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Abstract

A common task in biological research is to predict function for proteins by comparing sequences

between proteins of known and unknown function. This is often done using pair-wise sequence

alignment algorithms (e.g. BLAST). A problem with this approach is the assumption of a simple

equivalence between a minimum sequence similarity threshold and the function similarity between

proteins. This assumption is based on the binary concept of homology in that proteins are or not

homologous. The relationship between sequence and function however is more complex as well as

pertinent for predicting protein function, e.g. evaluating BLAST alignments or developing training

sets for profile models based on functional rather than homologous groupings. Our motivation for

this study was to model sequence and function similarity between proteins to gain insights into the

“sequence-function similarity relationship between proteins for predicting function. Using our

model we found that function similarity generally increases with sequence similarity but with a

high degree of variability. This result has implications for pair-wise approaches in that it appears

sequence similarity must be very high to ensure high function similarity. Profile models which

enable higher sensitivity are a potential solution. However, multiple sequences alignments (a

necessary prerequisite) are a problem in that current algorithms have difficulty aligning sequences

with very low sequence similarity, which is common in our data set, or are intractable for high

numbers of sequences. Given the importance of predicting protein function and the need for

multiple sequence alignments, algorithms for accomplishing this task should be further refined and

developed.
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1. INTRODUCTION

Predicting protein function, or protein annotation, is a crucial step toward a deep

understanding of cellular processes that will provide the foundation of modern research in

biology and biomedicine [10,11,12]. The most common annotation method is pair-wise

protein sequence comparison to “transfer” or predict function based on a minimum level of

sequence similarity between proteins of known and unknown function [4,6,17,21]. The most

popular pair-wise approach is BLAST [1]. There are also approaches based on comparisons

between multiple sequences. The general consensus regarding these “profile” models, such

as HMM’s [7,8], is that they are highly sensitive and accurate. However, profile models

depend on algorithms which generate multiple sequence alignments. These have been shown

to be inaccurate when aligning proteins of very low sequence similarity or otherwise

intractable [3,19,22].

Although useful, there is a logical discrepancy with pair-wise methods in that an implicit

equivalence relation is assumed between a minimum threshold of sequence similarity and

the function similarity between proteins. This assumption is based on the binary concept of

homology in that proteins are or are not homologous (related by common descent). The

more appropriate answer is whether or not sequence similarity implies a degree of function

similarity. In practice, little information about the functions themselves or variability in the

underlying relationship between sequence and function similarity between proteins and

classes of functions is considered in pair-wise approaches. Given the high estimates of

annotation error rates in public databases for predicted functions [5,9,23], and the number of

proteins needing annotations this matter deserves further investigation.

Here we explicitly model the relationship between protein sequence similarity and function

similarity; what we call the sequence-function similarity relationship. What our model helps

assess is the continuous range of likelihoods that a protein has a particular function based on

its sequence similarity to a protein of known function. The implication of our model is that

pairwise (and profile) methods may be informed by this exercise. Some previous studies

have investigated this relationship [6,16] but the literature is sparse for non-enzymes

functions and for specific details to inform pair-wise approaches.

To model the sequence-function similarity relationship we first needed to numerically

quantify the distance between functions. This can be done by relating measures of function

specificity between terms in the Gene Ontology (GO, [2]). The GO describes a diversity of

protein functions (GO terms) in a controlled fashion and represents function specificity as a

hierarchical directed acyclic graph. The structure of the GO, combined with a numerical

measure of function (i.e. term) specificity (e.g. Information Content [14,15,20]), enables the

measurement of distance between two functions by finding common “ancestor” terms.

Function similarity, unlike function specificity which is a property of a single GO term, is a

property of two GO terms. The function similarity between two GO terms is quantified by
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relating the term specificities of the two terms and the specificity of their common ancestor

term (see Methods). Using this function similarity metric, the relationship between sequence

similarity and function similarity can be modeled.

2. METHODS

2.1 Information Content

The Information Content (IC) of a GO term is related to the probability of discovering a

particular GO term in a data set (e.g. of proteins). The definition of IC is:

(1)

Where t is a particular GO term (assigned to a protein) and p is the probability of that term

occurring in a data set. The frequency of a GO term is the number of times it or any of its

child terms occurs. The approach of using IC in the GO was originally demonstrated by

[14].

