothesis for comparing the means 
of the original data of the samples, H0: exp(µ1+σ1

2/2)= 
exp(µ2+σ2

2/2), is true, unless the variances of the two 
samples are the same. 

3.3 Effect of adding a small constant to data when 
performing log transformations of data

Since the log transformation can only be used for 
positive outcomes, it is common practice to add a small 
positive constant, M, to all observations before applying 
this transformation. Although appearing quite harmless, 

this common practice can have a noticeable effect on 
the level of statistical significance in hypothesis testing. 

We examine the behavior of the p-value resulting 
from transformed data using a simulation. We simulated 
data from two independent normal distributions, 
with sample size n=100. The data is generated in the 
following way: (1) generate two independent random 
numbers ui and vi (i=1, …, n), where ui has a standard 
normal distribution and vi has a normal distribution with 
mean of 1 and a standard deviation of 2; (2) generate yi1 
and yi2 according to the following formulas:

yi1=exp(μi)+15, yi2=exp(yi)+13.
We then added a constant, M, to each observation 

of yi1 and yi2 before the data were log transformed. 
Figure 2 shows the p-values from comparing the means 
of the log-transformed data from the two samples, based 
on using different values of M. When M=0, the p-value 
for the difference in the means of the two samples of 
log-transformed data is 0.058, that is, the difference 
was not statistically significant at the usual type I error 
level of α=0.05. However, as M increases the p-values 
dropped and fell below the 0.05 threshold for statistical 
significance after it rose above 100. This simulation 
study indicates that the p-value of the test depends on 
what value is added to the data before applying the 
log-transformation, potentially making conclusions 
about differences between groups dependent on the 
somewhat arbitrary decision of the researcher about 
the size of M to be used in the analysis. 

4. Discussion
Using transformations in general and log transformation 
in particular can be quite problematic. If such an 
approach is used, the researcher must be mindful 
about its limitations, particularly when interpreting 
the relevance of the analysis of transformed data for 
the hypothesis of interest about the original data. 
For example, we have demonstrated that in most 
circumstances the log transformation does not help 
make data less variable or more normal and may, in 
some circumstances, make data more variable and more 
skewed. Furthermore, log-transformed data cannot 
usually facilitate inferences concerning the original data, 
since it shares little in common with the original data. 

For many applications, rather than trying to find an 
appropriate statistical distribution or transformation to 
model the observed data, it would probably be better 
to abandon this classic approach and switch to modern 
distribution-free methods. For example, a popular 
approach that can avoid many of these problems is 
the generalized estimating equations, or GEE.[3,4] This 
approach forgoes the distribution assumption, providing 
valid inference regardless of the distribution of the data. 
However, this is only appropriate for skewed data, if 
the data can be reasonably modeled by a parametric 
distribution such as the normal distribution, it is 
preferable to use the classic statistical methods because 
they usually provide more efficient inference than GEE. 
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摘要：对数转换的方法在生物医学和社会心理研究中
处理非正态数据时被广泛应用。本文重点介绍该传统
方法在处理非正态数据时存在的严重问题。尽管通常
认为对数转换可以减少数据的变异性，使数据更符合
正态分布，但是通常并非如此。此外，对数转换后的
数据得出的标准统计测试结果往往和未转化的原始数
据不相关。我们通过使用模拟数据示例来说明这些问
题。我们认为如果采用数据转换，必须非常谨慎应用。

我们建议研究者在大多数情况下摒弃这些处理非正态
数据的传统方法，选择采用较新的不依赖于数据分布
的方法：如广义估计方程（GEE）。

关键词：假设检验，离群值，对数正态分布，正态分布，
偏度
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数据分析中的对数转换和意义
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Figure 2. P-values as a function of values added to the data before applying log-transformation.
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