2.2 Function Similarity

The function similarity between two GO terms is calculated by determining the ratio of

function specificity between their most specific common ancestor and the mean specificity

of the two terms:

(2)

Where Fspecm is the mean function specificity of the two GO terms and Fspeca is the

function specificity of their most specific common ancestor. Our Fsim measure is based on

IC, i.e. Relative Information Content (RIC), in a manner similar to [13].

2.3 Data Sets

We selected RefSeq proteins from the Entrez database [18] with GO evidence codes

indicated experimentally confirmed functions (EXP, IDA, IPI, IMP, IGI, IEP, see http://

www.geneontology.org/GO.evidence.shtml). There were 23,101 proteins for which we

calculated the IC of their GO terms. From this set we selected single-function proteins

determined by choosing only proteins with a single evidence code (any type).

2.4 Sequence Similarity

Protein sequences were compared using BLAST [1] under default parameters with the

exception of low-complexity filtering turned off. Sequence similarity between proteins was

determined using the reverse reciprocal bit score (RRBS) which is based on the BLAST bit

score. The formula for RRBS is:

(3)
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Where bitscore is the BLAST similarity statistic between proteins [1]. The RRBS metrics

was originally developed by [20] to account for the non-reciprocal nature of BLAST bit

scores. We take the square root to help with statistical modeling.

2.5 Statistical Model

Statistical modeling was performed using Generalized Linear Models (GLM) on the open-

source R statistical environment. The “family=quasi(link=logit, variance=u(1−u)” parameter

was used for the glm function in R.

3. RESULTS

3.1 Gold-Standard Protein Data Set

We excluded non-specific GO terms (IC>6.6) as these tended to confound the model. We

also selected proteins with a single GO term. Using these filters we retained 1,424 proteins

which still covers 27.8% of GO terms with experimental evidence.

3.2 Sequence-Function Relationship

We produced models based on data sets of all BLAST hits for each protein (All pairs) and

also when retaining only the best hit for each protein (Top hit). We found that the use of a

low-complexity filter had a slight detrimental effect (data not shown). The difference

between the All pairs and Top hit model was not very large. Our model therefore refers to

the All pairs model. Using the models we found that at high sequence similarity

(RRBS>0.6) the function similarity is generally high (mean RIC=0.93, STD=0.22). This

indicated good potential “power” for pair-wise methods in predicting function similarity in

this range (Figure 1). In contrast, the low sequence similarity range (RRBS<=0.2) generally

indicates low function similarity (mean RIC=0.03, STD=0.18), although some protein pairs

retain high function similarity however (RIC~1.0, Figure 1). In the “moderate” sequence

similarity range (0.2<=RRBS<=0.6) the variability in the data around the model implies that

any two proteins can have very similar or distant function similarity (mean RIC=0.33, but

STD=0.43), see also Figure 1. This result suggests that accurate prediction of high function

similarity between proteins in this moderate range of sequence similarity is difficult, at least

with pair-wise methods like BLAST.

3.3 Sequence-Function Relationship by GO Category

To characterize categories of functions we conducted an analysis on GO terms rather than

protein pairs (i.e. GO terms are associated with multiple protein pairs). We first grouped

protein pairs by common GO ancestor then calculated the mean RIC and RRBS for the

protein pairs grouped by common GO ancestor. We also kept track of the number of pairs

associated with each GO ancestor (ancestor frequencies). In all, there were 253 terms

identified as GO ancestors. We then fitted weighted GO ancestor model of the mean RIC

and mean RRBS with the weights being the ancestor frequencies. We did this for All pairs

and Top hit data (Figure 3).

The degree to which function categories (GO ancestors) deviated from the GO ancestor

model was determined by calculating residuals normalized by the standard deviation:

Higdon et al. Page 4

Proc Int Symp High Perform Distrib Comput. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(4)

Where k is an arbitrary constant and u is the model prediction (i.e. mean) at a particular

RRBS value. After calculating residuals, we ranked GO terms by their normalized residual

values (hence to need to estimate k). GO terms which lie well above or below the GO

ancestor model indicate categories of functions where relatively low sequence similarity is

required on average to achieve high function similarity or vice versa. In our analysis we

found that many more GO terms like above the GO ancestor model (229) than below it (24)

due to more frequent GO terms having greater weight in the model (Figure 3). To

investigate significantly diverging terms we selected the bottom 50% percentile

(residual>=0.14) of GO terms lying below the GO ancestor model (12 total) and the 90%

percentile (residual>=0.47) of GO terms which lie above the GO ancestor model (25 total).

The choice of percentage differs because our intent was to select similar size data sets (12 vs

25). A caveat with this approach is that some GO ancestors have few protein pairs and some

have many, especially those which lie below the model. This makes it hard to draw general

inferences although some broad insights are garnered.

The top 50% of terms below the model appears enriched for enzymes (“catalytic activitiy”,

GO term=GO:0003824) in that 75.0% of terms here are enzymes verus 49.4% of terms

overall. It therefore appears that enzymes require higher levels of sequence similarity to

achieve high function similarity as opposed to functions which lie below the model. Pair-

wise methods may perform better here given that higher sequence similarity appears to be

needed. The top 90% of terms which lie above the GO ancestor model appear enriched for

“binding” proteins (“binding”, GO term=GO:0005488) given that 32.0% of terms in this

range are binding proteins versus 25.3% of terms overall. In contrast to functions which lie

below the GO ancestor model, these functions have much less sequence similarity associated

with high function similarity. It may be more difficult to apply pairwise methods like

BLAST to these functions give the lower levels of sequence similarity between these

functions on average.

4. DISCUSSION

4.1 Implications for Pair-Wise Methods

Our results illuminate a potential limitation in pair-wise methods like BLAST; the sequence

similarity between two proteins must be quite high for them by have high function similarity

(based on the average case). However, our results also demonstrate that the sequence-

function similarity relationship varies greatly by function category (GO term). Some

categories of function contain groups of protein sequences that are much more dissimilar to

one another versus the average case. The use of a strict, all-inclusive, sequence similarity

threshold when using pair-wise methods would be too conservative when attempting to

annotate these categories of proteins. A logical next step to address this is to develop profile

models (e.g. HMM’s) for these function categories given the consensus opinion that they are

more accurate and sensitive than pair-wise methods [7,8].
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4.2 Profile Models for Annotation

Profile models for predicting protein function should be based on groups of proteins whose

functions are determined by biological experimentation to avoid “circular” reasoning (i.e.

training the profile model on proteins which themselves have predicted function), as on our

data set. The problem we face however is that the number of proteins with experimental

characterizations of function is relatively small compared to the number of possible

functions (there are over 8000 GO terms). For example, in our data set almost half of GO

terms are represented by three proteins or less. This makes to difficult to develop profile

models as the models estimate the probabilities of positionspecific residues in protein

sequences [7]. A potential way to develop larger data sets is to use less-specific GO terms.

By the “true-path rule” of the GO hierarchy, the path from a term to the root must always be

true; or it is true that child terms “are” their parent terms (although more specific

representations of protein function). For example, in applying the true-path rule to our data

set the GO term “isomerase activity” (GO term=GO:0016853) can be represented by over

300 proteins, if proteins associated with all of its child terms are included in the set.

This in turn presents another challenge. Profile models depend on highly accurate multiple

sequence alignment (MSA) of proteins. Consider that isomerases (GO term=GO:0016853),

a category of proteins in our data set related by a common function, appear to have very low

sequence similarity among them (mean RRBS=0.04, STD=0.11) and are also of highly

variable length (mean=410, STD=259). The sequence similarity between isomerases is also

highly variable in that some protein sequences are highly similar to one another while others

are very dissimilar. Note that existing benchmarks for evaluating MSA algorithms appear to

be clearly limited in regard to the potential diversity and variability in protein sequences [3],

as we see here for isomerases. Given the apparent low sequence similarity, identifying the

few common or similar residues between the sequences is imperative for developing profile

models such as for isomerases. However, according to previous evaluations, existing MSA

algorithms may perform poorly or are inaccurate when aligning groups of proteins with very

low degrees of sequences similarity and of highly variable lengths [3,19,22], which is likely

due to various heuristics employed to improve the tractability of these algorithms. A

potential approach could be a more exhaustive alignment search method using parallel

computing. Nonetheless, if MSA algorithms are to be successful they must be able to

produce accurate multiple alignments under the conditions we describe here.
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Figure 1.
Model fits (All Data and Top Hit). Points represent the RRBS and RIC value for protein

pairs. Vertical lines indicate regions of low, moderate, and high sequence similarity.
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Figure 2.
Sequence and function similarity relationship by GO term. GO terms above or below the

line indicate functions which may require more sequence similarity between proteins to

achieve high function similarity than average.
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